7种杨树铅抗性和积累能力的比较研究

石文广, 李靖, 张玉红, 雷静品, 罗志斌

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 61-70.

PDF(1822 KB)
PDF(1822 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 61-70. DOI: 10.12302/j.issn.1000-2006.202103020
研究论文

7种杨树铅抗性和积累能力的比较研究

作者信息 +

A comparative study on lead tolerance and accumulation of seven poplar species

Author information +
文章历史 +

摘要

【目的】通过对比研究不同种杨树的铅(Pb)抗性和Pb积累能力,筛选具有修复Pb污染土壤潜力的杨树树种。【方法】选取7种速生杨树,用8 mmol/L Pb处理6周,分析7种杨树Pb抗性和积累能力。【结果】Pb胁迫导致7种杨树净光合速率、气孔导度和蒸腾速率降低,抑制了7种杨树的高生长和径向生长,其中欧洲黑杨、群众杨和青杨的光合和生长对Pb胁迫较敏感,美洲黑杨敏感性较低。Pb胁迫导致7种杨树生物量显著降低,其中欧美杨根生物量降低最多(50.31%),欧洲黑杨(31.99%)和群众杨(22.26%)木材生物量降低最显著,欧美杨(12.67%)和群众杨(19.54%)皮生物量降低最显著,灰杨叶生物量降低最多(35.44%)。7种杨树的总生物量在Pb胁迫下出现明显降低,其中灰杨降幅最大(29.03%),欧洲黑杨降幅最小(12.02%)。相应地,7种杨树Pb抗性指数大小顺序依次为:欧洲黑杨(88.09%)>银腺杨(82.98%)≈美洲黑杨(80.70%)>欧美杨(79.86%)>青杨(76.79%)>群众杨(72.78%)≈灰杨(70.35%)。7种杨树吸收和转运Pb的能力存在较大差异。美洲黑杨根中的Pb含量最高,达2 906.10 mg/kg;灰杨木材、皮和叶中的Pb含量较高,分别达46.55、44.39和325.90 mg/kg。美洲黑杨根和整株Pb积累量最大,分别为4.20和5.06 mg/株;灰杨地上部分Pb积累量最大,为1.21 mg/株。美洲黑杨的根富集系数最大,达6.70;灰杨地上部分富集系数最大,为0.43。灰杨的Pb转运系数显著高于其他杨树,达0.16;欧洲黑杨的转运系数最低,仅为0.02。【结论】7种杨树的Pb抗性和Pb积累能力存在明显差异,其中欧洲黑杨Pb抗性最强、美洲黑杨根吸收Pb的能力最强,可能在Pb污染土壤的植物固定和生态恢复方面具有较大潜力;灰杨转运Pb能力最强,地上部分Pb积累能力最强,可能在Pb污染土壤的植物提取方面具有较大潜力。

