基于空间自相关的县域尺度土壤侵蚀抽样方法研究

陈超, 齐斐, 徐雁南, 黎家作, 赵传普, 苏新宇

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 177-184.

PDF(3693 KB)
PDF(3693 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 177-184. DOI: 10.12302/j.issn.1000-2006.202103028
研究论文

基于空间自相关的县域尺度土壤侵蚀抽样方法研究

作者信息 +

Sampling methods of soil erosion at county scale based on spatial autocorrelation

Author information +
文章历史 +

摘要

【目的】探讨不同空间抽样方法和插值方法对土壤侵蚀预测精度的影响,为县域土壤侵蚀快速评价提供技术支撑。【方法】以沂蒙山区蒙阴县为研究区,GF-1号和GF-6号卫星影像、1∶1万地形图等数据为基础数据源,基于空间自相关理论,采用不同的空间抽样方法和空间插值方法,对研究区土壤侵蚀状况进行快速抽样预测研究。【结果】①根据全局Moran’s I指数、Z score和平均图斑类型,选取400 m×400 m方格为抽样单元最优尺寸。②与空间随机抽样、空间系统抽样方法相比,空间分层抽样样本容量最少(150个,其他样本容量最均超过250个),抽样精度最高(96.69%),抽样效率最高。③空间分层抽样下,普通克里金法和协同克里金法的计算结果与栅格计算法差异较小,相对差异分别为8.25%和9.85%(另两种方法的相对误差大于25%),但在空间分布上,受坡度影响的协同克里金法土壤侵蚀强度分布更为详细。【结论】综合考虑抽样调查的精度和工作量,在沂蒙山区县域尺度开展土壤侵蚀调查工作时,可采用空间分层抽样和协同克里金法或普通克里金法的方法进行土壤侵蚀快速预测,从而为区域生态环境保护提供重要数据支撑。

Abstract

【Objective】Soil erosion is one of the main ecological and environmental problems in China. To take effective measures to control soil erosion, field investigations must be undertaken. It is important to maintain the ecological balance and promote sustainable development of the social economy. 【Method】In China, the method of soil erosion investigation combining sampling surveys and a Chinese soil loss equation (CSLE) experience model is one of the most important methods to obtain the soil erosion status at different scales. Stratified sampling with unequal probability and the CSLE experience model were used in the First National Water Census from 2010 to 2012. To further explore the influence of different spatial sampling methods and spatial interpolations on estimation precision in soil erosion areas, and to provide technological support for fast regional evaluation of soil erosion, this paper uses Mengyin County of Yimeng Mountain as the study area. Based on the spatial autocorrelation theory, using GF-1 and GF-6 satellite images, a CSLE model, 1∶10 000 topographic map and other data, three spatial sampling methods of spatial random sampling, spatial systematic sampling, spatial stratified sampling and four spatial interpolation methods of inverse distance weight, spline function method, ordinary Kriging, and co-Kriging was applied to predict the soil erosion area in Mengyin County in the Yimeng Mountain area. 【Result】(1) According to the global Moran’ I index, Z score and average pattern type, 400 m × 400 m square is the optimal size for sampling units. (2)The efficiency and accuracy of the sampling survey were affected by the sampling methods. Compared with spatial random samples and spatial systematic sampling, which had more than 250 units, spatial stratified sampling by slope had the highest sampling efficiency with the minimum sample size (150 units) and the highest sampling accuracy (96.69%). (3) Using spatial stratified sampling, the percentage of the soil erosion area for both ordinary Kriging and co-Kriging was similar to the grid calculation with a relative error of 8.25% and 9.85%, while that of the inverse distance weight and the spline function method were quite different from the grid calculation with a relative error of more than 25%. The spatial distribution of soil erosion-based co-Kriging was more detailed and is mainly influenced by the slope, but there were some differences between the spatial interpolation and the grid calculation. 【Conclusion】In view of the precision and workload in soil erosion surveys at the county scale in Yimeng Mountain area, stratified sampling, ordinary Kriging or co-Kriging are advisable for rapid prediction of soil erosion to provide an important data support for regional ecological environment protection.

