MIXTA/MIXTA-like基因特征及其对植物表皮细胞分化的调控

周芳伟, 吴怀通, 尹佟明

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 229-237.

PDF(1494 KB)
PDF(1494 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 229-237. DOI: 10.12302/j.issn.1000-2006.202102008
专论综评

MIXTA/MIXTA-like基因特征及其对植物表皮细胞分化的调控

作者信息 +

Characteristics of MIXTA/MIXTA-like genes and their functions in regulating plant epidermal cells differentiation

Author information +
文章历史 +

摘要

植物表皮细胞是植物最外层直接与环境相互作用的细胞,依据其不同功能,分化形成多种具有防卫功能的特化细胞结构,在植物防御、减少蒸腾、授粉媒介吸引、种子散布、次生代谢产物合成与贮存等方面起着重要作用。研究发现MIXTA/MIXTA-like是多种植物表皮细胞分化的关键调控因子。在不同植物中,MIXTA/MIXTA-like作用部位(主要集中在花瓣、叶片、胚珠和子房)和调节方式不同,但最终都是通过调控表皮细胞分化发挥作用。MIXTA/MIXTA-like在表皮毛的形成、角质层生物合成、锥形表皮细胞的分化过程中起着重要的调节作用,其中植物表皮毛发育是一个研究热点。植物表皮毛有多种不同的功能:如叶片被毛是植物抵御取食昆虫的重要表型特征;法国梧桐、杨树、柳树飞絮都是种子成熟过程中表皮毛发育的结果;而黄花蒿中,青蒿素主要在腺毛中合成和储存。因此,开展植物表皮毛发育和调控机制研究具有重要意义。笔者梳理了MIXTA/MIXTA-like基因的特征及其在不同植物表皮细胞分化过程中的生物学功能,阐述了木本植物表皮毛发育调控的分子机制,为加速林木表皮毛发育相关性状的新品种培育提供借鉴。

Abstract

Plant epidermal cells are the outermost cells that directly interact with ambient conditions. According to their functional roles, epidermal cells differentiate into a variety of specialized cell structures, which participate in activities such as plant defense, evaporation reduction, pollinator attraction, seed dispersal, and the synthesis and storage of se-condary metabolites. MIXTA/MIXTA-like genes have been identified as key regulators of epidermal cell differentiation in many plants. These genes may function in different tissues (e.g., petals, leaves, ovules and ovaries) in different plants by regulating the differentiation of epidermal cells. They also play essential roles in trichome formation, cuticle biosynthesis, conical epidermal cell differentiation, and in initializing seed hair development. Among which, trichome development is a hot research topic because of its functional role. For instance, leaf indumentum is deemed as an important morphological feature in the defense against phytophagous insects, and seed hairs dispersed from poplars, willows and chinars are all differentiated from epidermal cells during seed maturation; whereas artemisinin is synthesized and stored in the glandular hairs of Artemisia annua. Here, we review and summarize the characteristics of MIXTA/MIXTA-like genes, as well as their biological functions in regulating epidermal cell differentiation. This paper provides essential information for facilitating studies on the molecular mechanisms underlying epidermal cell differentiation and for accelerating the breeding program of traits related to epidermal cell differentiation.

关键词

植物表皮细胞 / 角质层 / 锥形表皮细胞 / 表皮毛 / MIXTA/MIXTA-like基因

Key words

plant epidermal cells / cuticle / conical epidermal cell / trichome / MIXTA/MIXTA-like genes

引用本文

导出引用
周芳伟, 吴怀通, 尹佟明. MIXTA/MIXTA-like基因特征及其对植物表皮细胞分化的调控[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 229-237 https://doi.org/10.12302/j.issn.1000-2006.202102008
ZHOU Fangwei, WU Huaitong, YIN Tongming. Characteristics of MIXTA/MIXTA-like genes and their functions in regulating plant epidermal cells differentiation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 229-237 https://doi.org/10.12302/j.issn.1000-2006.202102008
中图分类号: Q78   

