南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2): 111-118.doi: 10.12302/j.issn.1000-2006.202102009
刘泽茂1(), 晏昕2, 吴文3, 张于卉3, 喻方圆1,*()
收稿日期:
2021-02-03
接受日期:
2021-05-09
出版日期:
2022-03-30
发布日期:
2022-04-08
通讯作者:
喻方圆
基金资助:
LIU Zemao1(), YAN Xin2, WU Wen3, ZHANG Yuhui3, YU Fangyuan1,*()
Received:
2021-02-03
Accepted:
2021-05-09
Online:
2022-03-30
Published:
2022-04-08
Contact:
YU Fangyuan
摘要:
【目的】研究在基质中添加竹炭对大叶榉树容器苗生长和营养状况的影响,为确定最适合大叶榉树容器苗生长的竹炭添加量提供理论依据。【方法】以大叶榉树容器幼苗为研究对象,采用单因素随机区组试验设计,设置4个竹炭用量水平(添加量分别为0%、1%、3%和5%),试验结束后测定苗木生长和营养状况。【结果】相较于对照,其他3种用量竹炭处理的大叶榉树容器苗苗高、地径、地上部分生物量、地下部分生物量和细根生物量均显著增加。同时,添加竹炭对大叶榉树容器苗地上部分生长的促进作用大于对地下部分的促进作用,这体现在竹炭处理的大叶榉树容器苗根茎比相比对照显著减小。3种用量竹炭处理下,一级侧根数、根系总长、根系表面积、根系体积和细根(直径≤1 mm)长度相较于对照都有显著增加。添加竹炭显著降低了大叶榉树容器苗根系中可溶性糖和淀粉的含量,对可溶性蛋白含量则没有显著影响;同时促进了大叶榉树容器苗根系对于基质中氮元素的吸收,加快了其茎中氮的代谢活动,但对根系和茎中的碳元素含量没有显著性影响。竹炭对大叶榉树容器苗生长的促进和营养状况的改善基本上随着其添加量的提高而增强。综合来看,添加5%竹炭最有利于大叶榉树容器苗的生长,与对照相比,其苗高增加了37.84%,地径增加了17.67%,地上部分生物量增加了69.56%,地下部分生物量增加了63.48%,细根生物量增加了49.17%,细根长度增加了62.38%。【结论】添加竹炭有利于大叶榉树容器苗的生长、根系的建成、根系形态的优化和苗木对基质中氮素的吸收利用。在基质中添加质量分数为5%的竹炭,可以更好地培育优质的大叶榉树容器苗。
中图分类号:
刘泽茂,晏昕,吴文,等. 竹炭添加对大叶榉树容器苗生长和营养状况的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 111-118.
LIU Zemao, YAN Xin, WU Wen, ZHANG Yuhui, YU Fangyuan. Effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 111-118.DOI: 10.12302/j.issn.1000-2006.202102009.
