沼液中$\mathrm{HCO}_{3}^{-}$对土壤CO2释放的影响

辜旭, 汤逸帆, 申建华, 朱咏莉

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 162-168.

PDF(1665 KB)
PDF(1665 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 162-168. DOI: 10.12302/j.issn.1000-2006.202103045
研究论文

沼液中$\mathrm{HCO}_{3}^{-}$对土壤CO2释放的影响

作者信息 +

Effects of $\mathrm{HCO}_{3}^{-}$ in the biogas slurry on CO2 release from soils

Author information +
文章历史 +

摘要

【目的】揭示沼液施用过程中 $\mathrm{HCO}_{3}^{-}$对土壤CO2释放的影响机制。【方法】分别向土壤添加沼液原液(BS)、原液去除 $\mathrm{HCO}_{3}^{-}$ (BS-B)、去离子水加HC(W+B)和去离子水(W)后,对土壤进行30 d的培养,观测土壤CO2释放特征。【结果】BS处理下,土壤CO2释放速率从2 h时的36.6 mg/(kg·h)快速降至30 d时的2.7 mg/(kg·h),BS-B处理CO2释放速率从最高时的9.3 mg/(kg·h)(第1 天)降至1.9 mg/(kg·h)(第30 天),前者显著高于后者。30 d内,BS处理下土壤CO2累计释放193.0 g/kg,BS-B处理下仅为97.8 g/kg。由此可见,沼液中的 $\mathrm{HCO}_{3}^{-}$显著促进了土壤CO2的释放。相比较而言,W+B处理下土壤CO2释放速率从最高时的12.0 mg/(kg·h)降至15 d时的0.6 mg/(kg·h),培养期内土壤CO2累计释放54.5 g/kg;W处理下土壤CO2释放速率在培养期内的变化为0.2~1.6 mg/(kg·h),CO2累计释放34.4 g/kg。培养期内,BS处理下土壤CO2释放量是BS-B与W+B两处理之和的1.6倍。 $\mathrm{HCO}_{3}^{-}$对土壤CO2释放的贡献主要发生在上覆水层,且以 $\mathrm{HCO}_{3}^{-}$水解及 $\mathrm{NH}_{4}^{+}$氧化贡献的H+$\mathrm{HCO}_{3}^{-}$的相互作用为主要途径。【结论】施用沼液后,大量 $\mathrm{HCO}_{3}^{-}$的添加是引起土壤CO2释放加快且释放量增加的主要原因之一,土壤CO2释放的增加并非 $\mathrm{HCO}_{3}^{-}$本身与除 $\mathrm{HCO}_{3}^{-}$之外沼液其他组分贡献的加和,二者存在显著的协同作用。

Abstract

【Objective】 The biogas slurry is rich not only in N, but also in $\mathrm{HCO}_{3}^{-}$. This study aimed to reveal the impact of $\mathrm{HCO}_{3}^{-}$ on the release of CO2. 【Mothed】 when the biogas slurry was applied in farmlands, by arranging and adding four types of culture mediums, namely, the original biogas slurry, original liquid for removing $\mathrm{HCO}_{3}^{-}$, deionized water plus $\mathrm{HCO}_{3}^{-}$ and deionization water, designated as BS, BS-B, W+B and W treatments, respectively, to the paddy soil for a 30-day cultivation experiment. 【Result】 The soil CO2 release rates were observed. The results indicated that under the BS treatment, the soil CO2 release rates decreased rapidly from 36.6 mg/(kg·h) at 2 h to 2.7 mg/(kg·h) at 30 d, and those for the BS-B treatment decreased from the highest 9.3 mg/(kg·h) at 1 d to 1.9 mg/(kg·h) at 30 d. The CO2 release rates in the BS treatment were significantly higher than those in the BS-B. Within 30 d, the cumulative CO2 emission under the BS was 193.0 g/kg, while that in BS-B was only 97.8 g/kg. It was evident that the presence of $\mathrm{HCO}_{3}^{-}$ in the biogas slurry significantly increased the release of CO2 from the soil. In comparison, the CO2 release rate under the W+B treatment decreased from the highest value of 12.0 mg/(kg·h) to 0.6 mg/(kg·h) at 15 d, with a cumulative CO2 emission of 54.5 g/kg during the culture period. The CO2 release rate under W treatment varied from 0.2 to 1.6 mg/(kg·h) during the culture period, and the cumulative CO2 emission was only 34.4 g/kg. It is evident that the CO2 emission under the BS treatment was 1.6 times higher than that under BS-B and W+B treatments together. Further analysis indicated that the contribution of $\mathrm{HCO}_{3}^{-}$ to the CO2 release in the paddy soils mainly occurred in the overlying water layer, which was dominated by $\mathrm{HCO}_{3}^{-}$ hydrolysis and the reaction between $\mathrm{HCO}_{3}^{-}$ and H+ from $\mathrm{NH}_{4}^{+}$ oxidation. 【Conclusion】 With biogas slurry applying, the addition of a large amount of $\mathrm{HCO}_{3}^{-}$ was one of the main reasons for the acceleration and increase of soil CO2 release, which was not just a simple sum of contributions from HC and the other components of the biogas slurry, and there was a significant synergistic effect between the two.