参考文献

[1]
KHOSLA A, PAPER J M, BOEHLER A P, et al. HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes, and GL2 activates a positive feedback loop via MYB23[J]. Plant Cell, 2014, 26(5):2184-2200. DOI: 10.1105/tpc.113.120360.
[2]
MATÍAS-HERNÁNDEZ L, JIANG W, YANG K, et al. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana[J]. Plant J, 2017, 90(3):520-534.DOI: 10.1111/tpj.13509.
[3]
DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581. DOI: 10.1016/j.tplants.2010.06.005.
[4]
FELLERA, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J, 2011, 66(1):94-116.DOI: 10.1111/j.1365-313x.2010.04459.x.
[5]
MARTIN C, PAZ-ARES J. MYB transcription factors in plants[J]. Trends Genet, 1997, 13(2):67-73.DOI: 10.1016/S0168-9525(96)10049-4.
[6]
李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报(自然科学版), 2011, 35(5):129-134.
LI Z Y, LI M Y. Advance in transcriptional factors regulating flavonoid biosynjournal[J]. J Nanjing For Univ(Nat Sci Ed), 2011, 35(5):129-134.DOI: 10.3969/j.issn.1000-2006.2011.05.029.
[7]
JUNGBLUT P R, SCHAIBLE U E, MOLLENKOPF H J, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens[J]. Mol Microbiol, 1999, 33(6):1103-1117.DOI: 10.1046/j.1365-2958.1999.01549.x.
[8]
NODA K, GLOVER B J, LINSTEAD P, et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor[J]. Nature, 1994, 369(6482):661-664.DOI: 10.1038/369661a0.
[9]
MARTIN C, BHATT K, BAUMANN K, et al. The mechanics of cell fate determination in petals[J]. Philos Trans Royal Soc Lond Ser B Biol Sci, 2002, 357(1422):809-813.DOI: 10.1098/rstb.2002.1089.
[10]
JAFFÉ F W, TATTERSALL A, GLOVER B J. A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth[J]. J Exp Bot, 2007, 58(6):1515-1524.DOI: 10.1093/jxb/erm020.
[11]
KAY Q. More than eye can see: the unexpected complexity of petal structure[J]. Plants Today, 1988, 87:109-114. DOI: 10.1111/j.1749-6632.2002.tb07570.x.
[12]
KAY Q, DAOUD H S, STIRTON C H. Pigment distribution,light reflection and cell structure in petals[J]. Bot J Linn Soc, 1981, 83(1):57-83.DOI: 10.1111/j.1095-8339.1981.tb00129.x.
[13]
WHITNEY H M, CHITTKA L, BRUCE T J, et al. Conical epidermal cells allow bees to grip lflowers and increase foraging effificiency[J]. Curr Biol, 2009, 19:948-953. DOI: 10.1016/j.cub.2009.04.051.
[14]
NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent,self-cleaning plant surfaces[J]. Ann Bot, 1997, 79(6):667-677.DOI: 10.1006/anbo.1997.0400.
[15]
SCHREIBER L. Annual plant reviews Volume 23: Biology of the plant cuticle[M]. Oxford: Blackwell Publishing Ltd, 2007.
[16]
SHEPHERD T, WYNNE GRIFFITHS D. The effects of stress on plant cuticular waxes[J]. New Phytol, 2006, 171(3):469-499.DOI: 10.1111/j.1469-8137.2006.01826.
[17]
YEATS T H, ROSE J K. The formation and function of plant cuticles[J]. Plant Physiol, 2013, 163(1):5-20.DOI: 10.1104/pp.113.222737.
[18]
FICH E A, SEGERSON N A, ROSE J K. The plant polyester cutin:biosynjournal,structure,and biological roles[J]. Annu Rev Plant Biol, 2016, 67:207-233.DOI: 10.1146/annurev-arplant-043015-111929.
[19]
