21份木槿栽培品种表型多样性评价

陈含, 王东升, 白冰, 李佳凤, 陈可心, 程蓓蓓

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 117-126.

PDF(1984 KB)
PDF(1984 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 117-126. DOI: 10.12302/j.issn.1000-2006.202103038
研究论文

21份木槿栽培品种表型多样性评价

作者信息 +

Phenotypic diversity of 21 Hibiscus cultivars

Author information +
文章历史 +

摘要

【目的】 研究木槿品种资源表型性状的多样性,为改良现有木槿品种、开发新品种提供理论支持。【方法】通过聚类分析、相关性分析、多样性分析,对21份木槿栽培品种的10个数量性状和24个质量性状进行分析。【结果】木槿品种资源表型多样性丰富,24个质量性状的多样性指数为4.175 8~4.392 3,10个数量性状的多样性指数为4.217 9~4.384 7;基于表型性状聚类分析,在欧氏距离为22时,可将21份木槿品种分成浅色类、深色重瓣类及单瓣类三大类型。通过主成分分析,花色数、花瓣长度、花瓣内部次色、花瓣次色的分布等9个主成分可以反映29个性状的基本特征,特征值均大于1,累计贡献率达88.960%,表明花越大、花色越艳丽的木槿品种观赏性越强。在相关性方面,花晕相对花瓣面积大小(HAS)、花瓣次色的分布(DPS)等花部性状与花瓣内部次色(ISCP)之间呈极显著正相关,相关系数均大于0.800,叶柄的长度(LP)与叶片长度(LL)、叶片长度(LL)与叶片宽度(WL)、重瓣性(PS)与花瓣具裂(PC)之间呈极显著正相关,相关系数分别为0.673、0.702、0.796。【结论】21份木槿栽培品种表型多样性丰富,花朵的外部形态与色彩是木槿分类的主要依据,树形、生长习性、叶片基部形状也对其形态分类有较大影响,这可以为木槿种质资源的保护和利用以及新品种的研究奠定基础。

Abstract

【Objective】 This study focuses on the phenotypic diversity of germplasm resources and the upgrading of existing cultivars of Hibiscus syriacus, to provide theoretical support for developing new varieties. 【Method】 Through cluster analysis, correlation analysis and diversity analysis, ten quantitative characters and 24 quality characters were analyzed for 21 Hibiscus cultivars. 【Result】 Hibiscus cultivar resources have rich phenotypic diversity. The diversity index of 24 quality shapes is 4.175 8-4.392 3, and the diversity index of 10 quantitative characters is 4.217 9-4.384 7. Based on the cluster analysis of phenotypic characters, twenty-one Hibiscus cultivars can be divided into three types when the Euclidean distance is 22, namely light color, dark double valve and single valve. Through principal component analysis, the nine principal components, including the number of flower colors, the length of the petals, the internal secondary color of the petals, and the distribution of the secondary petal color, can reflect the basic characteristics of 29 personality traits. The eigenvalues are greater than 1, and the cumulative contribution rate is 88.960%, indicating that the larger the flowers, and the more colorful the Hibiscus cultivars, the stronger the ornamental ability. In terms of correlation, there was a significant positive correlation between flower traits such as the flower halo relative petal area size (HAS), the petal secondary color distribution (DPS), and the petal internal secondary color (ISCP), with the correlation coefficients being greater than 0.800. The length of the petiole (LP), the leaf length (LL), and leaf width (WL), there was a significant positive correlation between double petality (PS) and the petal cleft (PC), and the correlation coefficients were 0.673, 0.702 and 0.796,respectively. 【Conclusion】 There was found to be a rich phenotypic diversity in the 21 Hibiscus cultivars. The external shape and color of flowers form the basis for Hibiscus classification. Tree shapes, growth habit and leaf base shapes also had a substantial impact on its morphological classification, which laied the foundation for the protection,the use of Hibiscus germplasm resources and research into new varieties.

