南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3): 61-70.doi: 10.12302/j.issn.1000-2006.202103020
石文广1(), 李靖2, 张玉红1,3, 雷静品1, 罗志斌1,*()
收稿日期:
2021-03-09
修回日期:
2021-04-06
出版日期:
2021-05-30
发布日期:
2021-05-31
通讯作者:
罗志斌
基金资助:
SHI Wenguang1(), LI Jing2, ZHANG Yuhong1,3, LEI Jingpin1, LUO Zhibin1,*()
Received:
2021-03-09
Revised:
2021-04-06
Online:
2021-05-30
Published:
2021-05-31
Contact:
LUO Zhibin
摘要:
【目的】通过对比研究不同种杨树的铅(Pb)抗性和Pb积累能力,筛选具有修复Pb污染土壤潜力的杨树树种。【方法】选取7种速生杨树,用8 mmol/L Pb处理6周,分析7种杨树Pb抗性和积累能力。【结果】Pb胁迫导致7种杨树净光合速率、气孔导度和蒸腾速率降低,抑制了7种杨树的高生长和径向生长,其中欧洲黑杨、群众杨和青杨的光合和生长对Pb胁迫较敏感,美洲黑杨敏感性较低。Pb胁迫导致7种杨树生物量显著降低,其中欧美杨根生物量降低最多(50.31%),欧洲黑杨(31.99%)和群众杨(22.26%)木材生物量降低最显著,欧美杨(12.67%)和群众杨(19.54%)皮生物量降低最显著,灰杨叶生物量降低最多(35.44%)。7种杨树的总生物量在Pb胁迫下出现明显降低,其中灰杨降幅最大(29.03%),欧洲黑杨降幅最小(12.02%)。相应地,7种杨树Pb抗性指数大小顺序依次为:欧洲黑杨(88.09%)>银腺杨(82.98%)≈美洲黑杨(80.70%)>欧美杨(79.86%)>青杨(76.79%)>群众杨(72.78%)≈灰杨(70.35%)。7种杨树吸收和转运Pb的能力存在较大差异。美洲黑杨根中的Pb含量最高,达2 906.10 mg/kg;灰杨木材、皮和叶中的Pb含量较高,分别达46.55、44.39和325.90 mg/kg。美洲黑杨根和整株Pb积累量最大,分别为4.20和5.06 mg/株;灰杨地上部分Pb积累量最大,为1.21 mg/株。美洲黑杨的根富集系数最大,达6.70;灰杨地上部分富集系数最大,为0.43。灰杨的Pb转运系数显著高于其他杨树,达0.16;欧洲黑杨的转运系数最低,仅为0.02。【结论】7种杨树的Pb抗性和Pb积累能力存在明显差异,其中欧洲黑杨Pb抗性最强、美洲黑杨根吸收Pb的能力最强,可能在Pb污染土壤的植物固定和生态恢复方面具有较大潜力;灰杨转运Pb能力最强,地上部分Pb积累能力最强,可能在Pb污染土壤的植物提取方面具有较大潜力。
中图分类号:
石文广,李靖,张玉红,等. 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 61-70.
SHI Wenguang, LI Jing, ZHANG Yuhong, LEI Jingpin, LUO Zhibin. A comparative study on lead tolerance and accumulation of seven poplar species[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 61-70.DOI: 10.12302/j.issn.1000-2006.202103020.
