马尾松松材线虫病抗性无性系的筛选和遗传多样性分析

高景斌, 徐六一, 叶建仁

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 109-118.

PDF(2092 KB)
PDF(2092 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 109-118. DOI: 10.12302/j.issn.1000-2006.202103013
研究论文

马尾松松材线虫病抗性无性系的筛选和遗传多样性分析

作者信息 +

Growth and genetic diversity analysis of clones screened by phenotypical resistant to pine wilt disease in Pinus massoniana

Author information +
文章历史 +

摘要

【目的】 松材线虫病是松属致命性的世界检疫性森林病害。筛选和创新抗性遗传资源是马尾松抗松材线虫病育种的重要基础。松材线虫病重灾疫区自然淘汰存留下来的马尾松资源,可能是开展马尾松抗松材线虫病育种潜在的重要遗传基础,值得进一步深入挖掘、系统评价和开发利用。本研究通过对110个对松材线虫病具有抗性表型的无性系进行遗传多样性、生长性状测定和保存率调查,综合评价其在抗性育种中的潜在价值。【方法】 通过接种松材线虫对马尾松的1 201个初选无性系进行筛选,并对110个具有抗线虫表型的重选无性系进行遗传多样性RAPD和生长性状评价。从14对SCAR分子标记引物中筛选通用性强、多态性位点高的两组引物,用于MuPS(Multiplex-PCR of SCAR markers) 反应扩增和遗传多态性位点检测。基于79个MuPS唯一型无性系群体,采用Popgene 32软件估算的遗传多样性,结合生长量和存活率指标,评估该批遗传资源在马尾松抗性育种中的潜在价值。【结果】 初选的1 201个无性系(来自251个马尾松初选家系),经松材线虫接种筛选后,获得110个无性系(来自初选家系中的81个),由两组引物扩增得到92种MuPS分型。其中,有79个无性系为单一的MuPS分型所完全准确识别(占71.81%)。基于79个具单一MuPS分型的无性系群体遗传多样性分析表明,群体所有位点的平均有效等位基因数(Ne)为1.508 1个,Nei’s基因多样度(H)为0.302 3,Shannon多样性指数(I)为0.459 1。无性系体间遗传参数差异明显,Ne变幅为1.012 8~1.998 1,H变幅为0.012 6~0.499 5,I变幅为0.038 5~0.692 7。具有抗松材线虫病表型的110个马尾松无性系存活83个。保存无性系间其生长性状存在显著差异,树高、胸径和单株材积生长量变幅分别为4.6~10.7 m,6.7~21.7 cm和0.012 3~0.189 4 m3,生长量最大的休3-3号无性系立木材积(0.189 4m3)为最小的无性系广27-2的(0.012 3 m3)15倍以上。【结论】 马尾松1 201个初选无性系,经野外人工接种松材线虫的抗性筛选后,110个无性系表现出对松材线虫病有显著的抗性表型,占初选无性系的9.09%。这些经过抗性筛选的无性系在材积生长性状上达到了极显著差异水平。这意味着在抗性改良基础上,进行生长量改良的策略是可行的。与已有的天然和人工育种群体的遗传多样性参数相比,本研究虽然经初选和抗性复选淘汰了90%以上的无性系,仍保留了群体中较高的遗传多样性。综上,笔者认为这批初选资源经抗性筛选存留的遗传资源,在马尾松抗松材线虫病育种研究中具有明显的潜在价值。