表2
竹炭处理对大叶榉树容器苗生物量的影响"
处理 treatment | 地上部分/g ground zone | 地下部分/g underground zone | 细根/g fine root | 根茎比 root-to-shoot ratio |
---|---|---|---|---|
CK | 6.34±0.16 c | 4.08±0.57 b | 0.48±0.12 c | 0.94±0.08 a |
T1 | 10.22±0.64 ab | 5.85±0.61 ab | 0.68±0.18 ab | 0.56±0.05 b |
T2 | 9.44±0.18 b | 5.43±0.49 ab | 0.62±0.16 ab | 0.57±0.06 b |
T3 | 10.75±0.24 a | 6.67±0.62 a | 0.72±0.09 a | 0.62±0.06 b |
表3
竹炭处理对大叶榉树容器苗根系形态指标的影响"
处理 treatment | 一级侧根数 number of primary side roots | 根系总长/cm total root system length | 根系表面积/ cm2 root surface area | 根系体积/ cm3 root volume |
---|---|---|---|---|
CK | 3.18±0.17 c | 245.83±28.64 b | 158.84±19.61 b | 6.95±0.69 c |
T1 | 3.83±0.17 bc | 287.53±28.81 ab | 219.32±15.59 a | 11.90±1.06 bc |
T2 | 4.50±0.22 ab | 336.82±28.52 ab | 255.41±10.85 a | 23.08±3.10 ab |
T3 | 5.00±0.44 a | 367.11±35.62 a | 268.78±20.41 a | 26.39±7.01 a |
表4
竹炭处理对大叶榉树容器苗不同直径根系长度的影响"
根系直径/ mm root diameter | 根系长度/cm root system length | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
0<D≤0.5 | 162.43±11.37 d | 205.80±19.53 c | 236.40±15.28 ab | 258.94±13.5 a |
0.5<D≤1.0 | 32.87±6.43 b | 45.39±3.62 ab | 54.36±4.81 a | 58.18±5.35 a |
1.0<D≤1.5 | 22.61±2.73 a | 10.91±1.38 b | 9.61±2.15 b | 15.10±3.26 ab |
1.5<D≤2.0 | 11.28±2.77 a | 6.08±0.74 b | 7.39±1.21 b | 7.76±2.19 b |
2.0<D≤2.5 | 7.24±1.07 ab | 5.63±0.64 c | 7.46±1.22 ab | 8.67±1.53 a |
2.5<D≤3.0 | 3.52±0.31 b | 2.35±0.18 b | 5.29±0.47 a | 6.05±0.58 a |
3.0<D≤3.5 | 3.35±0.18 ab | 3.17±0.13 ab | 6.73±0.29 a | 4.49±0.21 ab |
3.5<D≤4.0 | 1.77±0.08 c | 4.62±0.29 b | 6.79±0.41 a | 2.97±0.23 bc |
4.0<D≤4.5 | 1.32±0.15 c | 1.18±0.18 c | 3.87±0.27 ab | 4.13±0.18 a |
D>4.5 | 7.7±0.88 c | 26.92±1.85 a | 16.88±1.72 ab | 17.28±2.63 ab |
表5
Effects of bamboo charcoal on the root nutrient content of Z. schneideriana container seedlings单位:mg/g"
处理 treatment | 可溶性糖含量 soluble sugar content | 淀粉含量 starch content | 可溶性蛋白含量 soluble protein content |
---|---|---|---|
CK | 21.68±0.93 a | 21.71±1.38 a | 1.92±0.07 a |
T1 | 13.50±0.45 b | 10.27±0.65 b | 1.36±0.04 a |
T2 | 7.91±0.57 c | 12.99±2.10 b | 1.23±0.04 a |
T3 | 9.29±0.26 c | 18.22±0.47 a | 1.39±0.05 a |
表6
Effects of bamboo charcoal on the nitrogen and carbon content in stem and root of Z. schneideriana container seedlings单位:mg/g"
部位 part | 月份 month | 氮含量 nitrogen content | 碳含量 carbon content | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | CK | T1 | T2 | T3 | ||
茎 stem | 7 | 52.87±2.87 b | 60.55±2.04 a | 64.65±2.82 a | 57.60±2.61 a | 706.95±15.86 a | 685.69±2.23 a | 711.42±11.82 a | 667.31±9.74 b |
8 | 54.69±2.49 a | 47.88±2.32 ab | 49.65±1.55 ab | 42.79±3.62 c | 705.63±16.66 a | 642.78±13.26 a | 653.59±11.78 a | 582.46±20.67 a | |
9 | 48.53±1.64 ab | 44.93±3.76 c | 53.58±1.27 a | 44.17±3.32 c | 733.58±21.76 a | 683.49±17.88 a | 723.86±32.39 a | 622.67±23.53 a | |