关键词

木槿品种 / 表型多样性 / 主成分分析 / 聚类分析

Key words

cultivar of Hibiscus syriacus / phenotypic diversity / principal component analysis (PCA) / cluster analysis

引用本文

导出引用
陈含, 王东升, 白冰, . 21份木槿栽培品种表型多样性评价[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 117-126 https://doi.org/10.12302/j.issn.1000-2006.202103038
CHEN Han, WANG Dongsheng, BAI Bing, et al. Phenotypic diversity of 21 Hibiscus cultivars[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 117-126 https://doi.org/10.12302/j.issn.1000-2006.202103038
中图分类号: S685.99;S718   

参考文献

[1]
黄家禄. 扶桑的品类及繁殖栽培[J]. 中国花卉盆景, 1995(12):10-11.
HUANG J L. Species and propagation of Hibiscus japonicus[J]. Chinese Flower Bonsai, 1995(12):10-11.
[2]
SHIM K K, HA Y M. Genetic resources for new cultivar breeding of selected Asian ornamentals[J]. Acta Hortic, 2003(620):389-393.DOI: 10.17660/actahortic.2003.620.49.
[3]
SONG H, PARK I, LEE G J, et al. Induced mutation breeding of rose of Sharon (Hibiscus syriacus) using gamma-ray in Korea[J]. 2006, 35(10):354-360.
[4]
KWON S H, WON JL, KIM J R. Radiosensitivity and mutation frequency in soybean[J]. Korean Journal of Breeding, 1980, 43(3):134-142.
[5]
张莹, 曹玉芬, 霍宏亮, 等. 基于花表型性状的梨种质资源多样性研究[J]. 园艺学报, 2016, 43(7):1245-1256.
ZHANG Y, CAO Y F, HUO H L, et al. Research on diversity of pear germplasm resources based on flowers phenotype traits[J]. Acta Hortic Sin, 2016, 43(7):1245-1256.DOI: 10.16420/j.issn.0513-353x.2015-0936.
[6]
国家林业和草原局. 植物新品种特异性、一致性、稳定性测试指南·木槿和朱槿:LY/T 3209-2020[S]. 北京: 中国标准出版社, 2020.
NFGA. Guidelines for the conduct of tests for distinctness,uniformity and stability:rose of Sharon(Hibiscus syriacus L.)and China Rose(Hibiscus rosa-sinensis L.):LY/T 3209-2020: Beijing: Standards Press of China, 2020.
[7]
潘月, 叶康, 秦俊. 木槿品种在上海园林中的应用评价[J]. 贵州农业科学, 2019, 47(11):116-120.
PAN Y, YE K, QIN J. Evaluation of langscape application value of Hibiscus syriacus introduced in Shanghai[J]. Guizhou Agric Sci, 2019, 47(11):116-120.DOI: 10.3969/j.issn.1001-3601.2019.11.024.
[8]
方精云, 沈泽昊, 唐志尧, 等. “中国山地植物物种多样性调查计划” 及若干技术规范[J]. 生物多样性, 2004, 12(1):5-9.
摘要
我国是个多山的国家,拥有丰富的生物多样性资源。为研究我国山地的植物物种多样性垂直格局及其地理分异,北京大学自20世纪90年代中期开始,实施了中国山地植物物种多样性调查计划(Peking University′s Survey Plan for Plant Species Diversity of China′s Mountains, 简称PKU-PSD 计划)。本文简要介绍该计划的主要研究内容、研究的山地以及野外调查和数据分析方法,试图为同类研究提供参考。
FANG J Y, SHEN Z H, TANG Z Y, et al. The protocol for the survey plan for plant species diversity of China’s mountains[J]. Biodivers Sci, 2004, 12(1):5-9.DOI: 10.3321/j.issn:1005-0094.2004.01.002.
[9]
杨静, 刘海英, 钱春荣, 等. 黑龙江省水稻品种SSR标记遗传多样性分析[J]. 东北农业大学学报, 2008, 39(6):1-10.
