利用低场核磁共振技术检测刺槐种子吸水过程水分的变化

袁鸣, 朱铭玮, 侯静, 朱莹莹, 李淑娴

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 135-142.

PDF(1884 KB)
PDF(1884 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 135-142. DOI: 10.12302/j.issn.1000-2006.202103018
研究论文

利用低场核磁共振技术检测刺槐种子吸水过程水分的变化

作者信息 +

Changes of water content in Robinia pseudoacacia seeds during imbibition by a low nuclear magnetic resonance

Author information +
文章历史 +

摘要

【目的】探究种子吸水萌发过程中水分相态的变化,为种子吸水、萌发研究提供一种新的研究手段。【方法】以初始温度85 ℃热水处理后的刺槐种子为材料,采用质量法确定种子的吸水曲线,低场核磁共振技术(L-NMR)采集刺槐种子吸水、萌发过程中横向弛豫时间(T2)的信号,并反演得到T2弛豫谱,分析此过程中种子体内水分相态及含量的变化。【结果】热水处理后刺槐种子的吸水率远远高于对照组,0~12 h为快速吸水阶段,之后吸水速度变缓,至36 h时吸水渐趋于平衡。核磁共振波谱图表明,刺槐种子水分质量(x)与核磁共振弛豫图谱峰面积(y)呈一元线性回归关系,其线性回归方程为:y = 21 132x + 698.05,R2=0.999 6。刺槐种子在吸水萌发过程中存在3种相态的水:束缚水(T21,>0.1~1.0 ms)、不易流动水(T22,>1~100 ms)、自由水(T23,>100~1 000 ms)。吸水萌发过程中束缚水的峰顶点变化不显著,弛豫范围、峰面积总体呈先上升后下降的趋势,但峰比例总体呈下降趋势,吸水24 h后,比例维持在4%以下,胚根伸出时,束缚水消失。在吸水3~9 h过程中,不易流动水的峰显著向右偏移,随后峰顶点时间趋于稳定(9~96 h);胚根伸出时,峰再次显著向右偏移;弛豫时间范围基本呈不断增大的趋势,胚根伸出时又显著减小;其峰面积总体呈先迅速上升(3~12 h)后保持基本稳定的趋势,但比例略有下降。自由水峰顶点随时间呈先上升后下降的趋势,且在吸水72 h时达到最大值;峰面积及比例的最大值出现在胚根伸出时(3 h时峰面积最大值是最小值的4.16倍)。【结论】刺槐种子在吸水萌发过程中存在3种相态的水,其中不易流动水占比最大,各相态水的含量处于一个动态变化过程;随吸水时间的延长,种子内部营养物质开始分解转化,水分结合能力变弱,特别是胚根穿过种皮时,种子代谢活动旺盛,自由水含量大幅增加。