表2
Pb胁迫对7种杨树径向生长的影响"
树种 species | Pb处理/ (mmol·L-1) Pb treaments | 地径/mm ground diameter | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 7 d | 14 d | 21 d | 28 d | 35 d | 42 d | |||||||||
Pc | 0 | 2.45±0.11 a | 2.63±0.10 a | 2.89±0.14 a | 3.15±0.17 a | 3.77±0.16 a | 4.09±0.26 a | 4.48±0.27 a | |||||||
8 | 2.95±0.13 b | 3.29±0.09 b | 3.55±0.09 b | 3.78±0.12 b | 4.21±0.18 b | 4.29±0.18 a | 4.39±0.25 a | ||||||||
Pd | 0 | 3.70±0.06 cd | 4.02±0.07 cd | 4.37±0.14 c | 4.87±0.10 de | 5.12±0.04 def | 5.44±0.08 cd | 5.75±0.08 de | |||||||
8 | 3.90±0.14 de | 4.21±0.20 cde | 4.51±0.16 cd | 4.84±0.15 de | 5.11±0.07 def | 5.39±0.11 cd | 5.58±0.12 cd | ||||||||
Pe | 0 | 4.76±0.14 f | 5.06±0.18 f | 5.46±0.17 e | 5.80±0.16 f | 6.14±0.18 i | 6.42±0.14 g | 6.70±0.15 g | |||||||
8 | 4.74±0.14 f | 5.01±0.11 f | 5.37±0.17 e | 5.64±0.16 f | 5.85±0.14 hi | 6.11±0.15 fg | 6.38±0.16 fg | ||||||||
Pg | 0 | 3.52±0.22 c | 3.92±0.17 cd | 4.36±0.15 c | 4.96±0.14 de | 5.40±0.21 fg | 5.71±0.18 de | 6.08±0.18 ef | |||||||
8 | 3.75±0.14 cde | 4.16±0.05 cde | 4.65±0.07 cd | 5.03±0.04 de | 5.34±0.07 fg | 5.58±0.09 de | 5.68±0.07 de | ||||||||
Pn | 0 | 3.79±0.05 cde | 4.11±0.09 cde | 4.58±0.13 cd | 4.80±0.14 de | 5.17±0.41 defg | 5.46±0.52 cde | 5.81±0.56 def | |||||||
8 | 3.73±0.04 cde | 3.86±0.08 c | 3.95±0.07 b | 4.17±0.06 c | 4.52±0.02 bc | 4.74±0.05 b | 5.01±0.04 b | ||||||||
Pp | 0 | 3.98±0.07 de | 4.34±0.10 e | 4.74±0.11 d | 5.07±0.10 e | 5.53±0.13 gh | 5.90±0.10 ef | 6.25±0.07 f | |||||||
8 | 3.87±0.08 de | 4.10±0.08 cde | 4.46±0.09 cd | 4.72±0.08 d | 4.86±0.06 cde | 5.07±0.09 bc | 5.17±0.08 bc | ||||||||
Pz | 0 | 4.05±0.03 e | 4.42±0.07 e | 4.71±0.17 cd | 5.04±0.14 de | 5.37±0.12 fg | 5.71±0.22 def | 5.97±0.20 def | |||||||
8 | 4.04±0.12 e | 4.22±0.12 de | 4.44±0.13 cd | 4.66±0.09 d | 4.72±0.05 cd | 5.03±0.06 bc | 5.17±0.05 bc |
表3
7种杨树的Pb积累量、富集系数和转运系数"
树种 species | Pb积累量/(mg·株-1) total Pb amount | 富集系数 BCF | 转运系数 TF | ||||
---|---|---|---|---|---|---|---|
根 roots | 木材 wood | 树皮 bark | 叶 leaves | 根 roots | 地上部分 aboveground part | ||
Pc | 0.92±0.16 a | 0.11±0.02 d | 0.06±0.01 b | 1.04±0.10 e | 2.70±0.04 b | 0.43±0.02 e | 0.16±0.01 f |
Pd | 4.20±0.45 c | 0.08±0.01 c | 0.06±0.01 b | 0.72±0.05 c | 6.70±0.26 e | 0.20±0.00 d | 0.03±0.00 ab |
Pe | 1.20±0.08 a | 0.08±0.01 bc | 0.04±0.00 a | 0.60±0.03 c | 1.73±0.06 a | 0.13±0.01 b | 0.08±0.00 e |
Pg | 1.58±0.04 a | 0.06±0.00 ab | 0.08±0.00 c | 0.89±0.03 d | 4.48±0.16 d | 0.21±0.00 d | 0.05±0.00 cd |
Pn | 2.92±0.56 b | 0.04±0.00 a | 0.03±0.00 a | 0.20±0.04 a | 3.41±0.35 c | 0.07±0.01 a | 0.02±0.01 a |
Pp | 2.59±0.27 b | 0.05±0.00 a | 0.03±0.00 a | 0.47±0.03 b | 3.95±0.03 d | 0.16±0.00 c | 0.04±0.00 bc |
Pz | 1.40±0.16 a | 0.04±0.00 a | 0.06±0.00 b | 0.22±0.01 a | 1.76±0.10 a | 0.10±0.00 a | 0.06±0.00 d |
[1] |
ZULFIQAR U, FAROOQ M, HUSSAIN S, et al. Lead toxicity in plants:impacts and remediation[J]. J Environ Manage, 2019,250:109557.DOI: 10.1016/j.jenvman.2019.109557.