Abstract

【Objective】 Pine wilt disease caused by pine wood nematode is one of the most deadly forest quarantine diseases in the world. Screening and innovation of resistance genetic resources is an essential basis for breeding for pine wood nematode disease resistance of Pinus massoniana. The remained genetic resources in the severely disease-affected areas in natural distribution of masson pine, may be an important and potential genetic basis for resistant breeding, which is worth further exploration, systematic evaluation, exploring and utilization. The aim of this study was to comprehensively evaluate the genetic resources of masson pine with phenotypical resistance to pine nematode and its potential value in resistance breeding by analyzing the genetic diversity, growth traits and surveil rate of the 110 selected clones.【Method】 All 1 201 primary-selected clones of masson pine were screened by inoculated pine wood nematode, and 110 re-selected clones with pine wood nematode phenotypic resistance were involved in the evaluation of genetic diversity [by random amplified polymorphic DNA markers (RAPD)], and growth performance. From 14 pairs of SCAR markers, two pairs of primers with strong versatility and high polymorphic loci were selected for MuPS (Multiplex PCR of SCAR Markers) amplification and genetic polymorphic loci detection. The potential value of these masson’s pine genetic resources in resistance breeding was evaluated based on the genetic diversity parameters (estimated by Popgene 32 software) of the 79 clones with unique MuPS type, combined with the traits of single-tree volume and survival rate. 【Result】 There were 110 clones (from 81 families out of primary ) survived among the 1 201 primary selected clones (selected from the 251 primary families), after the inoculation with pine wood nematode. And 92 MuPS types were amplified from the 110 cloned by two pairs of primers, and 79 of the 110 clones were accurately identified by a unique MuPS type (71.81%). Based on the each unique MuPS type’s information of the 79 clones, the average number of effective alleles (Ne) at all loci was 1.508 1, the Nei’s gene diversity (H) was 0.302 3, and the Shannon’s diversity index (I) was 0.459 1. The Ne, H, I for the re-selected population was variated from 1.012 8 to 1.998 1, 0.012 6 to 0.499 5, and 0.038 5 to 0.692 7, respectively. There were 83 clones well survived out of the 110 re-selected clones after pine wood nematode inoculation. There were 83 clones well survived out of the 110 re-selected clones,after the pine wood nematode inoculation. The tree height, DBH and tree volume growth was ranged from 4.6 to 10.7 m, 6.7 to 21.7 cm, and 0.012 3 to 0.189 4 m 3, respectively. And the tree volume of the best performed clone (clone Xiu 3-3, 0.189 4 m3) was more than 15-fold over the lowest clone (clone Guang 27-2, 0.012 3 m3). 【Conclusion】 There were 110 clone among the 1 201 primary clones of masson’s pine, showed significant resistance to pine wood nematode disease after manual inoculation in field, which was around 9% of the primary selected clones. A significant variation/differentiation on tree volume growth was also found among the 110 re-selected clones with phenotypic pine resistance to wilt disease, which may indicated that it was possible to improve tree volume growth based on the disease resistance improvement background. It was worth to notice that, a higher genetic diversity was still existed in the reserved populations in this study, even though ninety percentage of the primary selected clones were eliminated through the disease resistance screening in this study. In conclusion, we believe that these precious genetic resources through resistance screening, have obvious potential value in P. massoniana growth and nematode disease resistance breeding.

关键词

马尾松 / MuPS分型 / 松材线虫病抗性 / 遗传多样性 / 遗传改良

Key words

Pinus massoniana / MuPS type / pine wilt disease resistance / genetic diversity / genetic improvement

引用本文

导出引用
高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版). 2021, 45(5): 109-118 https://doi.org/10.12302/j.issn.1000-2006.202103013
GAO Jingbin, XU Liuyi, YE Jianren. Growth and genetic diversity analysis of clones screened by phenotypical resistant to pine wilt disease in Pinus massoniana[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 109-118 https://doi.org/10.12302/j.issn.1000-2006.202103013
中图分类号: S722.5;S763.18   

