寒冷地区绿化指标对住区室外舒适度的多途径调控分析——以郑州市为例

薛思寒, 马悦, 王琨

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 210-218.

PDF(1448 KB)
PDF(1448 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 210-218. DOI: 10.12302/j.issn.1000-2006.202102004
研究论文

寒冷地区绿化指标对住区室外舒适度的多途径调控分析——以郑州市为例

作者信息 +

Multiple pathways regulation analysis of greenery index on outdoor comfort of residential areas in cold regions: a case study of Zhengzhou City

Author information +
文章历史 +

摘要

【目的】城市环境与人群舒适度正逐渐受到关注,高质量的城市住区绿化可以改善微气候,提高空间使用率。本研究旨在探究绿化对人体舒适度影响的潜在机制与调控途径,明晰绿化指标之间的差异,为寒冷地区居住区规划设计提出相应的绿化配置策略。【方法】选取寒冷地区城市郑州的3个典型住区作为研究样本,进行冬季住区微气候实测及舒适度调查,通过回归分析,明确绿视率、植物视图因子两种绿化指标与舒适度的定量关系,厘清绿化对微气候环境舒适度的调控机制,并利用中介效应分析揭示二者作用途径的差异。【结果】回归分析结果表明,绿视率、植物视图因子与舒适度评价呈显著负相关(b=-0.181,P<0.01)、(b=-0.202,P<0.01),且绿化指标对舒适度存在直接和间接两种影响;两种绿化指标与风速呈显著负相关,与其他热环境因子皆显著正相关;舒适度与风速评价呈现显著正相关,与其他热环境因子负相关关系显著。通过中介效应分析表明,绿视率主要通过76.7%的间接影响和23.3%的直接影响共同调控舒适度,植物视图因子则主要通过87.9%的间接影响调控舒适度,直接影响效应不显著。【结论】两种绿化指标是从不同的角度来表征绿化结构,在评价人群与空间偏好的环境绿化设计中宜采用绿视率作为指标,而对于微气候适应性研究则更适合采用植物视图因子。

Abstract

【Objective】 There has been increasing attention on the urban environment and the comfort of urban residents. High-quality urban residential greening can improve the microclimate and increase the utilization rate of space. This study explores the potential mechanism and regulatory approaches of greening on human comfort, clarifies differences between greenery indices, and proposes corresponding greening allocation strategies for residential planning and design in cold regions. 【Method】 The research area selected was the district of Zhengzhou, China. The microclimate of three typical residential areas in winter were measured, and a comfort survey was carried out. Through regression analysis, the quantitative relationship between two greenery indices (i.e., green view index and tree view factor) and comfort was established. This relationship clarifies the regulatory mechanism of greening on the microclimate and environmental comfort, the intermediary effect difference analysis was used to reveal the effect of the two ways. 【Result】 The regression analysis results showed that the green view index and tree view factor were significantly negatively correlated with comfort evaluation (b = -0.181, P < 0.01) and (b = -0.202, P < 0.01); the greenery indices had direct and indirect effects on comfort evaluation. There was a significant negative correlation between the two greenery indices and wind speed, and a significant positive correlation with other thermal environmental factors. Comfort had a significant positive correlation with wind speed evaluation and a significant negative correlation with other thermal environmental factors. Mediating effect analysis showed that the green view index mainly had an indirect effect of 76.7% and a direct effect of 23.3%, while the tree view factor mainly had an indirect effect of 87.9%, and its direct effect was not significant (P = 0.3953). 【Conclusion】 The two types of greenery indices represent greening structures from different perspectives. In the design and evaluation of greening spaces based on population and spatial preferences, the green view factor should be used as an indicator, while the tree view factor is more suitable to study microclimate adaptability.