10 | 49.33±3.34 ab | 54.76±4.76 a | 51.65±1.26 a | 49.84±2.77 ab | 659.58±19.48 a | 632.43±26.72 a | 644.78±21.56 a | 574.69±11.33 a | |
11 | 67.17±3.24 ab | 65.07±2.23 ab | 70.68±1.76 a | 63.62±1.14 b | 602.61±19.19 a | 668.78±5.91 a | 641.03±25.59 a | 659.27±14.65 a | |
根 root | 7 | 81.50±2.08 b | 127.15±4.30 a | 132.87±3.01 a | 129.07±4.53 a | 603.55±7.74 b | 647.71±5.91 a | 625.38±4.47 ab | 611.98±22.67 ab |
8 | 84.19±3.44 c | 102.42±2.87 a | 104.58±2.04 a | 99.67±1.49 ab | 633.65±18.56 a | 621.43±15.47 a | 594.47±16.55 a | 608.39±19.22 a | |
9 | 82.66±2.97 b | 86.41±3.26 bc | 89.97±4.28 c | 80.55±2.05 a | 667.21±11.34 a | 606.77±10.31 a | 574.82±12.56 a | 589.52±10.75 a | |
10 | 79.54±3.31 a | 72.33±2.05 b | 74.28±3.89 b | 67.65±4.51 c | 643.65±22.47 a | 576.43±19.54 a | 556.61±21.03 a | 591.80±9.46 a | |
11 | 73.97±2.49 a | 60.18±0.94 b | 62.17±1.56 b | 58.08±1.20 c | 577.72±9.74 a | 501.38±12.63 ab | 524.47±14.57 b | 522.44±11.74 ab |
[1] | 刘雪梅, 胡希军, 罗雪梅, 等. 榉树秋季叶色变化类型和生长特性[J]. 经济林研究, 2014, 32(1):121-125,179. |
LIU X M, HU X J, LUO X M, et al. Color change types and growth characteristics of Zealkova schneideriana leaves in autumn[J]. Nonwood For Res, 2014, 32(1):121-125,179. DOI: 10.14067/j.cnki.1003-8981.2014.01.029.
doi: 10.14067/j.cnki.1003-8981.2014.01.029 |
|
[2] | 孙杰杰, 沈爱华, 黄玉洁, 等. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(4):85-93. |
SUN J J, SHEN A H, HUANG Y J, et al. Quantitative classification and ordination of Zelkova schneiderianahabitat in Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):85-93. DOI: 10.3969/j.issn.1000-2006.201809027.
doi: 10.3969/j.issn.1000-2006.201809027 |
|
[3] |
SUN J J, QIU H J, GUO J H, et al. Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China[J]. Glob Ecol Conserv, 2020, 21:e00840. DOI: 10.1016/j.gecco.2019.e00840.
doi: 10.1016/j.gecco.2019.e00840 |
[4] | 周志春, 刘青华, 胡根长, 等. 3种珍贵用材树种轻基质网袋容器育苗方案优选[J]. 林业科学, 2011, 47(10):172-178. |
ZHOU Z C, LIU Q H, HU G C, et al. Scheme optimization of light substrate for container seedlings of three precious timber tree species[J]. Sci Silvae Sin, 2011, 47(10):172-178. | |
[5] |
DUMROESE R K, SUNG S J S, PINTO J R, et al. Morphology,gas exchange,and chlorophyll content of longleaf pine seedlings in response to rooting volume,copper root pruning,and nitrogen supply in a container nursery[J]. New For, 2013, 44(6):881-897. DOI: 10.1007/s11056-013-9377-5.
doi: 10.1007/s11056-013-9377-5 |
[6] | 高继平, 隋阳辉, 霍轶琼, 等. 生物炭用作水稻育苗基质的研究进展[J]. 作物杂志, 2014(2):16-21. |
GAO J P, SUI Y H, HUO Y Q, et al. The research progress and prospects on biochar used as matrix in rice seedling[J]. Crops, 2014(2): 16-21. DOI: 10.16035/j.issn.1001-7283.2014.02.013.