参考文献

[1]
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10.
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019, 55(9):1-10.DOI: 10.11707/j.1001-7488.20190901.
[2]
国家林业和草原局. 国家林业和草原局公告(2019年第20号)(全国林业有害生物普查情况)[EB/OL].(2019-12-12)[2020-03-01]. http://www.gov.cn/xinwen/2019-12/18/content_5462013.htm
[3]
国家林业和草原局. 国家林业和草原局公告(2021年第5号)(2021年松材线虫病疫区)[EB/OL]. (2021-03-24).http://www.forestry.gov.cn/main/3457/20210329/151957233445926.html
[4]
沈李元, 吴小芹, 陈婷婷, 等. 抗松材线虫病马尾松胚性愈伤组织超低温保存[J]. 东北林业大学学报, 2019, 47(7):108-112.
SHEN L Y, WU X Q, CHEN T T, et al. Cryopreservation of nematode-resistant Pinus massoniana embryogenic callus[J]. J Northeast For Univ, 2019, 47(7):108-112.DOI: 10.13759/j.cnki.dlxb.2019.07.019.
[5]
王海洋. 马尾松树皮纳米吸附剂制备及吸附机理研究[D]. 北京: 北京化工大学, 2020.
WANG H Y. Preparation and adsorption mechanism of Masson pine bark nanosorbent[D]. Beijing: Beijing University of Chemical Technology, 2020.
[6]
徐六一, 章健, 高景斌, 等. 安徽省松材线虫病抗性育种研究进展[J]. 安徽林业科技, 2013, 39(2):8-10,14.
XU L Y, ZHANG J, GAO J B, et al. Research progress on resistance breeding to pinewood nematodiasis in Anhui Province[J]. Anhui For Sci Technol, 2013, 39(2):8-10,14.DOI: 10.3969/j.issn.2095-0152.2013.02.002.
[7]
高景斌, 席启俊, 孙主义, 等. 松材线虫病抗性马尾松苗木的选育[J]. 林业科技开发, 2009, 23(1):91-95.
GAO J B, XI Q J, SUN Z Y, et al. Screening and breeding of Pinus massoniana seedlings for resistant to pine wood nematode[J]. China For Sci Technol, 2009, 23(1):91-95.DOI: 10.3969/j.issn.1000-8101.2009.01.027.
[8]
陈婷婷, 叶建仁, 吴小芹, 等. 抗松材线虫病马尾松体胚发生与植株再生条件的优化[J]. 南京林业大学学报(自然科学版), 2019, 43(3):1-8.
CHEN T T, YE J R, WU X Q, et al. Somatic embryogenesis and plantlet regeneration of disease-resistant Pinus massoniana Lamb[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):1-8.DOI: 10.3969/j.issn.1000-2006.201806005.
[9]
易敏, 张露, 雷蕾, 等. 湿地松转录组SSR分析及EST-SSR标记开发[J]. 南京林业大学学报(自然科学版), 2020, 44(2):75-83.
YI M, ZHANG L, LEI L, et al. Analysis of SSR information in transcriptome and development of EST-SSR molecular markers in Pinus elliottii Engelm[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):75-83.DOI: 10.3969/j.issn.1000-2006.201907017.
[10]
黄金思, 奚晓桐, 丁晓磊, 等. 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):25-31.
HUANG J S, XI X T, DING X L, et al. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):25-31.DOI: 10.3969/j.issn.1000-2006.201903007.
[11]
周鹏. 地黄RAPD-SCAR标记及其生物信息学分析[D]. 新乡:河南师范大学, 2012.
ZHOU P. The development and bioinformatics analysis of RAPD-SCAR markers of Rehmannia glutinosa L.[D]. Xinxiang:Henan Normal University, 2012.
[12]
陈凤毛, 叶建仁, 吴小芹, 等. 松材线虫SCAR标记与检测技术[J]. 林业科学, 2012, 48(3):88-94.
CHEN F M, YE J R, WU X Q, et al. SCAR marker and detection technique of Bursaphelenchus xylophilus[J]. Sci Silvae Sin, 2012, 48(3):88-94.