关键词

土壤侵蚀 / 空间自相关 / 空间抽样方法 / 空间插值 / 抽样单元尺寸 / 沂蒙山区

Key words

soil erosion / spatial autocorrelation / spatial sampling method / spatial interpolation / sampling unit size / Yimeng Mountain area

引用本文

导出引用
陈超, 齐斐, 徐雁南, . 基于空间自相关的县域尺度土壤侵蚀抽样方法研究[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 177-184 https://doi.org/10.12302/j.issn.1000-2006.202103028
CHEN Chao, QI Fei, XU Yannan, et al. Sampling methods of soil erosion at county scale based on spatial autocorrelation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 177-184 https://doi.org/10.12302/j.issn.1000-2006.202103028
中图分类号: S157   

参考文献

[1]
BRAUN A, FOTOPOULOS G. Assessment of SRTM,ICESat and survey control monument elevations in Canada[J]. Photogramm Eng Remote Sensing, 2007, 73(12):1333-1342.DOI: 10.14358/pers.73.12.1333.
[2]
HIRT C, FILMER M S, FEATHERSTONE W E. Comparison and validation of the recent freely available ASTER-GDEM ver 1,SRTM ver 4.1 and GEODATA DEM-9S ver 3 digital elevation models over Australia[J]. Aust J Earth Sci, 2010, 57(3):337-347.DOI: 10.1080/08120091003677553.
[3]
ENßLE F, HEINZEL J, KOCH B. Accuracy of vegetation height and terrain elevation derived from ICESat/GLAS in forested areas[J]. Int J Appl Earth Obs Geoinformation, 2014, 31:37-44.DOI: 10.1016/j.jag.2014.02.009.
[4]
YUE LW, SHEN H F, ZHANG L P, et al. High-quality seamless DEM generation blending SRTM-1,ASTER-GDEM v2 and ICESat/GLAS observations[J]. ISPRS J Photogramm Remote Sens, 2017, 123:20-34.DOI: 10.1016/j.isprsjprs.2016.11.002.
[5]
LIU J, TONG X H, LIU S J, et al. Glacier mass change evaluation in Lambert-Amery Area from 2002 to 2012 using ASTER stereo images and ICESat GLAS laser altimetry[J]. IOP Conf Ser:Earth Environ Sci,2014, 17:012136.DOI: 10.1088/1755-1315/17/1/012136.
[6]
陈茁新, 张金池. 近10年全球水土保持研究热点问题述评[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 167-174.
CHEN Z X, ZHANG J C. Review of global soil and water conservation in last ten years[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3): 167-174.DOI: 10.3969/j.issn.1000-2006.201709028.
[7]
LU H, GALLANT J, PROSSER I P, et al. Prediction of sheet and rill erosion over the Australian continent,incorporating monthly soil loss distribution[R]. Canberra: CSIRO Land and Water, 2001.
[8]
MIRCO G, ROBERT J, LUCA M. Soil erosion risk in Europe[R]. Napoli: European Soil Bureau, 2002.
[9]
谢云, 赵莹, 张玉平, 等. 美国土壤侵蚀调查的历史与现状[J]. 中国水土保持, 2013(10):53-60.
XIE Y, ZHAO Y, ZHANG Y P, et al. History and actuality of soil erosion survey in US[J]. Soil Water Conserv China, 2013(10):53-60.DOI: 10.14123/j.cnki.swcc.2013.10.015.
[10]
何维灿, 赵尚民, 王睿博, 等. 基于GIS和CSLE的山西省土壤侵蚀风险研究[J]. 水土保持研究, 2016, 23(3): 58-64.
HE W C, ZHAO S M, WANG R B, et al. Research on soil erosion risk based on GIS and CSLE in Shanxi Province[J]. Res Soil Water Conserv, 2016, 23(3): 58-64. DOI: 10.13869/j.cnki.rswc.2016.03.011.