doi: 10.1016/j.jenvman.2019.109557 |
[2] | 环境保护部和国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-07]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. |
[3] |
NEEDLEMAN H. Lead poisoning[J]. Annu Rev Med, 2004,55(1):209-222.DOI: 10.1146/annurev.med.55.091902.103653.
doi: 10.1146/annurev.med.55.091902.103653 |
[4] |
SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals:modifications and future perspectives[J]. Chemosphere, 2017,171:710-721.DOI: 10.1016/j.chemosphere.2016.12.116.
doi: 10.1016/j.chemosphere.2016.12.116 |
[5] |
GERHARDT K E, GERWING P D, GREENBERG B M. Opinion:taking phytoremediation from proven technology to accepted practice[J]. Plant Sci, 2017,256:170-185.DOI: 10.1016/j.plantsci.2016.11.016.
doi: 10.1016/j.plantsci.2016.11.016 |
[6] |
STOBRAWA K, LORENC-PLUCINSKA G. Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders[J]. Sci Total Environ, 2008,390(1):86-96.DOI: 10.1016/j.scitotenv.2007.09.024.
doi: 10.1016/j.scitotenv.2007.09.024 |
[7] |
DURAND T C, HAUSMAN J F, CARPIN S, et al. Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba[J]. Biol Plant, 2010,54(1):191-194.DOI: 10.1007/s10535-010-0033-z.
doi: 10.1007/s10535-010-0033-z |
[8] |
HE J, MA C, MA Y, et al. Cadmium tolerance in six poplar species[J]. Environ Sci Pollut Res Int, 2013,20(1):163-174.DOI: 10.1007/s11356-012-1008-8.
doi: 10.1007/s11356-012-1008-8 |
[9] |
SHI W G, LIU W, YU W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens[J]. J Hazard Mater, 2019,362:275-285.DOI: 10.1016/j.jhazmat.2018.09.024.
doi: 10.1016/j.jhazmat.2018.09.024 |
[10] |
SCARACIA-MUGNOZZA G E, CEULEMANS R, HEILMAN P E, et al. Production physiology and morphology of Populus species and their hybrids grown under short rotation.II.Biomass components and harvest index of hybrid and parental species clones[J]. Can J For Res, 1997,27(3):285-294.DOI: 10.1139/x96-180.
doi: 10.1139/x96-180 |
[11] | PIETROSANTI L, MATTEUCCI G, PIETRINI F, et al. Hydrological control and phytoremediation by poplar and willow clones in a contamineted industrial site in Venice lagoon [C]// KALOGERAKIS N, FAVA F, BANWART S A. Crete: Proceedings of the Forth European Bioremediation Conference, 2008. |
[12] | MCGRATH S P, DUNHAM S J, CORRELL R L. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants[M]//Phytoremediation of Contaminated Soil and Water:CRC Press, 2020: 109-128. DOI: 10.1201/9780367803148-6. |
[13] |
POLLE A, DOUGLAS C. The molecular physiology of poplars:paving the way for knowledge-based biomass production[J]. Plant Biol (Stuttg), 2010,12(2):239-241.DOI: 10.1111/j.1438-8677.2009.00318.x.
doi: 10.1111/j.1438-8677.2009.00318.x |
[14] |
HU Y, NAN Z, SU J, et al. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination:implications for phytoextraction and phytostabilization[J]. Environ Sci Pollut Res Int, 2013,20(10):7194-7203.DOI: 10.1007/s11356-013-1711-0.
doi: 10.1007/s11356-013-1711-0 |
[15] |
PIETRINI F, ZACCHINI M, IORI V, et al. Screening of poplar clones for cadmium phytoremediation using photosynjournal,biomass and cadmium content analyses[J]. Int J Phytoremediation, 2009,12(1):105-120.DOI: 10.1080/15226510902767163.
doi: 10.1080/15226510902767163 |
[16] |
MIGEON A, RICHAUD P, GUINET F, et al. Hydroponic screening of poplar for trace element tolerance and accumulation[J]. Int J Phytoremediation, 2012,14(4):350-361.DOI: 10.1080/15226514.2011.620651.
doi: 10.1080/15226514.2011.620651 |
[17] |
BENYÓ D, HORVÁTH E, NÉMETH E, et al. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P.×canadensis[J]. J Plant Physiol, 2016,201:62-70.DOI: 10.1016/j.jplph.2016.05.025.