[13]
张君毅, 吴永辉, 刘嘉, 等. 利用TRAP和SCAR标记评价铁皮石斛的遗传多样性与抗寒性[J]. 植物生理学报, 2020, 56(4):743-751.
ZHANG J Y, WU Y H, LIU J, et al. Assessment of genetic diversity and cold resistance of Dendrobium officinale using TRAP and SCAR markers[J]. Plant Physiol J, 2020, 56(4):743-751.DOI: 10.13592/j.cnki.ppj.2020.0039.
[14]
王天友, 王有武, 曹新川, 等. 南疆陆地棉种质资源表型性状遗传多样性分析[J]. 种子, 2020, 39(4):5-11.
WANG T Y, WANG Y W, CAO X C, et al. Genetic diversity analysis based on phenotypic traits of upland cotton germplasms in southern Xinjiang region[J]. Seed, 2020, 39(4):5-11.DOI: 10.16590/j.cnki.1001-4705.2020.04.005.
[15]
贾子昉, 王清连, 董娜. 陆地棉种质资源的表型及SSR遗传多样性分析[J]. 生物技术通讯, 2019, 30(5):653-661.
JIA Z F, WANG Q L, DONG N. Phenotype and SSR genetic diversity of upland cotton germplasm resources[J]. Lett Biotechnol, 2019, 30(5):653-661.DOI: 10.3969/j.issn.1009-0002.2019.05.012.
[16]
李志远, 于海龙, 方智远, 等. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建[J]. 中国农业科学, 2018, 51(14):2771-2788.
LI Z Y, YU H L, FANG Z Y, et al. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties[J]. Sci Agric Sin, 2018, 51(14):2771-2788.
[17]
SULTANA S S, ALAM S S. SSR and RAPD-based genetic diversity in cotton germplasms[J]. CYTOLOGIA, 2016, 81(3):257-262.DOI: 10.1508/cytologia.81.257.
[18]
WANGF, FENG C D, O’CONNELL M A, et al. RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton[J]. Euphytica, 2010, 172(1):93-99.DOI: 10.1007/s10681-009-0055-9.
[19]
李丹, 凌定厚. 五种提取马尾松基因组DNA方法的比较[J]. 植物学通报, 2000, 35(2):168-173.
LI D, LING D H. Comparison of five methods of DNA extraction from Pinus massoniana[J]. Chin Bull Bot, 2000, 35(2):168-173.
[20]
杨模华, 李志辉, 张冬林, 等. 马尾松针叶DNA提取方法研究[J]. 中南林业科技大学学报, 2008, 28(3):39-44.
YANG M H, LI Z H, ZHANG D L, et al. DNA isolation from Pinus massoniana needles[J]. J Central South Univ For Technol, 2008, 28(3):39-44.DOI: 10.3969/j.issn.1673-923X.2008.03.008.
[21]
高景斌, 徐六一, 叶建仁, 等. 运用MuPS标记识别马尾松抗松材线虫病个体[J]. 南京林业大学学报(自然科学版), 2009, 33(3):1-4.
GAO J B, XU L Y, YE J R, et al. Using MuPS marker technique to identify individual of Pinus massoniana resistance to pine wilt disease[J]. J Nanjing For Univ (Nat Sci Ed), 2009, 33(3):1-4.DOI: 10.3969/j.issn.1000-2006.2009.03.001.
[22]
NEI M. Genetic distance between populations[J]. Am Nat, 1972, 106(949):283-292.DOI: 10.1086/282771.
[23]
NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3):583-590.
[24]
邢学丁, 王莉, 徐冰, 等. 华北落叶松优树半同胞家系的子代测定[J]. 西北林学院学报, 2019, 34(2):129-133.
XING X D, WANG L, XU B, et al. Half-sib Progeny Test of Larix principis-rupprechtii Plus tree[J]. J Northwest For Univ, 2019, 34(2):129-133.DOI: 10.3969/j.issn.1001-7461.2019.02.20.
[25]
陈灵芝, 马克平. 生物多样性科学[M]. 北京: 科学出版社, 2002: 1-50.