Abstract

【Objective】 Water is important for seed germination, and nutrients in seeds require water to undergo physiological and biochemical reactions. This study used a nuclear magnetic resonance technology to explore water absorption of Robinia pseudoacacia seeds after hot-water treatments in order to explore changes in water phases during seed imbibition and germination. This study also provides a theoretical basis for water absorption. 【Method】Seeds of R. pseudoacacia were treated with hot water at an initial temperature of 85 ℃. Water absorption was calculated through dividing the increase in weight after soaking by the initial weight. The low nuclear magnetic resonance (L-NMR) was used to collect transverse relaxation time (T2) signals of R. pseudoacacia seeds during imbibition, and a T2 relaxation spectrum was obtained by inversion. Changes in water phases and abundances of each phase in the seeds during water absorption were analyzed. 【Result】The water absorption rate of seeds treated with hot water was markedly higher than that of seeds in the control group; the seeds entered the rapid water absorption stage from to 0-12 h, after which their water absorption rate decelerated, and saturation was reached at 36 h. The NMR spectrum showed that the water content (x) of R. pseudoacacia and the peak area (y) had a significant linear relationship, and the linear regression equation was y = 21 132x +698.05; R2 = 0.999 6. There were three phases of water in R. pseudoacacia seeds during water-absorbing germination: bound water (T21, >0.1-1 ms), immobile water (T22, >1-100 ms) and free water (T23, >100-1 000 ms). During imbibition, the peak time of bound water did not change significantly, and the relaxation range and peak area generally increased first and then decreased. However, the proportion of the peak area decreased. After 24 h of water absorption, the proportion remained below 4%, and the proportion of bound water in the seeds was very small. Bound water disappeared completely when the radicle passed through the seed coat. During 3-9 h of water absorption, the peak time of immobile water shifted significantly to the right, after which the peak time tended to be stable (approximately 9-96 h). When the radicle passed through the seed coat, peak time again shifted significantly to the right. The relaxation range of immobile water showed an increasing trend. However, it decreased significantly when the radicle passed through the seed coat. The peak area increased rapidly at first (approximately 3-12 h) and then remained stable, but the proportion of peak area decreased slightly, especially when the radicle passed through the seed coat. The peak time of free water changed the most. It reached a maximum at 72 h and then decreased significantly. That is, peak time shifted to the right first and then to the left. The relaxation ranges of free water also first showed an increasing trend and then decreased when the radicle passed through the seed coat. The peak area of free water increased rapidly at first (approximately 3-24 h) and then remained stable. When the radicle passed through the seed coat, it reached a maximum, which was 4.16-fold the minimum value (3 h). The proportion of peak area showed an increasing trend, especially when the radicle passed through the seed coat. 【Conclusion】There are three phases of water in R. pseudoacacia seeds during imbibition, and the most abundant water phase was immobile water. Each phase of water was in a state of dynamic change during imbibition. With the extension of water absorption, nutrients within the seeds began to decompose and transform, decreasing their ability to bind water. In particular, when the radicle passed through the seed coat, the content of free water increased significantly, and the seeds’ metabolism increased markedly.

关键词

刺槐种子 / 吸水过程 / 低场核磁共振技术 / 水分相态

Key words

Robinia pseudoacacia seed / imbibition / low nuclear magnetic resonance(L-NMR) / water phase state

引用本文

导出引用
袁鸣, 朱铭玮, 侯静, . 利用低场核磁共振技术检测刺槐种子吸水过程水分的变化[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 135-142 https://doi.org/10.12302/j.issn.1000-2006.202103018
YUAN Ming, ZHU Mingwei, HOU Jing, et al. Changes of water content in Robinia pseudoacacia seeds during imbibition by a low nuclear magnetic resonance[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 135-142 https://doi.org/10.12302/j.issn.1000-2006.202103018
中图分类号: S722.1   