YANG J, LIU H Y, QIAN C R, et al. Analysis on genetic diversity of rice varieties in Heilongjiang Province by using SSR[J]. J Northeast Agric Univ, 2008, 39(6):1-10.DOI: 10.19720/j.cnki.issn.1005-9369.2008.06.001.
[10]
赵庆勇, 张亚东, 朱镇, 等. 采用SSR标记和表型性状聚类对杂交粳稻亲本的遗传多样性研究[J]. 杂交水稻, 2010, 25(4):68-74.
ZHAO Q Y, ZHANG Y D, ZHU Z, et al. Genetic diversity of parental lines in Japonica hybrid rice based on cluster analysis of SSR markers and phenotypic characters[J]. Hybrid Rice, 2010, 25(4):68-74.DOI: 10.16267/j.cnki.1005-3956.2010.04.005.
[11]
向贵生, 王其刚, 蹇洪英, 等. 云南川滇蔷薇天然居群表型多样性分析[J]. 云南大学学报(自然科学版), 2018, 40(4):786-794.
XIANG G S, WANG Q G, JIAN H Y, et al. Phenotypic diversity of natural population of Rosa soulieana in Yunnan[J]. J Yunnan Univ (Nat Sci Ed), 2018, 40(4):786-794.DOI: 10.7540/j.ynu.20170224.
[12]
张琳, 郭丽丽, 郭大龙, 等. 牡丹杂交F1代性状分离规律及混合遗传分析[J]. 南京林业大学学报(自然科学版), 2018, 42(6):51-60.
ZHANG L, GUO L L, GUO D L, et al. Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):51-60.DOI: 10.3969/j.issn.1000-2006.201712034.
[13]
李叶芳, 马诗雨, 宋杰, 等. 大白花杜鹃三个天然居群的表型多样性分析[J]. 北方园艺, 2019(1):115-120.
LI Y F, MA S Y, SONG J, et al. Phenotypic diversity of three natural populations of Rhododendron decorum[J]. North Hortic, 2019(1):115-120.DOI: 10.11937/bfyy.20181582.
[14]
索玉静, 孙鹏, 韩卫娟, 等. 柿雄花表型及花粉形态多样性研究[J]. 中国农业大学学报, 2019, 24(2):48-60.
SUO Y J, SUN P, HAN W J, et al. Study on the male flower phenotype and pollen morphology diversity of persimmon[J]. J China Agric Univ, 2019, 24(2):48-60.DOI: 10.11841/j.issn.1007-4333.2019.02.06.
[15]
李芳, 霍达, 王进. 西南红山茶花表型性状的变异[J]. 贵州农业科学, 2019, 47(4):84-88.
LI F, HUO D, WANG J. Variation of phenotypic traits of Camellia pitardii flower[J]. Guizhou Agric Sci, 2019, 47(4):84-88.DOI: 10.3969/j.issn.1001-3601.2019.04.018.
[16]
吴根松, 孙丽丹, 郝瑞杰, 等. 梅花种质资源表型多样性研究[J]. 安徽农业科学, 2011, 39(20):12008-12009,12012.
WU G S, SUN L D, HAO R J, et al. Study on the phenotypic diversity of P.mume sieb.et Zucc.Germ plasm resources[J]. J Anhui Agric Sci, 2011, 39(20):12008-12009,12012.DOI: 10.13989/j.cnki.0517-6611.2011.20.216.
[17]
曾方玉, 周丽君, 阮成江. 木槿与野西瓜苗花特征和繁育系统的比较研究[J]. 广西植物, 2008, 28(6):750-754.
ZENG F Y, ZHOU L J, RUAN C J. Comparative study on floral traits and breeding system of Hibiscus syriacus and H.trionum[J]. Guihaia, 2008, 28(6):750-754.DOI: 10.3969/j.issn.1000-3142.2008.06.010.
[18]
张艳红, 王晶. 木槿的开花特性与繁育系统的初步研究[J]. 辽东学院学报(自然科学版), 2016, 23(2):122-125.
ZHANG Y H, WANG J. Blooming characteristics and breeding system of Hibiscus syriacus Linn[J]. J East Liaoning Univ (Nat Sci),2016, 23(2):122-125.DOI: 10.14168/j.issn.1673-4939.2016.02.08.
[19]
柳江群, 尹明宇, 左丝雨, 等. 长柄扁桃天然种群表型变异[J]. 植物生态学报, 2017, 41(10):1091-1102.