关键词

植物视图因子 / 绿视率 / 回归分析 / 中介效应分析 / 郑州市

Key words

tree view factor / green view index / regression analysis / mediating effect analysis / Zhengzhou City

引用本文

导出引用
薛思寒, 马悦, 王琨. 寒冷地区绿化指标对住区室外舒适度的多途径调控分析——以郑州市为例[J]. 南京林业大学学报(自然科学版). 2022, 46(1): 210-218 https://doi.org/10.12302/j.issn.1000-2006.202102004
XUE Sihan, MA Yue, WANG Kun. Multiple pathways regulation analysis of greenery index on outdoor comfort of residential areas in cold regions: a case study of Zhengzhou City[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 210-218 https://doi.org/10.12302/j.issn.1000-2006.202102004
中图分类号: TU986;F299.27   

参考文献

[1]
刘滨谊, 张德顺, 张琳, 等. 上海城市开敞空间小气候适应性设计基础调查研究[J]. 中国园林, 2014, 30(12):17-22.
LIU B Y, ZHANG D S, ZHANG L, et al. Basic investigation and research of microclimate responsive landscape design in Shanghai urban open spaces[J]. Chin Landsc Archit, 2014, 30(12):17-22.DOI: 10.3969/j.issn.1000-6664.2014.12.005.
[2]
刘滨谊, 梅欹, 匡纬. 上海城市居住区风景园林空间小气候要素与人群行为关系测析[J]. 中国园林, 2016, 32(1):5-9.
LIU B Y, MEI Y, KUANG W. Experimental research on correlation between microclimate element and human behavior and perception of residential landscape space in Shanghai[J]. Chin Landsc Archit, 2016, 32(1):5-9.DOI: 10.3969/j.issn.1000-6664.2016.01.002.
[3]
张德顺, 丽莎·萨贝拉, 王振, 等. 上海3个公园园林小气候的人体舒适度测析[J]. 风景园林, 2018, 25(8):97-100.
ZHANG D S, LISA S, WANG Z, et al. Comparison analysis of human comfort about landscape micro-climates in three parks,Shanghai[J]. Landsc Archit, 2018, 25(8):97-100.DOI: 10.14085/j.fjyl.2018.08.0097.04.
[4]
张丹婷, 陈崇贤, 洪波, 等. 城市绿地对居民健康的影响及其持续性分析[J]. 西北大学学报(自然科学版), 2020, 50(6):934-942.
ZHANG D T, CHEN C X, HONG B, et al. Impact of urban green space on residents’ health and its sustainability[J]. J Northwest Univ (Nat Sci Ed), 2020, 50(6):934-942.DOI: 10.16152/j.cnki.xdxbzr.2020-06-008.
[5]
胡杨, 马克明. 城市街道绿化对空气质量及微气候影响的综合模拟研究[J]. 生态学报, 2021, 41(4):1314-1331.
HU Y, MA K M. Comprehensive simulation study on the impact of urban street greening on air quality and microclimate[J]. Acta Ecologica Sinica, 2021, 41(4):1314-1331.DOI: 10.5846/stxb2020370439.
[6]
赵康兵. 高分辨率遥感影像技术应用研究:以城市绿化精细化调查为例[J]. 南京工程学院学报(自然科学版), 2019, 17(4):50-56.
ZHAO K B. Application of high resolution remote sensing image technology: taking urban greening investigation as an example[J]. J Nanjing Inst Technol (Nat Sci Ed), 2019, 17(4):50-56.DOI: 10.13960/j.issn.1672-2558.2019.04.009.
[7]
HELBICH M. Spatiotemporal contextual uncertainties in green space exposure measures:exploring a time series of the normalized difference vegetation indices[J]. Int J Environ Res Public Heal, 2019, 16(5):852.DOI: 10.3390/ijerph16050852.
[8]
刘晓光. 城市绿地系统规划评价指标体系的构建与优化[D]. 南京:南京林业大学, 2015.
LIU X G. A research on evaluation index of urban green space system planning[D]. Nanjing:Nanjing Forestry University, 2015.
[9]
HARTIG T, MITCHELL R, DE VRIES S, et al. Nature and health[J]. Annu Rev Public Heal, 2014, 35:207-228.DOI: 10.1146/annurev-publhealth-032013-182443.
[10]
IANA M, JULIA, S, TERRY H, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance[J]. Environmental Research, 2017, 158:301-317. DOI: 10.1016/j.envres.2017.06.028