参考文献

[1]
曹笑皇, 季志平, 贺亮, 等. 不同坡向刺槐林对蜂蜜产量的影响[J]. 西北林学院学报, 2006, 21(6):174-176.
CAO X H, JI Z P, HE L, et al. Impact of aspect on the locust honey yields[J]. J Northwest For Univ, 2006, 21(6):174-176. DOI: 10.3969/j.issn.1001-7461.2006.06.044.
[2]
方芳, 彭祚登, 郭志民, 等. 刺槐种子硬实特性及萌发促进的研究[J]. 中南林业科技大学学报, 2013, 33(7):72-76.
FANG F, PENG Z D, GUO Z M, et al. Study on seed hardness characteristic and germination promoting of Robinia pseudoacacia seeds[J]. J Central South Univ For Technol, 2013, 33(7):72-76. DOI: 10.14067/j.cnki.1673-923x.2013.07.016.
[3]
邵小龙, 李云飞. 用低场核磁研究烫漂对甜玉米水分布和状态影响[J]. 农业工程学报, 2009, 25(10):302-306.
SHAO X L, LI Y F. Effects of blanching on water distribution and water status in sweet corn investigated by using MRI and NMR[J]. Trans Chin Soc Agric Eng, 2009, 25(10):302-306. DOI: 10.3969/j.issn.1002-6819.2009.10.054.
[4]
张绪坤, 祝树森, 黄俭花, 等. 用低场核磁分析胡萝卜切片干燥过程的内部水分变化[J]. 农业工程学报, 2012, 28(22):282-287.
ZHANG X K, ZHU S S, HUANG J H, et al. Analysis on internal moisture changes of carrot slices during drying process using low-field NMR[J]. Trans Chin Soc Agric Eng, 2012, 28(22):282-287. DOI: 10.3969/j.issn.1002-6819.2012.22.039.
[5]
要世瑾, 牟红梅, 杜光源, 等. 小麦种子吸胀萌发过程的核磁共振检测研究[J]. 农业机械学报, 2015, 46(11):266-274.
YAO S J, MOU H M, DU G Y, et al. Water imbibition and germination of wheat seed with nuclear magnetic resonance[J]. Trans Chin Soc Agric Mach, 2015, 46(11):266-274. DOI: 10.6041/j.issn.1000-1298.2015.11.036.
[6]
范明辉, 范崇东, 王淼. 利用脉冲NMR研究食品体系中的水分性质[J]. 食品与机械, 2004, 20(2):45-48.
FAN M H, FAN C D, WANG M. Pulse NMR study of water in food system[J]. Food Mach, 2004, 20(2):45-48. DOI: 10.13652/j.issn.1003-5788.2004.02.024.
[7]
李然, 李振川, 陈珊珊, 等. 应用低场核磁共振研究绿豆浸泡过程[J]. 食品科学, 2009, 30(15):137-141.
LI R, LI Z C, CHEN S S, et al. Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology[J]. Food Sci, 2009, 30(15):137-141. DOI: 10.3321/j.issn:1002-6630.2009.15.031.
[8]
宋平, 彭宇飞, 王桂红, 等. 玉米种子萌发过程内部水分流动规律的低场核磁共振检测[J]. 农业工程学报, 2018, 34(10):274-281.
SONG P, PENG Y F, WANG G H, et al. Detection of internal water flow in germinating corn seeds based on low field nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2018, 34(10):274-281. DOI: 10.11975/j.issn.1002-6819.2018.10.035.
[9]
牟红梅, 何建强, 邢建军, 等. 小麦灌浆过程籽粒水分变化的核磁共振检测[J]. 农业工程学报, 2016, 32(8):98-104.
MOU H M, HE J Q, XING J J, et al. Water changes in wheat spike during grain filling stage investigated by nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2016, 32(8):98-104.
[10]
汪楠, 邵小龙, 时小转, 等. 稻谷低温低湿干燥特性与水分迁移分析[J]. 食品工业科技, 2017, 38(5):114-119.
WANG N, SHAO X L, SHI X Z, et al. Analysis of drying characteristics and moisture migration for paddy rice under low temperatures and low relative humidities[J]. Sci Technol Food Ind, 2017, 38(5):114-119. DOI: 10.13386/j.issn1002-0306.2017.05.013.
[11]
宋平, 杨涛, 王成, 等. 利用低场核磁共振分析水稻种子浸泡过程中的水分变化[J]. 农业工程学报, 2015, 31(15):279-284.
SONG P, YANG T, WANG C, et al. Analysis of moisture changes during rice seed soaking process using low-field NMR[J]. Trans Chin Soc Agric Eng, 2015, 31(15):279-284. DOI: 10.11975/j.issn.1002-6819.2015.15.038.
[12]