摘要
为揭示长柄扁桃(Amygdalus pedunculata)天然种群的表型多样性特点, 通过方差分析、相关分析、聚类分析和t检验等方法对7个天然种群14个表型性状种群间和种群内的表型变异特征和地理变异模式进行了探讨。结果表明: 长柄扁桃种群内变异为40.91%, 种群间变异为35.29%, 种群内大于种群间, 种群内变异是主要变异来源; 其平均表型分化系数为45.90%, 各表型性状平均变异系数为15.59%, 変幅9.39%-31.98%, 表型变异在种群内和种群间均非常丰富。年平均气温、纬度、无霜期、经度和海拔5个主要地理生态因子对长柄扁桃表型性状影响显著或极显著, 平均气温和无霜期是不同立地长柄扁桃表型差异的主要影响因子。主成分分析和聚类分析将7个种群区划为两大类, 其中山地的长柄扁桃叶多为近圆形至长圆形, 果多为近球形, 果柄较短, 果肉较厚, 核多为宽卵形至圆球形; 沙地的长柄扁桃叶多为长椭圆形或卵状披针形, 果为卵球形, 果柄较长, 果肉较薄, 核近宽卵形。探讨长柄扁桃天然种群表型多样性, 可为顺利开展野生资源收集、良种选育等工作提供依据。
LIU J Q, YIN M Y, ZUO S Y, et al. Phenotypic variations in natural populations of Amygdalus pedunculata[J]. Chin J Plant Ecol, 2017, 41(10):1091-1102.DOI: 10.17521/cjpe.2017.0104.
[20]
张海平, 房伟民, 陈发棣, 等. 部分睡莲属植物形态性状的多样性分析[J]. 南京农业大学学报, 2009, 32(4):47-52.
ZHANG H P, FANG W M, CHEN F D, et al. Investigation on the morphological diversity of taxa in genus Nymphaea[J]. J Nanjing Agric Univ, 2009, 32(4):47-52.
[21]
范义昌, 柴珊珊, 张曼曼, 等. 宁夏沙枣种质资源表型多样性分析[J]. 北方园艺, 2018(23):37-43.
FAN Y C, CHAI S S, ZHANG M M, et al. Phenotypic genetic diversity of Elaeagnus angustifolia resources from Ningxia[J]. North Hortic, 2018(23):37-43.DOI: 10.11937/bfyy.20181511.
[22]
韦晓霞, 赖瑞联, 陈瑾, 等. 橄榄种质资源花序表型性状遗传多样性研究[J]. 热带亚热带植物学报, 2019, 27(1):1-10.
WEI X X, LAI R L, CHEN J, et al. Studies on genetic diversity on inflorescence phenotypic characteristics of Canarium album germplasm resource[J]. J Trop Subtrop Bot, 2019, 27(1):1-10.DOI: 10.11926/jtsb.3940.
[23]
陈恒新, 刘连芬, 钱关泽, 等. 海棠(Malus spp.)品种分类研究进展[J]. 聊城大学学报(自然科学版), 2007, 20(2):57-61.
CHEN H X, LIU L F, QIAN G Z, et al. Advances in classification for cultivars of crabapple(Malus spp.)[J]. J Liaocheng Univ (Nat Sci Ed),2007, 20(2):57-61.DOI: 10.3969/j.issn.1672-6634.2007.02.017.
[24]
肖芬, 王晓红, 王玉勤, 等. 27个木槿品种的数量分类和主成分分析[J]. 中南林业科技大学学报, 2019, 39(2):59-64.
XIAO F, WANG X H, WANG Y Q, et al. Numerical classification and principal component analysis of 27 Hibiscus syriacus cultivars[J]. J Central South Univ For Technol, 2019, 39(2):59-64.DOI: 10.14067/j.cnki.1673-923x.2019.02.010.
[25]
刘龙昌, 向其柏. 桂花品种数量分类研究[J]. 福建林学院学报, 2004, 24(3):233-236.
LIU L C, XIANG Q B. Study on numerical taxonomy of sweet Osmanthus cultivars[J]. J Fujian Coll For, 2004, 24(3):233-236.DOI: 10.3969/j.issn.1001-389X.2004.03.010.
[26]
唐东芹. 桂花品种数量分类研究[J]. 南京林业大学学报, 1998, 22(1):233-236.
TANG D Q. A study on numerical classification of the cultivars of sweet Osmanthus [Osmanthus fragrans (Thunb.) Lour.][J]. J Nanjing For Univ, 1998, 22(1):233-236.

基金

国家林木种质资源共享服务平台建设与运行服务项目(2005DKA210003)
河北省级专业学位研究生培养实践基地(唐山植物园)(202018)

编辑: 郑琰燚
PDF(1984 KB)

Accesses

Citation

Detail

段落导航
相关文章

/