[11]
陈珂珂, 梁涛, 甘义猛, 等. 建筑和绿化布局对郑州市居住区小气候的影响[J]. 河南农业大学学报, 2016, 50(5):674-682.
CHEN K K, LIANG T, GAN Y M, et al. Influence of the building and green space layout for microclimate in Zhengzhou residential[J]. J Henan Agric Univ, 2016, 50(5):674-682.DOI: 10.16445/j.cnki.1000-2340.2016.05.017.
[12]
王洋洋, 黄锦楼. 基于绿视率的城市生态舒适度评价模型构建[J]. 生态学报, 2021, 41(6):2170-2179.
WANG Y Y, HUANG J L. Construction of evaluation model of urban ecological comfort index based on green view index[J]. Acta Ecol Sin, 2021, 41(6):2170-2179.DOI: 10.5846/stxb202005121189.
[13]
WANG R, HELBICH M, YAO Y, et al. Urban greenery and mental wellbeing in adults:cross-sectional mediation analyses on multiple pathways across different greenery measures[J]. Environ Res, 2019, 176:108535.DOI: 10.1016/j.envres.2019.108535.
[14]
李智轩, 何仲禹, 张一鸣, 等. 绿色环境暴露对居民心理健康的影响研究:以南京为例[J]. 地理科学进展, 2020, 39(5):779-791.
摘要
绿色环境暴露对心理健康的影响长期以来都受到国内外不同领域学者的关注,但从个体与环境交互的角度关注衡量个体对环境实际感知的研究较少。论文试图基于对居民视觉感知和时空活动等因素的考虑,结合机器学习等技术扩展绿色环境暴露的测度方式,并构建绿色环境暴露对心理健康影响的概念框架。同时,以南京为实证对象,运用结构方程模型对比分析绿地率、绿视率、绿色视觉暴露对心理健康影响的差异。研究发现,3种绿色环境暴露测度指标对心理健康均有显著正向影响,但影响程度和路径存在差异,建立更加综合的绿色环境暴露评价指标体系至关重要。主观建成环境可以作为绿视率和绿色视觉暴露对心理健康影响的中介变量,身体活动仅作为绿色视觉暴露影响心理健康的中介变量。研究拓展了绿色环境暴露对心理健康影响的研究框架,并对城市绿地系统的规划管理具有参考价值。
LI Z X, HE Z Y, ZHANG Y M, et al. Impact of greenspace exposure on residents’ mental health:a case study of Nanjing City[J]. Prog Geogr, 2020, 39(5):779-791.
[15]
WANG J, GUO W, WANG C L, et al. Tree crown geometry and its performances on human thermal comfort adjustment[J]. J Urban Manag, 2021, 10(1):16-26.DOI: 10.1016/j.jum.2021.02.001.
[16]
李坤明, 张宇峰, 赵立华, 等. 热舒适指标在湿热地区城市室外空间的适用性[J]. 建筑科学, 2017, 33(2):15-19,166.
LI K M, ZHANG Y F, ZHAO L H, et al. Applicability of thermal comfort indices in urban outdoor space in hot and humid zone[J]. Build Sci, 2017, 33(2):15-19,166.DOI: 10.13614/j.cnki.11-1962/tu.2017.02.03.
[17]
李明霞. 基于绿视率的城市街道步行空间绿量视觉评估:以北京市轴线为例[D]. 北京:中国林业科学研究院, 2018.
LI M X. Visual evaluation of green quantity in walking space of city street based on green visual rate: a case study of Beijing axis[D]. Beijing:Chinese Academy of Forestry, 2018.
[18]
郑文铖, 刘佳欣, 张钰. 基于绿视率指标的城市绿化建设评价体系研究——以厦门滨海绿道为例[C]// 2019中国城市规划年会论文集(05城市规划新技术应用).重庆:中国城市规划学会, 2019.
ZHENG W C, LIU J X, ZHANG Y. Study on the evaluation system of urban greening construction based on the index of green vision rate : taking Xiamen Binhai Greenway as an example[C]// New technology for urban planning. Chongqing: Municipal People’s Government, Urban Planning Society of China, 2019.
[19]
孟庆岩, 汪雪淼, 孙云晓, 等. 基于街景数据的绿视率模型构建及其影响因子研究[J]. 生态科学, 2020, 39(1):146-155.
MENG Q Y, WANG X M, SUN Y X, et al. Construction of green view index model based on street view data and research on its influence factors[J]. Ecol Sci, 2020, 39(1):146-155.DOI: 10.14108/j.cnki.1008-8873.2020.01.019.
[20]
LI X J, ZHANG C R, LI W D, et al. Assessing street-level urban greenery using Google Street View and a modified green view index[J]. Urban For Urban Green, 2015, 14(3):675-685. DOI: 10.1016.j.ufug.2015.06.006.
[21]