SCHILMILLER A L, LAST R L, PICHERSKY E. Harnessing plant trichome biochemistry for the production of useful compounds[J]. Plant J, 2008, 54(4):702-711.DOI: 10.1111/j.1365-313x.2008.03432.x.
[20]
NEAL J J, STEFFENS J C, TINGEY W M. Glandular trichomes of Solatium berthaultii and resistance to the Colorado potato beetle[J]. Entomol Exp et Appl, 1989, 51(2):133-140.DOI: 10.1111/j.1570-7458.1989.tb01223.x.
[21]
BODNARYK R P. Physical and chemical defences of pods and seeds of white mustard(Sinapis alba L.) against tarnished plant bugs,Lygus lineolaris(Palisot De Beauvois)(Heteroptera:Miridae)[J]. Can J Plant Sci, 1996, 76(1):33-36.DOI: 10.4141/cjps96-006.
[22]
CHOINSKI J S, WISE R R. Leaf growth development in relation to gas exchange in Quercus marilandica Muenchh[J]. J Plant Physiol, 1999, 154(3):302-309.DOI: 10.1016/S0176-1617(99)80172-2.
[23]
PÉREZ-ESTRADA L B, CANO-SANTANA Z, OYAMA K. Variation in leaf trichomes of Wigandia arens:environmental factors and physiological consequences[J]. Tree Physiol, 2000, 20(9):629-632.DOI: 10.1093/treephys/20.9.629.
[24]
PATERSON A H, WENDEL J F, GUNDLACH H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429):423-427.DOI: 10.1038/nature11798.
[25]
ZHANG TZ, HU Y, JIANG W K, et al. Sequencing of allotetraploid cotton(Gossypium hirsutum L.acc.TM-1) provides a resource for fiber improvement[J]. Nat Biotechnol, 2015, 33(5):531-537.DOI: 10.1038/nbt.3207.
[26]
HAIGLER C H, BETANCUR L, STIFF M R, et al. Cotton fiber:a powerful single-cell model for cell wall and cellulose research[J]. Front Plant Sci, 2012, 3:104.DOI: 10.3389/fpls.2012.00104.
[27]
TURLEY R B, KLOTH R H. Identification of a third fuzzless seed locus in upland cotton(Gossypium hirsutum L.)[J]. J Hered, 2002, 93(5):359-364. DOI: 10.1093/jhered/93.5.359.
[28]
TIAN Y, DU J J, WU H T, et al. The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton[J]. J Exp Bot, 2020, 71(12):3499-3511. DOI: 10.1093/jxb/eraa104.
[29]
STEWART JM. Fiber initiation on the cotton ovule(Gossypium hirsutum)[J]. Am J Bot, 1975, 62(7):723-730.DOI: 10.1002/j.1537-2197.1975.tb14105.x.
[30]
WU YR, MACHADO A C, WHITE R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton[J]. Plant Cell Physiol, 2006, 47(1):107-127.DOI: 10.1093/pcp/pci228.
[31]
BROCKINGTON S F, ALVAREZ-FERNANDEZ R, LANDIS J B, et al. Evolutionary analysis of the MIXTA gene family highlights potential targets for the study of cellular differentiation[J]. Mol Biol Evol, 2013, 30(3):526-540.DOI: 10.1093/molbev/mss260.
[32]
OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4):639-648.DOI: 10.1016/0092-8674(94)90549-5.
[33]
MILLARD P S, KRAGELUND B B, BUROW M. R2R3 MYB transcription factors-functions outside the DNA-binding domain[J]. Trends Plant Sci, 2019, 24(10):934-946.DOI: 10.1016/j.tplants.2019.07.003.
[34]
STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2001, 4(5):447-456.DOI: 10.1016/s1369-5266(00)00199-0.
[35]
JAENISCH R, BIRD A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33:245-254. DOI: 10.1038/ng1089.
[36]