doi: 10.16035/j.issn.1001-7283.2014.02.013 |
|
[7] |
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al. Long-term effects of biochar on soil physical properties[J]. Geoderma, 2016, 282:96-102. DOI: 10.1016/j.geoderma.2016.07.019.
doi: 10.1016/j.geoderma.2016.07.019 |
[8] |
XIANG Y Z, DENG Q, DUAN H L, et al. Effects of biochar application on root traits:a meta-analysis[J]. GCB Bioenergy, 2017, 9(10):1563-1572. DOI: 10.1111/gcbb.12449.
doi: 10.1111/gcbb.12449 |
[9] | 王军, 施雨, 李子媛, 等. 生物炭对退化蔬菜地土壤及其修复过程中N2O产排的影响[J]. 土壤学报, 2016, 53(3):713-723. |
WANG J, SHI Y, LI Z Y, et al. Effects of biochar application on N2O emission in degraded vegetable soil and in remediation process of the soil[J]. Acta Pedol Sin, 2016, 53(3):713-723. DOI: 10.11766/trxb201509170443.
doi: 10.11766/trxb201509170443 |
|
[10] |
DHEN N, ABED S B, ZOUBA A, et al. The challenge of using date branch waste as a peat substitute in container nursery production of lettuce (Lactuca sativa L.)[J]. Int J Recycl Org Waste Agric, 2018, 7(4):357-364. DOI: 10.1007/s40093-018-0221-y.
doi: 10.1007/s40093-018-0221-y |
[11] | 吕高明, 蒋琳琳, 张敬沙, 等. 生物炭在园林环保领域的研究进展[J]. 安徽农学通报, 2020, 26(12):90-94. |
LYU G M, JIANG L L, ZHANG J S, et al. Research progress of biochar in the field of garden environmental protection[J]. Anhui Agric Sci Bull, 2020, 26(12):90-94. DOI: 10.16377/j.cnki.issn1007-7731.2020.12.041.
doi: 10.16377/j.cnki.issn1007-7731.2020.12.041 |
|
[12] | 陈庆飞, 石岩, 刘玉学, 等. 生物炭替代泥炭栽培基质对铁皮石斛生长的影响[J]. 中国农学通报, 2015, 31(13):30-35. |
CHEN Q F, SHI Y, LIU Y X, et al. Effects of biochar replacing peat in culture media on the growth of Dendrobium officinale[J]. Chin Agric Sci Bull, 2015, 31(13):30-35. | |
[13] | 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报, 2013, 19(6):1438-1444. |
LIU Y X, WANG Y F, LYU H H, et al. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery(Brassica chinensis) and soil properties[J]. Plant Nutr Fertil Sci, 2013, 19(6):1438-1444. DOI: 10.11674/zwyf.2013.0618.
doi: 10.11674/zwyf.2013.0618 |
|
[14] |
LYCHUK T E, IZAURRALDE R C, HILL R L, et al. Biochar as a global change adaptation:predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model[J]. Mitig Adapt Strateg Glob Change, 2015, 20(8):1437-1458. DOI: 10.1007/s11027-014-9554-7.
doi: 10.1007/s11027-014-9554-7 |
[15] |
KUMAR A, BHATTACHARYA T. Biochar:a sustainable solution[J]. Environ Dev Sustain, 2021, 23(5):6642-6680. DOI: 10.1007/s10668-020-00970-0.
doi: 10.1007/s10668-020-00970-0 |
[16] | 沈信权, 徐佳乐, 沈建林, 等. 添加竹炭对土壤肥力的影响[J]. 浙江林业科技, 2012, 32(5):9-12. |
SHEN X Q, XU J L, SHEN J L, et al. Effect of addition of bamboo charcoal on soil fertility[J]. J Zhejiang For Sci Technol, 2012, 32(5):9-12. DOI: 10.3969/j.issn.1001-3776.2012.05.003.