doi: 10.1016/j.jplph.2016.05.025 |
[18] |
AS E, TABARI KOUCHAKSARAEI M, BAHRAMIFAR N, et al. Gas exchange responses of two poplar clones (Populus euramericana (Dode) Guinier 561/41 and Populus nigra Linnaeus 63/135) to lead toxicity[J]. J For Sci, 2016,62(9):422-428.DOI: 10.17221/91/2016-jfs.
doi: 10.17221/JFS |
[19] |
HAN S H, KIM D H, LEE J C. Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populus alba × Glandulosa[J]. J Ecol Environ, 2011,34(4):393-400.DOI: 10.5141/jefb.2011.041.
doi: 10.5141/JEFB.2011.041 |
[20] |
CAO X, JIA J B, LI H, et al. Photosynjournal,water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biol (Stuttg), 2012,14(4):612-620.DOI: 10.1111/j.1438-8677.2011.00531.x.
doi: 10.1111/j.1438-8677.2011.00531.x |
[21] | HE J, QIN J, LONG L, et al. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens[J]. Physiol Plant, 2011,143(1):50-63.DOI: 10.1111/j.1399-3054.2011.01487.x. |
[22] |
ZHOU JT, WAN H X, HE J L, et al. Integration of cadmium accumulation,subcellular distribution,and physiological responses to understand cadmium tolerance in apple rootstocks[J]. Front Plant Sci, 2017,8:966.DOI: 10.3389/fpls.2017.00966.
doi: 10.3389/fpls.2017.00966 |
[23] |
WAN H, DU J, HE J, et al. Copper accumulation,subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks[J]. Tree Physiol, 2019,39(7):1215-1234.DOI: 10.1093/treephys/tpz042.
doi: 10.1093/treephys/tpz042 |
[24] |
KUMAR A, PRASAD M N V. Plant-lead interactions:transport,toxicity,tolerance,and detoxification mechanisms[J]. Ecotoxicol Environ Saf, 2018,166:401-418.DOI: 10.1016/j.ecoenv.2018.09.113.
doi: 10.1016/j.ecoenv.2018.09.113 |
[25] |
SHARMA P, DUBEY R S. Lead toxicity in plants[J]. Braz J Plant Physiol, 2005,17(1):35-52.DOI: 10.1590/s1677-04202005000100004.
doi: 10.1590/S1677-04202005000100004 |
[26] |
ALKHATIB R, MHEIDAT M, ABDO N, et al. Effect of lead on the physiological,biochemical and ultrastructural properties of Leucaena leucocephala[J]. Plant Biol, 2019,21(6):1132-1139.DOI: 10.1111/plb.13021.
doi: 10.1111/plb.v21.6 |
[27] |
PAJEVIC S, BORISEV M, NIKOLIC N, et al. Phytoremediation capacity of poplar (Populus spp.) and willow (Salix spp.) clonesin relation to photosynjournal[J]. Arch Biol Sci, 2009,61(2):239-247.DOI: 10.2298/abs0902239p.
doi: 10.2298/ABS0902239P |
[28] |
ROMANOWSKA E, WRÓBLEWSKA B, DROAK A, et al. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead[J]. Plant Physiol Biochem, 2006,44(5/6):387-394.DOI: 10.1016/j.plaphy.2006.06.003.
doi: 10.1016/j.plaphy.2006.06.003 |
[29] |
SHA S, CHENG M H, HU K J, et al. Toxic effects of Pb on Spirodela polyrhiza (L.):subcellular distribution,chemical forms,morphological and physiological disorders[J]. Ecotoxicol Environ Saf, 2019,181:146-154.DOI: 10.1016/j.ecoenv.2019.05.085.
doi: 10.1016/j.ecoenv.2019.05.085 |
[30] |
RADOJCIC REDOVNIKOVIC I, DE MARCO A, PROIETTI C, et al. Poplar response to cadmium and lead soil contamination[J]. Ecotoxicol Environ Saf, 2017,144:482-489.DOI: 10.1016/j.ecoenv.2017.06.011.
doi: 10.1016/j.ecoenv.2017.06.011 |
[31] |
SALEHI A, TABARI KOUCHAKSARAEI M, MOHAMMADI GOLTAPEH E, et al. Effect of mycorrhizal inoculation on black and white poplar in a lead-polluted soil[J]. J For Sci, 2016,62:223-228.DOI: 10.17221/23/2016-jfs.