BAUMANN K, PEREZ-RODRIGUEZ M, BRADLEY D, et al. Control of cell and petal morphogenesis by R2R3 MYB transcription factors[J]. Development, 2007, 134(9):1691-1701.DOI: 10.1242/dev.02836.
[37]
KRANZ H D, DENEKAMP M, GRECO R, et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J]. Plant J, 1998, 16(2):263-276.DOI: 10.1046/j.1365-313x.1998.00278.x.
[38]
JAKOBY M J, FALKENHAN D, MADER M T, et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106[J]. Plant Physiol, 2008, 148(3):1583-1602.DOI: 10.1104/pp.108.126979.
[39]
YUAN Y W, SAGAWA J M, DI STILIO V S, et al. Bulk segregant analysis of an induced floral mutant identifies a MIXTA-like R2R3 MYB controlling nectar guide formation in Mimulus lewisii[J]. Genetics, 2013, 194(2):523-528.DOI: 10.1534/genetics.113.151225.
[40]
WANG L, XUE W, LI X, et al. EgMIXTA1,a MYB-type transcription factor,promotes cuticular wax formation in Eustoma grandiflorum leaves[J]. Front Plant Sci, 2020, 11:524947.DOI: 10.3389/fpls.2020.524947.
[41]
LASHBROOKE J, ADATO A, LOTAN O, et al. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynjournal and assembly[J]. Plant Physiol, 2015, 169(4):2553-2571.DOI: 10.1104/pp.15.01145.
[42]
XU J S, VAN HERWIJNEN Z O, DRÄGER D B, et al. SlMYC1 regulates type VI glandular trichome formation and terpene biosynjournal in tomato glandular cells[J]. Plant Cell, 2018, 30(12):2988-3005.DOI: 10.1105/tpc.18.00571.
[43]
ZHAO L, ZHU H, ZHANG K, et al. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber[J]. Plant Sci, 2020, 300:110636.DOI: 10.1016/j.plantsci.2020.110636.
[44]
YANG S, CAI Y L, LIU X W, et al. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber[J]. J Exp Bot, 2018, 69(8):1887-1902.DOI: 10.1093/jxb/ery047.
[45]
PEREZ-RODRIGUEZ M, JAFFE F W, BUTELLI E, et al. Deve-lopment of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development, 2005, 132(2):359-370.DOI: 10.1242/dev.01584.
[46]
DI STILIO V S, MARTIN C, SCHULFER A F, et al. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum[J]. New Phytol, 2009, 183(3):718-728.DOI: 10.1111/j.1469-8137.2009.02945.x.
[47]
LEONARD A S, BRENT J, PAPAJ D R, et al. Floral nectar guide patterns discourage nectar robbing by bumble bees[J]. PLoS One, 2013, 8(2):e55914.DOI: 10.1371/journal.pone.0055914.
[48]
RAVEN J A. The evolution of vascular land plants in relation to supracellular transport processes[J]. Adv Bot Res, 1977, 5:153-219.DOI: 10.1016/S0065-2296(08)60361-4.
[49]
KOLATTUKUDY P E. Biopolyester membranes of plants:cutin and suberin[J]. Science, 1980, 208(4447):990-1000.DOI: 10.1126/science.208.4447.990.
[50]
KOLATTUKUDY P E. Polyesters in higher plants[J]. Adv Biochem Eng, 2001, 71:1-49.DOI: 10.1007/3-540-40021-4_1.
[51]
NAWRATH C. Unraveling the complex network of cuticular structure and function[J]. Curr Opin Plant Biol, 2006, 9(3):281-287.DOI: 10.1016/j.pbi.2006.03.001.
[52]
AHARONI A, DIXIT S, JETTER R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynjournal,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis[J]. Plant Cell, 2004, 16(9):2463-2480.DOI: 10.1105/tpc.104.022897.
[53]