[11]
魏梦瑶, 张卓栋, 刘瑛娜, 等. 基于CSLE模型的广西土壤侵蚀规律[J]. 水土保持研究, 2020(1):15-20.
WEI M Y, ZHANG Z D, LIU Y N, et al. Characteristics of soil erosion in Guangxi based on CSLE[J]. Res Soil Water Conserv, 2020(1):15-20.DOI: 10.13869/j.cnki.rswc.2020.01.003.
[12]
杜朝正, 杨勤科, 王春梅, 等. 基于CSLE模型的全球抽样单元土壤水蚀速率计算方法初探[J]. 土壤通报, 2020, 51(1):50-57.
DU C Z, YANG Q K, WANG C M, et al. Calculation method of soil water erosion rate of global sampling units based on CSLE model[J]. Chin J Soil Sci, 2020, 51(1):50-57.DOI: 10.19336/j.cnki.trtb.2020.01.07.
[13]
段倩, 齐斐, 罗梦琦, 等. 基于遥感与抽样单元调查的县域尺度水土流失推算方法[J]. 山东农业大学学报(自然科学版), 2020, 51(6):1063-1068.
DUAN Q, QI F, LUO M Q, et al. Estimation methods of soil erosion based on remote sensing and sampling survey[J]. J Shandong Agric Univ (Nat Sci Ed), 2020, 51(6):1063-1068.
[14]
邹丛荣, 齐斐, 张庆红, 等. CSLE模型应用中不同抽样密度和推算方法的比较[J]. 中国水土保持科学, 2016, 14(3):130-138.
ZOU C R, QI F, ZHANG Q H, et al. Comparison of different sampling densities and extrapolation methods based on CSLE model[J]. Sci Soil Water Conserv, 2016, 14(3):130-138.DOI: 10.16843/j.sswc.2016.03.017.
[15]
李子轩, 赵辉, 邹海天, 等. 基于CSLE模型和抽样单元法的县域土壤侵蚀估算方法对比[J]. 农业工程学报, 2019, 35(14):141-148.
LI Z X, ZHAO H, ZOU H T, et al. Comparison of soil erosion estimation methods at county scale based on CSLE model and sampling unit[J]. Trans Chin Soc Agric Eng, 2019, 35(14):141-148.DOI: 10.11975/j.issn.1002-6819.2019.14.018.
[16]
吴迪, 黎家作, 张春平, 等. 县域尺度水土流失监测方法的应用及其结果分析[J]. 中国水土保持科学, 2015, 13(4):74-79.
WU D, LI J Z, ZHANG C P, et al. Application and analysis of results of soil and water loss monitoring methods at county scale[J]. Sci Soil Water Conserv, 2015, 13(4):74-79.DOI: 10.16843/j.sswc.2015.04.012.
[17]
朱梦阳, 杨勤科, 王春梅, 等. 区域土壤侵蚀遥感抽样调查方法[J]. 水土保持学报, 2019, 33(5):64-71.
ZHU M Y, YANG Q K, WANG C M, et al. Sampling survey method of regional soil erosion based on remote sensing images[J]. J Soil Water Conserv, 2019, 33(5):64-71.DOI: 10.13870/j.cnki.stbcxb.2019.05.010.
[18]
全国国土标准化技术委员会. 土地利用现状分类:GB/T 21010-2017[S]. 北京: 中国标准出版社, 2017.
SAC. Current land use classification: GB/T 21010-2017[S]. Beijing: Standards Press of China, 2017.
[19]
水利部国际合作与科技公司. 水土保持综合治理技术规范·坡耕地治理技术:GB/T 16453.1-2008[S]. 北京: 中国标准出版社, 2009.
SAC. Technical specification for comprehensive control of soil and water conservation: technique for erosion control of slope land: GB/T 16453.1-2008[S]. Beijing: Standards Press of China, 2009.
[20]
杨翔惟, 张洪达, 刘霞, 等. 面向多源异构数据环境的区域水土流失野外调查技术研究与应用[J]. 干旱区资源与环境, 2020(10):139-146.
YANG X W, ZHANG H D, LIU X, et al. Research and application of field investigation technology of regional soil and water loss in multi-source heterogeneous data environment[J]. J Arid Land Resour Environ, 2020(10):139-146.