doi: 10.17221/JFS |
[32] |
SZUBA A, KARLINSKI L, KRZESŁOWSKA M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions[J]. Plant Soil, 2017,412(1/2):253-266.DOI: 10.1007/s11104-016-3062-3.
doi: 10.1007/s11104-016-3062-3 |
[33] | CHEN L, GAO S, ZHU P, et al. Comparative study of metal resistance and accumulation of lead and zinc in two poplars[J]. Physiol Plant, 2014,151(4):390-405.DOI: 10.1111/ppl.12120. |
[34] |
DOS SANTOS UTMAZIAN M N, DE WIESHAMMER G, VEGA R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars[J]. Environ Pollut, 2007,148(1):155-165.DOI: 10.1016/j.envpol.2006.10.045.
doi: 10.1016/j.envpol.2006.10.045 |
[35] |
SHI WG, ZHOU J, LI J, et al. Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species[J]. Environ Pollut, 2021,271:116346.DOI: 10.1016/j.envpol.2020.116346.
doi: 10.1016/j.envpol.2020.116346 |
[36] |
MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK J S, et al. Phytoremediation of heavy metals:mechanisms,methods and enhancements[J]. Environ Chem Lett, 2018,16(4):1339-1359.DOI: 10.1007/s10311-018-0762-3.
doi: 10.1007/s10311-018-0762-3 |
[37] |
BALDANTONI D, CICATELLI A, BELLINO A, et al. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements[J]. J Environ Manag, 2014,146:94-99.DOI: 10.1016/j.jenvman.2014.07.045.
doi: 10.1016/j.jenvman.2014.07.045 |
[38] |
PILIPOVIC A, ZALESNY R S, RONCEVIC S, et al. Growth,physiology,and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated,dredged river sediments[J]. J Environ Manage, 2019,239:352-365.DOI: 10.1016/j.jenvman.2019.03.072.
doi: 10.1016/j.jenvman.2019.03.072 |
[39] |
LEBRUN M, MIARD F, NANDILLON R, et al. Influence of biochar particle size and concentration on Pb and as availability in contaminated mining soil and phytoremediation potential of poplar assessed in a mesocosm experiment[J]. Water Air Soil Pollut, 2020,232(1):1-21.DOI: 10.1007/s11270-020-04942-y.
doi: 10.1007/s11270-020-04943-x |
[40] |
KOMÁREK M, TLUSTOS P, SZÁKOVÁ J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils[J]. Chemosphere, 2007,67(4):640-651.DOI: 10.1016/j.chemosphere.2006.11.010.
doi: 10.1016/j.chemosphere.2006.11.010 |
[41] |
LIPHADZI M S, KIRKHAM M B, MANKIN K R, et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J]. Plant Soil, 2003,257(1):171-182.DOI: 10.1023/A:1026294830323.
doi: 10.1023/A:1026294830323 |
[42] | KACALKOVA L, TLUSTOS P, SZAKOVA J. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar[J]. 2014. 23(3):753-761. |
[43] | MA C, CHEN Y, DING S, et al. Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides[J]. Tree Physiol, 2018,38(11):1724-1741.DOI: 10.1093/treephys/tpy069. |
[1] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[2] | 周友锋, 谢秉楼, 李明诗. 基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 169-178. |
[3] | 董玉洁, 毛岭峰, 张敏, 鲁旭东, 吴秀萍. 华东地区亚热带典型常绿阔叶林地上生物量与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 74-80. |
[4] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[5] | 李建新, 徐森, 杨丽婷, 陈双林, 郭子武. 毛竹林下多花黄精构件生物量分配特征的年际效应[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 121-128. |
[6] | 熊燕飞, 陈跃锋, 毛志强, 曹杏红, 叶语涵, 张建坤. 空气甲醛污染的植物修复机制[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 1-12. |
[7] | 王露露, 耿兴敏, 宦智群, 许世达, 赵晖. 1-MCP预处理对杜鹃花高温胁迫下光合特性及相关基因表达的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 103-113. |
[8] | 何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 120-128. |
[9] | 孙宇, 李凤日, 谢龙飞, 董利虎. 基于林分及地形因子的落叶松人工林林分生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 129-136. |
[10] | 唐依人, 贾炜玮, 王帆, 孙毓蔓, 张颖. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140. |
[11] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[12] | 刘亚梅, 刘盛全, 周亮, 胡建军, 赵自成, 郑向丽. 8个杨树无性系/品种木材解剖特征及其径向变异模式[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 234-240. |
[13] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[14] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||