Abstract

【Objective】In this study, we aimed to find the promising poplar species for the remediation of lead (Pb)-contaminated soil by comparing the lead (Pb) resistance and accumulation of different poplar species. 【Method】Seven fast-growing poplar species were exposed to 8 mmol/L Pb(NO3)2 for 6 weeks to analyze their capacities for Pb tolerance and accumulation. 【Result】The net photosynthetic rate, stomatal conductance and transpiration rate were significantly reduced in the leaves of Pb-exposed poplar plants compared to those under the controlled condition. Thus, the axial and radial growth of poplar plants were inhibited by Pb exposure. The photosynthesis and growth of Populus nigra, P. × popularis and P. cathayana were more sensitive, and those of P. deltoides were less sensitive to Pb exposure than the other poplar species. The biomass of Pb-treated poplar plants was declined in comparison with that of poplar plants under the controlled condition. The greatest reduction in root biomass was found in P. × euramericana (50.31%); the significant decreases in wood biomass were found in P. nigra (31.99%) and P. × popularis (22.26%); the significant decreases in bark biomass were found in P. × euramericana (12.67%) and P. × popularis (19.54%); the greatest reduction in leaf biomass was found in P. × canescens (35.44%). The total biomass of the seven poplar species decreased significantly under Pb stress. The largest decrease was found in P. × canescens (29.03%), and the smallest reduction was found in P. nigra (12.02%). Correspondingly, the tolerance index of the seven poplar species was decreased in the order: P. nigra (88.09%) > P. alba × P. glandulosa (82.98%) ≈ P. deltoides (80.70%) > P. × euramericana (79.86%) > P. cathayana (76.79%) > P. × popularis (72.78%) ≈ P. × canescens (70.35%). Significant differences in absorption and transport of Pb were found among poplar species. P. deltoides displayed the highest Pb concentration in the roots (2 906.10 mg/kg). P. × canescens showed the highest concentrations of Pb in the wood (46.55 mg/kg), bark (44.39 mg/kg) and leaves (325.90 mg/kg). The total Pb amount in the roots (4.20 mg/plant) and whole plant (5.06 mg/plant) of P. deltoides and those in the aerial part (1.21 mg/plant) of P. × canescens were the largest among the seven poplar species. P. deltoides showed the highest bio-concentration factor of roots (6.70) and P. × canescens displayed the highest bio-concentration factor of the aboveground tissue (0.43). Meanwhile, P. × canescens displayed the highest translocation factor (0.16), and P. nigra showed the lowest translocation factor (0.02). 【Conclusion】Significant differences in Pb tolerance and accumulation were found among the seven poplar species. Among which, P. nigra and P. deltoides displayed the strongest abilities for Pb tolerance and absorption, respectively, and thus both species may have great potentials for phytostabilization and ecological restoration of Pb-polluted soil. P. × canescens showed the strongest ability to transport Pb to the aboveground tissues, and thus it may have a great potential for phytoextraction of Pb in contaminated soil.

关键词

杨树 / 植物修复 / Pb胁迫 / 光合作用 / 生物量 / Pb积累 / 土壤重金属污染

Key words

Populus spp. / phytoremediation / Pb stress / photosynthesis / biomass / Pb accumulation / soil heavy metal pollution

引用本文

导出引用
石文广, 李靖, 张玉红, . 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 61-70 https://doi.org/10.12302/j.issn.1000-2006.202103020
SHI Wenguang, LI Jing, ZHANG Yuhong, et al. A comparative study on lead tolerance and accumulation of seven poplar species[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 61-70 https://doi.org/10.12302/j.issn.1000-2006.202103020
中图分类号: S718;X53   