CHEN L Z, MA K P. Biodiversity Science[M]. Beijing: Science Press, 2002: 1-50.
[26]
狄林楠, 李新蓉, 宋楠. 基于SCoT分子标记的裸果木遗传多样性分析[J]. 植物研究, 2018, 38(5):725-732.
DI L N, LI X R, SONG N. Genetic diversity of Gymnocarpos przewalskii based on SCoT markers[J]. Bull Bot Res, 2018, 38(5):725-732.DOI: 10.7525/j.issn.1673-5102.2018.05.012.
[27]
段帆, 张欢, 李珊, 等. 利用ISSR分子标记构建濒危植物水青树核心种质[J]. 亚热带植物科学, 2018, 47(2):101-106.
DUAN F, ZHANG H, LI S, et al. Core collection construction of endangered plant Tetracentron sinense based on ISSR molecular markers[J]. Subtrop Plant Sci, 2018, 47(2):101-106.DOI: 10.3969/j.issn.1009-7791.2018.02.001.
[28]
李义良, 赵奋成, 张应中, 等. 分子标记在松树遗传与进化研究中的应用[J]. 分子植物育种, 2009, 7(5):1004-1009.
LI Y L, ZHAO F C, ZHANG Y Z, et al. Applications of molecular marker on the research of pine genetics and evolution[J]. Mol Plant Breed, 2009, 7(5):1004-1009.DOI: 10.3969/mpb.007.001004.
[29]
张春晓, 李悦, 沈熙环. 林木同工酶遗传多样性研究进展[J]. 北京林业大学学报, 1998, 20(3):58-66.
ZHANG C X, LI Y, SHEN X H. A review on forest trees genetic diversity at the isozyme level[J]. J Beijing For Univ, 1998, 20(3):58-66.
[30]
张薇, 龚佳, 季孔庶. 马尾松实生种子园遗传多样性分析[J]. 分子植物育种, 2008, 6(4):717-723.
ZHANG W, GONG J, JI K S. Genetic diversity for seedling orchard of masson's pine[J]. Mol Plant Breed, 2008, 6(4):717-723.DOI: 10.3969/j.issn.1672-416X.2008.04.015.
[31]
李相陵, 钱志瑶, 范菊娣, 等. 半枝莲活性物质含量测定及RAPD遗传多样性分析[J]. 中药材, 2018, 41(7):1571-1576.
LI X L, QIAN Z Y, FAN J D, et al.DOI: 10.13863/j.issn1001-4454.2018.07.011.
[32]
沈奇. 分子标记技术在中国濒危植物遗传分析中的应用 :以四合木、蒙古沙冬青为例[D]. 海口:海南大学, 2019.
SHEN Q. The application of molecular marker technology in genetic analysis of endangered plants in China: take the case of Ammopiptanthus mongolicus and Tetraena mongolica Maxim[D]. Haikou:Hainan University, 2019.
[33]
陈雪莲, 徐六一. 黄山松抗松材线虫病个体MuPS标记识别技术[J]. 林业科技开发, 2011, 25(5):71-74.
CHEN X L, XU L Y. Using MuPS marker technique to identify individual of Pinus taiwanensis resistance to pine wilt disease[J]. China For Sci Technol, 2011, 25(5):71-74.
[34]
朱必凤, 陈德学, 陈虞禄, 等. 广东韶关马尾松种子园遗传多样性分析[J]. 福建林业科技, 2007, 34(3):1-5,22.
ZHU B F, CHEN D X, CHEN Y L, et al. Study on the genetic diversity of seed orchard of Pinus massoniana in Guangdong Province[J]. J Fujian For Sci Technol, 2007, 34(3):1-5,22.DOI: 10.13428/j.cnki.fjlk.2007.03.018.
[35]
张恒庆, 高嵩, 靖晶, 等. 庄河仙人洞红松人工林遗传多样性的ISSR分析[J]. 辽宁师范大学学报(自然科学版), 2009, 32(3):348-350.
ZHANG H Q, GAO S, JING J, et al. Analysis of genetic diversity of Pinus koraiensis plantation in Zhuanghe with technique of ISSR[J]. J Liaoning Norm Univ (Nat Sci Ed), 2009, 32(3):348-350.DOI: 10.3969/j.issn.1000-1735.2009.03.022.

基金

林业有害生物防控技能大师工作室资助项目(2020dsgzs16)
安徽省教育厅重大项目(KJ2020ZD82)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2092 KB)

Accesses

Citation

Detail

段落导航
相关文章

/