[21]
LIU B Y, ZHANG K L, XIE Y. An empirical soil loss equation[C]∥ Proceedings of 12th ISCO Conference, Process of Erosion and its Environmental Effects. Beijing: Tsinghua University, 2002: 21-25.
[22]
章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究[J]. 地理科学, 2002, 22(6):705-711.
ZHANG W B, XIE Y, LIU B Y. Rainfall erosivity estimation using daily rainfall amounts[J]. Sci Geogr Sin, 2002, 22(6):705-711.DOI: 10.3969/j.issn.1000-0690.2002.06.012.
[23]
杨韶洋. 基于CSLE模型的沂蒙山国家级重点治理区土壤侵蚀格局分析[D]. 泰安: 山东农业大学, 2014.
YANG S Y. The analysis of soil erosion pattern in national key harnessing areas of Yimeng Mountains based on CSLE model[D]. Taian: Shandong Agricultural University, 2014.
[24]
苏世亮, 李霖, 翁敏. 空间数据分析[M]. 北京: 科学出版社, 2019.
SU S L, LI L, WENG M. Spatial data analysis[M]. Beijing: Science Press, 2019.
[25]
林芳芳, 刘金福, 路春燕, 等. 基于遥感的福建闽侯丘陵区农作物种植面积空间抽样方法[J]. 福建农林大学学报(自然科学版), 2017(6):678-684.
LIN F F, LIU J F, LU C Y, et al. Spatial sampling method for crop acreage based on remote sensing in hilly area in Minhou County,Fujian Province[J]. J Fujian Agric For Univ (Nat Sci Ed), 2017(6):678-684.
[26]
刘金福, 林芳芳, 路春燕, 等. 福建省闽侯县区域农作物种植面积的空间抽样方案[J]. 福建农林大学学报(自然科学版), 2018(2):243-249.
LIU J F, LIN F F, LU C Y, et al. Spatial sampling plan for crop acreage in Minhou County,Fujian Province[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018(2):243-249.
[27]
王劲峰, 姜成晟, 李连发. 空间抽样与统计推断[M]. 北京: 科学出版社, 2009.
WANG J F, JIANG C S, LI L F. Spatial sampling and statistical inference[M]. Beijing: Science Press, 2009.
[28]
廖桂宗, 彭世揆. 试验设计与抽样技术[M]. 北京: 中国林业出版社, 1993.
LIAO G Z, PENG S K. Spatial sampling and statistical inference[M]. Beijing: China Forestry Publishing House, 1993.
[29]
王迪, 陈仲新, 周清波, 等. 冬小麦种植面积空间抽样样本布局的优化设计[J]. 中国农业科学, 2014, 47(18):3545-3556.
WANG D, CHEN Z X, ZHOU Q B, et al. Optimization of samples layout in spatial sampling schemes for estimating winter wheat planting acreage[J]. Sci Agric Sin, 2014, 47(18):3545-3556.DOI: 10.3864/j.issn.0578-1752.2014.18.003.
[30]
宋新民, 李金良. 抽样调查技术[M].2版. 北京: 中国林业出版社, 2007.
SONG X M, LI J L. Sampling technique[M].2th ED. Beijing: China Forestry Publishing House, 2007.
[31]
仲格吉. 空间相关性和变异性对农作物面积空间抽样效率的影响研究[D]. 北京: 中国农业科学院, 2019.
ZHONG G J. Impacts of spatial correlation and variability on the spatial sampling efficiency for crop acreage estimation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[32]
中华人民共和国水利部. 北方土石山区水土流失综合治理技术标准: SL 665-2014[S]. 北京: 中国水利水电出版社, 2014.
MWRC. Technical standards for comprehensive treatment of water and soil erosion in the earth rock mountain areas of northern China: SL 665-2014[S]. Beijing: China Water Power Press, 2014.

基金

国家自然科学基金项目(32071840)
国家自然科学基金项目(31070627)
水利部重点科技项目(SBJ2018010)

编辑: 郑琰燚
PDF(3693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/