doi: 10.3969/j.issn.1001-3776.2012.05.003 |
|
[17] | 陈开超. 竹炭及其新型颗粒基质对长寿花等3种植物生长的影响[J]. 现代农业科技, 2014(11):169-170,172. |
CHEN K C. Effects of bamboo charcoal and its new granular matrix on the growth of three plants such as Narcissus jonquilla L.[J]. Xiandai Nongye Keji, 2014(11): 169-170, 172. DOI: 10.3969/j.issn.1007-5739.2014.11.105.
doi: 10.3969/j.issn.1007-5739.2014.11.105 |
|
[18] | 高海英, 陈心想, 张雯, 等. 生物炭和生物炭基氮肥的理化特征及其作物肥效评价[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4):69-78,85. |
GAO H Y, CHEN X X, ZHANG W, et al. Physicochemical properties and efficiencies of biochar and biochar-fbased nitrogenous fertilizer[J]. J Northwest A F Univ (Nat Sci Ed), 2013, 41(4):69-78,85. DOI: 10.13207/j.cnki.jnwafu.2013.04.012.
doi: 10.13207/j.cnki.jnwafu.2013.04.012 |
|
[19] | 李松昊, 何冬华, 沈秋兰, 等. 竹炭对三叶草生长及土壤细菌群落的影响[J]. 应用生态学报, 2014, 25(8):2334-2340. |
LI S H, HE D H, SHEN Q L, et al. Effects of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure[J]. Chin J Appl Ecol, 2014, 25(8):2334-2340. DOI: 10.13287/j.1001-9332.20140530.017.
doi: 10.13287/j.1001-9332.20140530.017 |
|
[20] | 宿贤超, 胡杨勇, 赵薇, 等. 添加竹炭对土壤化学性质和重金属有效性及水稻生长的影响[J]. 浙江农业学报, 2014, 26(2):439-443. |
SU X C, HUYANG Y, ZHAO W, et al. Effects of addition of bamboo charcoal on soil chemical properties,heavy metal availability,and rice growth[J]. Acta Agric Zhejiangensis, 2014, 26(2):439-443. DOI: 10.3969/j.issn.1004-1524.2014.02.34.
doi: 10.3969/j.issn.1004-1524.2014.02.34 |
|
[21] |
MA J Y, NI X, HUANG Q Y, et al. Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes[J]. Environ Sci Pollut Res, 2021, 28(14):17405-17416. DOI: 10.1007/s11356-020-12007-0.
doi: 10.1007/s11356-020-12007-0 |
[22] |
LIU Y X, WANG Y Y, LU H H, et al. Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in Brassica chinensis[J]. J Soils Sediments, 2018, 18(7):2511-2519. DOI: 10.1007/s11368-018-1927-1.
doi: 10.1007/s11368-018-1927-1 |
[23] | 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1):2-7. |
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. J For Eng, 2016, 1(1):2-7. DOI: 10.13360/j.issn.2096-1359.2016.01.001.
doi: 10.13360/j.issn.2096-1359.2016.01.001 |
|
[24] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[25] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254. DOI: 10.1006/abio.1976.9999.
doi: 10.1006/abio.1976.9999 |
[26] |
ZHANG J, LÜ F, LUO C, et al. Humification characterization of biochar and its potential as a composting amendment[J]. J Environ Sci (China), 2014, 26(2):390-397. DOI: 10.1016/s1001-0742(13)60421-0.
doi: 10.1016/s1001-0742(13)60421-0 |
[27] |
AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms:review and research needs[J]. Eur J Soil Sci, 2013, 64(4):379-390. DOI: 10.1111/ejss.12064.
doi: 10.1111/ejss.12064 |
[28] | 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1):68-79. |
WU Y, XU G, LÜ Y C, et al. Effects of biochar amendment on soil physical and chemical properties:current status and knowledge gaps[J]. Adv Earth Sci, 2014, 29(1):68-79. | |
[29] |
CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar:a review[J]. J Ind Eng Chem, 2016, 40:1-15. DOI: 10.1016/j.jiec.2016.06.002.