BROUN P, POINDEXTER P, OSBORNE E, et al. WIN1,a transcriptional activator of epidermal wax accumulation in Arabidopsis[J]. PNAS, 2004, 101(13):4706-4711.DOI: 10.1073/pnas.0305574101.
[54]
KANNANGARA R, BRANIGAN C, LIU Y, et al. The transcription factor WIN1/SHN1 regulates Cutin biosynjournal in Arabidopsis thaliana[J]. Plant Cell, 2007, 19(4):1278-1294.DOI: 10.1105/tpc.106.047076.
[55]
DOMÍNGUEZ E, HEREDIA-GUERRERO J A, HEREDIA A. The plant cuticle:old challenges,new perspectives[J]. J Exp Bot, 2017, 68(19):5251-5255.DOI: 10.1093/jxb/erx389.
[56]
TAKETA S, AMANO S, TSUJINO Y, et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynjournal pathway[J]. PNAS, 2008, 105(10):4062-4067.DOI: 10.1073/pnas.0711034105.
[57]
OSHIMA Y, SHIKATA M, KOYAMA T, et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately re-gulate cuticle development in Arabidopsis and Torenia fournieri[J]. Plant Cell, 2013, 25(5):1609-1624. DOI: 10.1105/tpc.113.110783.
[58]
YAN T, LI L, XIE L, CHEN M, et al. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua[J]. New Phytol, 2018, 218(2):567-578. DOI: 10.1111/nph.15005.
[59]
XU B, TAYLOR L, PUCKER B, et al. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land[J]. New Phytol, 2021, 229(4):2324-2338. DOI: 10.1111/nph.16997.
[60]
MARTIN C, GLOVERB J. Functional aspects of cell patterning in aerial epidermis[J]. Curr Opin Plant Biol, 2007, 10:70-82. DOI: 10(1).1016/j.pbi.2006.11.004.
[61]
Advances in botanical research-incorporating advances in plant pathology[M]. Amsterdam:Elsevier, 2005.DOI: 10.1016/s0065-2296(04)x4200-2.
[62]
TISSIER A. Glandular trichomes:What comes after expressed sequence tags?[J]. Plant J, 2012, 70(1):51-68.DOI: 10.1111/j.1365-313x.2012.04913.x.
[63]
LARKIN J C, BROWN M L, SCHIEFELBEIN J. How do cells know what they want to be when they grow up? lessons from epidermal patterning in Arabidopsis[J]. Annu Rev Plant Biol, 2003, 54(1):403-430. DOI: 10.1146/annurev.arplant.54.031902.134823.
[64]
SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures[J]. Trends Plant Sci, 2006, 11(6):274-280. DOI: 10.1016/j.tplants.2006.04.008.
[65]
OPPENHEIMER D G, HERMAN P L, SIVAKUMARAN S, et al. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J]. Cell, 1991, 67(3):483-493. DOI: 10.1016/0092-8674(91)90523-2.
[66]
BLOOMER R H, JUENGER T E, SYMONDS V V. Natural varia-tion in GL1 and its effects on trichome density in Arabidopsis thaliana[J]. Mol Ecol, 2012, 21(14):3501-3515. DOI: 10.1111/j.1365-294x.2012.05630.x.
[67]
ZHAO M, MOROHASHI K, HATLESTAD G, et al. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11):1991-1999. DOI: 10.1242/dev.016873.
[68]
FOLKERS U, BERGER J, HÜLSKAMP M. Cell morphogenesis of trichomes in Arabidopsis:differential control of primary and se-condary branching by branch initiation regulators and cell growth[J]. Dev(Camb Engl), 1997, 124(19):3779-3786.
[69]
GILDING E K, MARKS M D. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events[J]. Plant J, 2010, 64(2):304-317.DOI: 10.1111/j.1365-313x.2010.04329.x.
[70]
CAMOIRANO A, ARCE A L, ARIEL F D, et al. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis[J]. J Exp Bot, 2020, 71(18):5438-5453. DOI: 10.1093/jxb/eraa257.