CHALAND B, MARIETTE F, MARCHAL P, et al. 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese[J]. J Dairy Res, 2000, 67(4):609-618. DOI: 10.1017/s0022029900004398.
[13]
侯彩云, 大下诚一, 濑尾康久, 等. 蒸煮过程中稻米水分状态的质子核磁共振谱测定[J]. 农业工程学报, 2001, 17(2):126-131.
HOU C Y, SEIICHI OSHITA YASUHISA, SEO YOSHINORI KAWAGOE, et al. State of moisture in rice kernel during cooking process by 1H-NMR measurement[J]. Trans Chin Soc Agric Eng, 2001, 17(2):126-131.
[14]
TROUTMAN M Y, MASTIKHIN I V, BALCOM B J, et al. Moisture migration in soft-panned confections during engrossing and aging as observed by magnetic resonance imaging[J]. J Food Eng, 2001, 48(3):257-267. DOI: 10.1016/S0260-8774(00)00167-9.
[15]
杨期和, 尹小娟, 叶万辉. 硬实种子休眠的机制和解除方法[J]. 植物学通报, 2006, 41(1):108-118.
YANG Q H, YIN X J, YE W H. Dormancy mechanism and breaking methods for hard seeds[J]. Chin Bull Bot, 2006, 41(1):108-118. DOI: 10.3969/j.issn.1674-3466.2006.01.014.
[16]
陈丽, 代松, 马青江, 等. 合欢种皮结构及其与吸水的关系[J]. 林业科学, 2019, 55(5):46-54.
CHEN L, DAI S, MA Q J, et al. Structure of seed coat of Albizia julibrissin and its relationship with water uptake[J]. Sci Silvae Sin, 2019, 55(5):46-54. DOI: 10.11707/j.1001-7488.20190506.
[17]
郭学民, 肖啸, 梁丽松, 等. 白刺花种子硬实与萌发特性研究[J]. 种子, 2010, 29(12):38-42.
GUO X M, XIAO X, LIANG L S, et al. Study on the properties of hard and germination of Sophora viciifolia seed[J]. Seed, 2010, 29(12):38-42. DOI: 10.16590/j.cnki.1001-4705.2010.12.079.
[18]
张春平, 何平, 杜丹丹, 等. 决明种子硬实及萌发特性研究[J]. 中草药, 2010, 41(10):1700-1704.
ZHANG C P, HE P, DU D D, et al. Study on hardness and germination characteristic of Cassia obtusifolia seeds[J]. Chin Tradit Herb Drugs, 2010, 41(10):1700-1704.
[19]
TAKEUCHI S, FUKUOKA M, GOMI Y, et al. An application of magnetic resonance imaging to the real time measurement of the change of moisture profile in a rice grain during boiling[J]. J Food Eng, 1997, 33(1/2):181-192. DOI: 10.1016/S0260-8774(97)00052-6.
[20]
宋平, 徐静, 马贺男, 等. 用低场核磁共振检测水稻浸种过程中种子水分的相态及分布特征[J]. 农业工程学报, 2016, 32(6):204-210.
SONG P, XU J, MA H N, et al. Moisture phase state and distribution characteristics of seed during rice seed soaking process by low field nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2016, 32(6):204-210. DOI: 10.11975/j.issn.1002-6819.2016.06.028.
[21]
宣艳, 孙旭, 向义龙, 等. 低场核磁共振技术对香樟种子水分变化的研究[J]. 江苏林业科技, 2018, 45(6):8-11,15.
XUAN Y, SUN X, XIANG Y L, et al. Analysis of internal moisture change of camphor seeds during drying by low field-NMR[J]. J Jiangsu For Sci Technol, 2018, 45(6):8-11,15. DOI: 10.3969/j.issn.1001-7380.2018.06.002.
[22]
付晓记, 唐爱清, 闵华, 等. 花生浸种过程中水分相态和水分迁移动态研究[J]. 中国油料作物学报, 2018, 40(4):552-557.
FU X J, TANG A Q, MIN H, et al. Analysis on water phase state and transport in process of peanut seed soaking by using low-field nuclear magnetic resonance[J]. Chin J Oil Crop Sci, 2018, 40(4):552-557. DOI: 10.7505/j.issn.1007-9084.2018.04.012.
[23]
GARNCZARSKA M, ZALEWSKI T, KEMPKA M. Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy[J]. Physiol Plant, 2010, 130(1):23-32. DOI: 10.1111/j.1399-3054.2007.00883.x.

基金

国家自然科学基金项目(31901331)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚 , 林木
PDF(1884 KB)

Accesses

Citation

Detail

段落导航
相关文章

/