doi: 10.1016/j.jiec.2016.06.002 |
[30] |
BRENNAN A, JIMÉNEZ E M, PUSCHENREITER M, et al. Effects of biochar amendment on root traits and contaminant availa-bility of maize plants in a copper and arsenic impacted soil[J]. Plant Soil, 2014, 379(1/2):351-360. DOI: 10.1007/s11104-014-2074-0.
doi: 10.1007/s11104-014-2074-0 |
[31] |
GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3):450-457. DOI: 10.1007/s00442-004-1596-1.
doi: 10.1007/s00442-004-1596-1 |
[32] |
WANG W, HU K, HUANG K, et al. Mechanical fragmentation of leaf litter by fine root growth contributes greatly to the early decomposition of leaf litter[J]. Glob Ecol Conserv, 2021, 26:e01456. DOI: 10.1016/j.gecco.2021.e01456.
doi: 10.1016/j.gecco.2021.e01456 |
[33] |
GERMON A, JOURDAN C, BORDRON B, et al. Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt plantations[J]. For Ecol Manag, 2019, 445:48-59. DOI: 10.1016/j.foreco.2019.05.010.
doi: 10.1016/j.foreco.2019.05.010 |
[34] |
RAZAQ M, SALAHUDDIN, SHEN H L, et al. Influence of biochar and nitrogen on fine root morphology,physiology,and chemistry of Acer mono[J]. Sci Rep, 2017, 7(1):5367. DOI: 10.1038/s41598-017-05721-2.
doi: 10.1038/s41598-017-05721-2 |
[35] | 战秀梅, 彭靖, 王月, 等. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 2015, 21(6):1633-1641. |
ZHAN X M, PENG J, WANG Y, et al. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields[J]. Plant Nutr Fertil Sci, 2015, 21(6):1633-1641. DOI: 10.11674/zwyf.2015.0631.
doi: 10.11674/zwyf.2015.0631 |
|
[36] |
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant Soil, 2010, 337(1/2):1-18. DOI: 10.1007/s11104-010-0464-5.
doi: 10.1007/s11104-010-0464-5 |
[37] |
AGEGNEHU G, SRIVASTAVA A K, BIRD M I. The role of biochar and biochar-compost in improving soil quality and crop performance: a review[J]. Appl Soil Ecol, 2017, 119:156-170. DOI: 10.1016/j.apsoil.2017.06.008.
doi: 10.1016/j.apsoil.2017.06.008 |
[38] |
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north American trees[J]. Ecol Monogr,2002, 72(2):293-309. DOI: 10.1890/0012-9615(2002)072[0293:fraonn]2.0.co;2.
doi: 10.1890/0012-9615(2002)072[0293:fraonn]2.0.co;2 |
[39] |
ROBERTSON S J, RUTHERFORD P M, LÓPEZ-GUTIÉRREZ J C, et al. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils[J]. Can J Soil Sci, 2012, 92(2):329-340. DOI: 10.4141/cjss2011-066.
doi: 10.4141/cjss2011-066 |
[40] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (Biochar)[J]. Environ Sci & Technol, 2010, 44(4):1247-53. DOI: 10.1021/es9031419.
doi: 10.1021/es9031419 |
[41] | 李妮, 左强, 邹国元, 等. 三种生物质炭复合基质对番茄育苗效果的影响[J]. 北方园艺, 2015(2):150-153. |
LI N, ZUO Q, ZOU G Y, et al. Effect of matrix added to three kinds of biomass carbon on tomato seeding[J]. North Hortic, 2015(2):150-153. DOI: 10.11937/bfyy.201502044.
doi: 10.11937/bfyy.201502044 |
|
[42] |
SUN J, LI Z Y, ZHU J P, et al. Effects of biochar on soluble sugar content in peach seedlings[J]. E3S Web Conf, 2019, 136:07010. DOI: 10.1051/e3sconf/201913607010.