屠星月, 黄甘霖, 邬建国. 城市绿地可达性和居民福祉关系研究综述[J]. 生态学报, 2019, 39(2):421-431.
TU X Y, HUANG G L, WU J G. Review of the relationship between urban greenspace accessibility and human well-being[J]. Acta Ecol Sin, 2019, 39(2):421-431. DOI: 10.5846/stxb20180203024.
[22]
GONG F Y, ZENG Z C, ZHANG F, et al. Mapping sky,tree,and building view factors of street canyons in a high-density urban environment[J]. Build Environ, 2018, 134:155-167.DOI: 10.1016/j.buildenv.2018.02.042.
[23]
LIANG J M, GONG J H, ZHANG J M, et al. GSV2SVF-an interactive GIS tool for sky,tree and building view factor estimation from street view photographs[J]. Build Environ, 2020, 168:106475.DOI: 10.1016/j.buildenv.2019.106475.
[24]
CHEN L, NG E. Outdoor thermal comfort and outdoor activities:a review of research in the past decade[J]. Cities, 2012, 29(2):118-125.DOI: 10.1016/j.cities.2011.08.006.
[25]
王作兴, 郭飞, 郭若男. 基于UTCI指数的不同气候区室外人体热感觉研究[J]. 低温建筑技术, 2020, 42(12):6-10,18.
WANG Z X, GUO F, GUO R N. The research on outdoor human thermal sensation in different climate zones based on utci index[J]. Low Temp Archit Technol, 2020, 42(12):6-10,18.DOI: 10.13905/j.cnki.dwjz.2020.12.002.
[26]
郭楚豪, 吴诗蓝, 马淑娟, 等. 一种新的针对多个中介变量的中介分析方法[J]. 中华流行病学杂志, 2019, 40(9):1155-1158.
GUO C H, WU S L, MA S J, et al. A new mediation analysis method for multiple mediators[J]. Chin J Epidemiol, 2019, 40(9):1155-1158.DOI: 10.3760/cma.j.issn.0254-6450.2019.09.026.
[27]
朱宁. 基于微气候环境改善的寒冷地区建筑周边绿化研究[D]. 北京:北京建筑大学, 2020.
ZHU N. The research on the greening around buildings in cold climate city based on microclimate environment improvement[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2020.
[28]
周树彬. 绿化布局对高层住宅风环境影响的数值模拟研究 :以合肥中铁滨湖名邸为例[D]. 合肥:合肥工业大学, 2018.
ZHOU S B. Numerical simulation research on the influence of greening layout form on hiemal outdoor wind environment of high-rise residential buildings: case study of Binhu mingdi residence community in Hefei,China[D]. Hefei:Hefei University of Technology, 2018.
[29]
王志鹏, 王薇, 邢思懿, 等. 城市住所窗外绿视率对疫情期间人群心理健康的影响:基于合肥市的研究[J]. 环境与职业医学, 2020, 37(11):1078-1082.
WANG Z P, WANG W, XING S Y, et al. Impact of window view green visual ratio on people’s mental health during pandemic: a study in Hefei[J]. J Environ Occup Med, 2020, 37(11):1078-1082.DOI: 10.13213/j.cnki.jeom.2020.20214.
[30]
赵彦琛. 森林环境对生心理状态效益之研究[D]. 台北:台湾大学, 2015.
ZHAO Y C. Study on the benefits of forest environment on the mental state of living people[D]. Taipei: Taiwan University, 2015.
[31]
连泽峰, 刘滨谊. 风景园林小气候对人体自主神经系统的健康作用的测试分析[C]// 中国风景园林学会.中国风景园林学会2019年会论文集:下册.中国风景园林学会, 2019.
LIAN Z F, LIU B Y. Test and analysis of the health effects of landscape architecture microclimate on human autonomic nervous system[C]// Chinese Society of Landscape Architecture. Proceedings of the 2019 Annual Meeting of Chinese Society of Landscape Architecture (Volume II). Chinese Society of Landscape Architecture, 2019.

基金

国家自然科学基金青年基金项目(51808503)
河南省高等学校重点科研项目计划(19A560020)
河南省高等学校重点科研项目(20B560007)
河南省重点研发与推广专项(212102310958)
华南理工大学亚热带建筑科学国家重点实验室开放基金项目(2982B03)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/