[71]
SHI P, FU X, SHEN Q, et al. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynjournal in Artemisia annua[J]. New Phytol, 2018, 217(1):261-276.DOI: 10.1111/nph.14789.
[72]
EWAS M, GAO Y Q, WANG S C, et al. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato[J]. Sci Bull, 2016, 61(18):1413-1418.DOI: 10.1007/s11434-016-1108-9.
[73]
EWAS M, GAO Y Q, ALI F, et al. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato[J]. Sci Bull, 2017, 62(7):476-485.DOI: 10.1016/j.scib.2017.03.018.
[74]
YAN T, CHEN M, SHEN Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua[J]. New Phytol, 2017, 213(3):1145-1155.DOI: 10.1111/nph.14205.
[75]
LI J X, XIA X F, XU S J, et al. Development,structure and evolutionary significance of seed appendages in Salix matsudana(Salicaceae)[J]. PLoS One, 2018, 13(9):e0203061.DOI: 10.1371/journal.pone.0203061.
[76]
樊汝汶, 吴琼美. 响叶杨(Populus adenopoda Maxim)种子发育的胚胎学观察[J]. 南京林学报, 1982, 25(3):116-128.
FAN R W, WU Q M. The embryological observation of the seed development of Populus adenopoda[J]. J Nanjing For Univ, 1982, 25(3):116-128. DOI: 10.3969/j.jssn.1000-2006.1982.03.010.
[77]
MACHADO A, WU Y, YANG Y, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development[J]. Plant J, 2009, 59(1):52-62.DOI: 10.1111/j.1365-313x.2009.03847.x.
[78]
WAN Q, GUAN X, YANG N, et al. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development[J]. New Phytol, 2016, 210(4):1298-1310.DOI: 10.1111/nph.13860.
[79]
WALFORD S A, WU Y, LLEWELLYN D J, et al. GhMYB25-like:a key factor in early cotton fibre development[J]. Plant J, 2011, 65(5):785-797.DOI: 10.1111/j.1365-313x.2010.04464.x.
[80]
ZHU QH, YUAN Y, STILLER W, et al. Genetic dissection of the fuzzless seed trait in Gossypium barbadense[J]. J Exp Bot, 2018, 69(5):997-1009.DOI: 10.1093/jxb/erx459.
[81]
WU H, TIAN Y, WAN Q, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J]. New Phytol, 2018, 217(2):883-895.DOI: 10.1111/nph.14844.
[82]
PASTORE J J, LIMPUANGTHIP A, YAMAGUCHI N, et al. Late meristem IDENTITY2 acts together with LEAFY to activate APETALA1[J]. Development, 2011, 138(15):3189-3198.DOI: 10.1242/dev.063073.
[83]
TAN J, WALFORD S A, DENNIS E S, et al. Trichomes control flower bud shape by linking together young petals[J]. Nat Plants, 2016, 2:16093.DOI: 10.1038/nplants.2016.93.
[84]
WENG L, TIAN Z, FENG X, et al. Petal development in Lotus japonicus[J]. J Integr Plant Biol, 2011, 53(10):770-782.DOI: 10.1111/j.1744-7909.2011.01072.x.
[85]
SCOVILLE A G, BARNETT L L, BODBYL-ROELS S, et al. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus[J]. New Phytol, 2011, 191(1):251-263.DOI: 10.1111/j.1469-8137.2011.03656.x.
[86]
PLETT J M, WILKINS O, CAMPBELL M M, et al. Endogenous overexpression of Populus MYB186 increases trichome density,improves insect pest resistance,and impacts plant growth[J]. Plant J, 2010, 64(3):419-432.DOI: 10.1111/j.1365-313x.2010.04343.x.

基金

国家自然科学基金项目(31800562)
江苏省“333高层次人才工程”项目
江苏南方现代林业协同创新项目

编辑: 袁佳秋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/