doi: 10.1051/e3sconf/201913607010 |
[43] | 刘士玲, 贾宏炎, 陈琳, 等. 容器规格和添加生物炭的基质配方对西南桦幼苗生长的影响[J]. 生态学杂志, 2019, 38(9):2875-2882. |
LIU S L, JIA H Y, CHEN L, et al. Effects of container size and medium formula with biochar addition on the growth of Betula alnoides seedlings[J]. Chin J Ecol, 2019, 38(9):2875-2882. DOI: 10.13292/j.1000-4890.201909.013.
doi: 10.13292/j.1000-4890.201909.013 |
|
[44] | 朱奕豪, 朱彦霖, 曹兴, 等. 生物炭对百合生理特性的影响[J]. 北方园艺, 2017(7):92-98. |
ZHU Y H, ZHU Y L, CAO X, et al. Effects of biomass charcoal on physiological characteristics of lily[J]. North Hortic, 2017(7):92-98. | |
[45] | 戚琳, 马存琛, 谢伟芳, 等. 不同比例生物炭替代泥炭栽培基质对西瓜幼苗生长的影响[J]. 安徽农业科学, 2017, 45(25):55-58. |
QI L, MA C C, XIE W F, et al. Effect of different substitution ratio of peat with biochar as substrates on growth of watermelon seedlings[J]. J Anhui Agric Sci, 2017, 45(25):55-58. DOI: 10.13989/j.cnki.0517-6611.2017.25.018.
doi: 10.13989/j.cnki.0517-6611.2017.25.018 |
[1] | 孙薇, 王斌, 楚秀丽, 王秀花, 张东北, 吴小林, 周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 226-233. |
[2] | 李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟. 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 271-278. |
[3] | 季艳红, 潘平平, 窦全琴, 谢寅峰. 不同泥炭替代基质对薄壳山核桃幼苗生长及叶绿素荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 145-155. |
[4] | 季艳红, 汤文华, 窦全琴, 谢寅峰. 施肥对薄壳山核桃容器苗生长及养分积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 47-56. |
[5] | 倪铭, 高振洲, 吴文, 张于卉, 喻方圆. 不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 107-113. |
[6] | 魏宁, 李国雷, 蔡梦雪, 史文辉, 刘文, 薛柳, 李进宇. 缓释肥施氮量对4种国外栎苗木质量及移栽成活率的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 53-60. |
[7] | 杨阳, 施皓然, 及利, 杨立学. 指数施肥对紫椴实生苗生长和根系形态的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 91-97. |
[8] | 李峰卿, 王秀花, 楚秀丽, 张东北, 吴小林, 周生财, 叶明. 缓释肥N/P比及加载量对5种珍贵树种1年生苗生长和养分库构建的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 72-80. |
[9] | 潘平平, 窦全琴, 汤文华, 谢寅峰. 缓释肥用量对薄壳山核桃容器苗生长及养分含量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 163-168. |
[10] | 赵小军, 程方, 张康, 黄开栋, 倪云, 孟晓, 唐罗忠. 淹水处理下杨树不同无性系苗木根系形态变化[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 1-8. |
[11] | 刘士玲, 陈琳, 杨保国, 贾宏炎, 庞圣江, 张培, 王晖. 氮磷肥对西南桦无性系生物量分配和根系形态的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 23-29. |
[12] | 李婷婷,袁位高,温丽娜,朱锦茹,刘建灵,邱帅,张大伟. 基于HalfsibBV的大叶榉树家系遗传参数估算与综合选择[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 8-16. |
[13] | 孙杰杰,沈爱华,黄玉洁,袁位高,吴初平,叶诺楠,朱锦茹,邱浩杰,焦洁洁,江波. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 85-93. |
[14] | 姚光刚,李国雷,郑永林,薛敦孟,李世安,袁启华. 缓释肥施用量对槲栎容器苗苗木质量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 69-75. |
[15] | 刘国华,方正,郑笑,范婷婷,高佳伟,王福升,张金池. 全国14个竹产区毛竹竹炭理化性质分析[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 13-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||