参考文献

[1]
ZULFIQAR U, FAROOQ M, HUSSAIN S, et al. Lead toxicity in plants:impacts and remediation[J]. J Environ Manage, 2019,250:109557.DOI: 10.1016/j.jenvman.2019.109557.
[2]
环境保护部和国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-07]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[3]
NEEDLEMAN H. Lead poisoning[J]. Annu Rev Med, 2004,55(1):209-222.DOI: 10.1146/annurev.med.55.091902.103653.
[4]
SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals:modifications and future perspectives[J]. Chemosphere, 2017,171:710-721.DOI: 10.1016/j.chemosphere.2016.12.116.
[5]
GERHARDT K E, GERWING P D, GREENBERG B M. Opinion:taking phytoremediation from proven technology to accepted practice[J]. Plant Sci, 2017,256:170-185.DOI: 10.1016/j.plantsci.2016.11.016.
[6]
STOBRAWA K, LORENC-PLUCINSKA G. Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders[J]. Sci Total Environ, 2008,390(1):86-96.DOI: 10.1016/j.scitotenv.2007.09.024.
[7]
DURAND T C, HAUSMAN J F, CARPIN S, et al. Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba[J]. Biol Plant, 2010,54(1):191-194.DOI: 10.1007/s10535-010-0033-z.
[8]
HE J, MA C, MA Y, et al. Cadmium tolerance in six poplar species[J]. Environ Sci Pollut Res Int, 2013,20(1):163-174.DOI: 10.1007/s11356-012-1008-8.
[9]
SHI W G, LIU W, YU W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens[J]. J Hazard Mater, 2019,362:275-285.DOI: 10.1016/j.jhazmat.2018.09.024.
[10]
SCARACIA-MUGNOZZA G E, CEULEMANS R, HEILMAN P E, et al. Production physiology and morphology of Populus species and their hybrids grown under short rotation.II.Biomass components and harvest index of hybrid and parental species clones[J]. Can J For Res, 1997,27(3):285-294.DOI: 10.1139/x96-180.
[11]
PIETROSANTI L, MATTEUCCI G, PIETRINI F, et al. Hydrological control and phytoremediation by poplar and willow clones in a contamineted industrial site in Venice lagoon [C]// KALOGERAKIS N, FAVA F, BANWART S A. Crete: Proceedings of the Forth European Bioremediation Conference, 2008.
[12]
MCGRATH S P, DUNHAM S J, CORRELL R L. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants[M]//Phytoremediation of Contaminated Soil and Water:CRC Press, 2020: 109-128. DOI: 10.1201/9780367803148-6.
[13]
POLLE A, DOUGLAS C. The molecular physiology of poplars:paving the way for knowledge-based biomass production[J]. Plant Biol (Stuttg), 2010,12(2):239-241.DOI: 10.1111/j.1438-8677.2009.00318.x.
[14]
HU Y, NAN Z, SU J, et al. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination:implications for phytoextraction and phytostabilization[J]. Environ Sci Pollut Res Int, 2013,20(10):7194-7203.DOI: 10.1007/s11356-013-1711-0.
[15]
PIETRINI F, ZACCHINI M, IORI V, et al. Screening of poplar clones for cadmium phytoremediation using photosynjournal,biomass and cadmium content analyses[J]. Int J Phytoremediation, 2009,12(1):105-120.DOI: 10.1080/15226510902767163.
[16]
MIGEON A, RICHAUD P, GUINET F, et al. Hydroponic screening of poplar for trace element tolerance and accumulation[J]. Int J Phytoremediation, 2012,14(4):350-361.DOI: 10.1080/15226514.2011.620651.
[17]
BENYÓ D, HORVÁTH E, NÉMETH E, et al. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P.×canadensis[J]. J Plant Physiol, 2016,201:62-70.DOI: 10.1016/j.jplph.2016.05.025.
[18]
AS E, TABARI KOUCHAKSARAEI M, BAHRAMIFAR N, et al. Gas exchange responses of two poplar clones (Populus euramericana (Dode) Guinier 561/41 and Populus nigra Linnaeus 63/135) to lead toxicity[J]. J For Sci, 2016,62(9):422-428.DOI: 10.17221/91/2016-jfs.
[19]
HAN S H, KIM D H, LEE J C. Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populus alba × Glandulosa[J]. J Ecol Environ, 2011,34(4):393-400.DOI: 10.5141/jefb.2011.041.
[20]
CAO X, JIA J B, LI H, et al. Photosynjournal,water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biol (Stuttg), 2012,14(4):612-620.DOI: 10.1111/j.1438-8677.2011.00531.x.
[21]
HE J, QIN J, LONG L, et al. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens[J]. Physiol Plant, 2011,143(1):50-63.DOI: 10.1111/j.1399-3054.2011.01487.x.
[22]
ZHOU JT, WAN H X, HE J L, et al. Integration of cadmium accumulation,subcellular distribution,and physiological responses to understand cadmium tolerance in apple rootstocks[J]. Front Plant Sci, 2017,8:966.DOI: 10.3389/fpls.2017.00966.
[23]
WAN H, DU J, HE J, et al. Copper accumulation,subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks[J]. Tree Physiol, 2019,39(7):1215-1234.DOI: 10.1093/treephys/tpz042.
[24]
KUMAR A, PRASAD M N V. Plant-lead interactions:transport,toxicity,tolerance,and detoxification mechanisms[J]. Ecotoxicol Environ Saf, 2018,166:401-418.DOI: 10.1016/j.ecoenv.2018.09.113.
[25]
SHARMA P, DUBEY R S. Lead toxicity in plants[J]. Braz J Plant Physiol, 2005,17(1):35-52.DOI: 10.1590/s1677-04202005000100004.
[26]
ALKHATIB R, MHEIDAT M, ABDO N, et al. Effect of lead on the physiological,biochemical and ultrastructural properties of Leucaena leucocephala[J]. Plant Biol, 2019,21(6):1132-1139.DOI: 10.1111/plb.13021.
[27]
PAJEVIC S, BORISEV M, NIKOLIC N, et al. Phytoremediation capacity of poplar (Populus spp.) and willow (Salix spp.) clonesin relation to photosynjournal[J]. Arch Biol Sci, 2009,61(2):239-247.DOI: 10.2298/abs0902239p.
[28]
ROMANOWSKA E, WRÓBLEWSKA B, DROAK A, et al. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead[J]. Plant Physiol Biochem, 2006,44(5/6):387-394.DOI: 10.1016/j.plaphy.2006.06.003.
[29]
SHA S, CHENG M H, HU K J, et al. Toxic effects of Pb on Spirodela polyrhiza (L.):subcellular distribution,chemical forms,morphological and physiological disorders[J]. Ecotoxicol Environ Saf, 2019,181:146-154.DOI: 10.1016/j.ecoenv.2019.05.085.
[30]
RADOJCIC REDOVNIKOVIC I, DE MARCO A, PROIETTI C, et al. Poplar response to cadmium and lead soil contamination[J]. Ecotoxicol Environ Saf, 2017,144:482-489.DOI: 10.1016/j.ecoenv.2017.06.011.
[31]
SALEHI A, TABARI KOUCHAKSARAEI M, MOHAMMADI GOLTAPEH E, et al. Effect of mycorrhizal inoculation on black and white poplar in a lead-polluted soil[J]. J For Sci, 2016,62:223-228.DOI: 10.17221/23/2016-jfs.
[32]
SZUBA A, KARLINSKI L, KRZESŁOWSKA M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions[J]. Plant Soil, 2017,412(1/2):253-266.DOI: 10.1007/s11104-016-3062-3.
[33]
CHEN L, GAO S, ZHU P, et al. Comparative study of metal resistance and accumulation of lead and zinc in two poplars[J]. Physiol Plant, 2014,151(4):390-405.DOI: 10.1111/ppl.12120.
[34]
DOS SANTOS UTMAZIAN M N, DE WIESHAMMER G, VEGA R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars[J]. Environ Pollut, 2007,148(1):155-165.DOI: 10.1016/j.envpol.2006.10.045.
[35]
SHI WG, ZHOU J, LI J, et al. Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species[J]. Environ Pollut, 2021,271:116346.DOI: 10.1016/j.envpol.2020.116346.
[36]
MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK J S, et al. Phytoremediation of heavy metals:mechanisms,methods and enhancements[J]. Environ Chem Lett, 2018,16(4):1339-1359.DOI: 10.1007/s10311-018-0762-3.
[37]
BALDANTONI D, CICATELLI A, BELLINO A, et al. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements[J]. J Environ Manag, 2014,146:94-99.DOI: 10.1016/j.jenvman.2014.07.045.
[38]
PILIPOVIC A, ZALESNY R S, RONCEVIC S, et al. Growth,physiology,and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated,dredged river sediments[J]. J Environ Manage, 2019,239:352-365.DOI: 10.1016/j.jenvman.2019.03.072.
[39]
LEBRUN M, MIARD F, NANDILLON R, et al. Influence of biochar particle size and concentration on Pb and as availability in contaminated mining soil and phytoremediation potential of poplar assessed in a mesocosm experiment[J]. Water Air Soil Pollut, 2020,232(1):1-21.DOI: 10.1007/s11270-020-04942-y.
[40]
KOMÁREK M, TLUSTOS P, SZÁKOVÁ J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils[J]. Chemosphere, 2007,67(4):640-651.DOI: 10.1016/j.chemosphere.2006.11.010.
[41]
LIPHADZI M S, KIRKHAM M B, MANKIN K R, et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J]. Plant Soil, 2003,257(1):171-182.DOI: 10.1023/A:1026294830323.
[42]
KACALKOVA L, TLUSTOS P, SZAKOVA J. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar[J]. 2014. 23(3):753-761.
[43]
MA C, CHEN Y, DING S, et al. Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides[J]. Tree Physiol, 2018,38(11):1724-1741.DOI: 10.1093/treephys/tpy069.

基金

中国林业科学研究院中央级公益性科研院所基本科研业务费专项资金(CAFYBB2018GD001)
中国林业科学研究院中央级公益性科研院所基本科研业务费专项资金(CAFYBB2019ZA001-1)
中国林业科学研究院中央级公益性科研院所基本科研业务费专项资金(CAFYBB2018SY005)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1822 KB)

Accesses

Citation

Detail

段落导航
相关文章

/