关键词

沼液 / 土壤pH / $\mathrm{HCO}_{3}^{-}$ / CO2释放速率

Key words

biogas slurry / soil pH / $\mathrm{HCO}_{3}^{-}$ / CO2 release rate

引用本文

导出引用
辜旭, 汤逸帆, 申建华, . 沼液中 $\mathrm{HCO}_{3}^{-}$对土壤CO2释放的影响[J]. 南京林业大学学报(自然科学版). 2022, 46(4): 162-168 https://doi.org/10.12302/j.issn.1000-2006.202103045
GU Xu, TANG Yifan, SHEN Jianhua, et al. Effects of $\mathrm{HCO}_{3}^{-}$ in the biogas slurry on CO2 release from soils[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 162-168 https://doi.org/10.12302/j.issn.1000-2006.202103045
中图分类号: X53;S156   

参考文献

[1]
王桂良, 寇祥明, 张家宏, 等. 沼液替代化肥氮对水稻生长发育及稻米品质的影响[J]. 生态学杂志, 2018, 37(9):2672-2679.
WANG G L, KOU X M, ZHANG J H, et al. Effect of chemical fertilizer nitrogen substitution by biogas slurry on the growth and quality of rice[J]. Chin J Ecol, 2018, 37(9):2672-2679.DOI:10.13292/j.1000-4890.201809.017.
[2]
徐莉, 周伟, 俞元春, 等. 沼液施用对杨树林地土壤性质及林分生长的影响[J]. 浙江农林大学学报, 2015, 32(2):204-207.
XU L, ZHOU W, YU Y C, et al. Soil properties and poplar growth with pig manure biogas slurry[J]. J Zhejiang A&F Univ, 2015, 32(2):204-207.DOI:10.11833/j.issn.2095-0756.2015.02.006.
[3]
DU Z J, CHEN X M, QI X B, et al. The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat-maize rotations[J]. J Soils Sediments, 2016, 16(8):2050-2058.DOI:10.1007/s11368-016-1402-9.
[4]
郑学博, 樊剑波, 周静, 等. 沼液化肥配施对红壤旱地土壤养分和花生产量的影响[J]. 土壤学报, 2016, 53(3):675-684.
ZHENG X B, FAN J B, ZHOU J, et al. Effects of combined application of biogas slurry and chemical fertilizer on soil nutrients and peanut yield in upland red soil[J]. Acta Pedol Sin, 2016, 53(3):675-684.DOI:10.11766/trxb201509210375.
[5]
ABUBAKER J, RISBERG K, JÖNSSON E, et al. Short-term effects of biogas digestates and pig slurry application on soil microbial activity[J]. Appl Environ Soil Sci, 2015, 2015:658542.DOI:10.1155/2015/658542.
[6]
汤逸帆, 汪玲玉, 吴旦, 等. 农田施用沼液的重金属污染评价及承载力估算:以江苏滨海稻麦轮作田为例[J]. 中国环境科学, 2019, 39(4):1687-1695.
TANG Y F, WANG L Y, WU D, et al. Assessment of heavy metal pollution and bearing capacity estimation of continuous biogas slurry application on cropland:a case study of the coastal rice-wheat rotated farmland in Jiangsu,China[J]. China Environ Sci, 2019, 39(4):1687-1695.DOI:10.19674/j.cnki.issn1000-6923.2019.0204.
[7]
王小非, 沈仕洲, 尹高飞, 等. 沼液灌溉对冬小麦-夏玉米轮作农田CO2、N2O排放规律的影响[J]. 农业环境科学学报, 2017, 36(4):783-792.
WANG X F, SHEN S Z, YIN G F, et al. Effects of biogas slurry irrigation on CO2 and N2O emission from winter wheat-summer maize rotation farm-land[J]. J Agro Environ Sci, 2017, 36(4):783-792.DOI:10.11654/jaes.2016-1535.
[8]
张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4):966-975.
ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2,CH4 and N2O in agricultural soils[J]. Chin J Eco Agric, 2011, 19(4):966-975.DOI:10.3724/SP.J.1011.2011.00966.
[9]
WEST T O, MARLAND G. Net carbon flux from agricultural ecosystems:methodology for full carbon cycle analyses[J]. Environ Pollut, 2002, 116(3):439-444. DOI:10.1016/s0269-7491(01)00221-4.
[10]
YIN G F, WANG X F, DU H Y, et al. N2O and CO2 emissions,nitrogen use efficiency under biogas slurry irrigation:A field study of two consecutive wheat-maize rotation cycles in the North China Plain[J]. Agric Water Manag, 2019, 212:232-240.DOI:10.1016/j.agwat.2018.08.038.
[11]
STEVENSON B A, VERBURG P S J. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil[J]. Soil Biol Biochem, 2006, 38(7):1727-1733.DOI:10.1016/j.soilbio.2005.11.028.
[12]
HANNAM K D, MIDWOOD A J, NEILSEN D, et al. Bicarbonates dissolved in irrigation water contribute to soil CO2 efflux[J]. Geoderma, 2019, 337:1097-1104.DOI:10.1016/j.geoderma.2018.10.040.
[13]
ZHU C B, ZHAI X Q, XI Y M, et al. Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate pool[J]. J CO2 Util, 2020, 37:320-327.DOI:10.1016/j.jcou.2019.12.023.
[14]
GHAFARI S, HASAN M, AROUA M K. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria[J]. J Hazard Mater, 2009, 162(2/3):1507-1513.DOI:10.1016/j.jhazmat.2008.06.039.
[15]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd Ed. .Beijing: Chinese Agriculture Press, 2000.
[16]
罗献宝, 周常茂, 李清, 等. 沼液施用及葡萄糖添加对赤红壤温室气体排放的影响[J]. 南方农业学报, 2018, 49(7):1311-1317.
LUO X B, ZHOU C M, LI Q, et al. Impacts of biogas slurry application and glucose addition on greenhouse gas emission from lateritic red soil[J]. J South Agric, 2018, 49(7):1311-1317.DOI:10.3969/j.issn.2095-1191.2018.07.08.
[17]
CHENG J B, CHEN Y C, HE T B, et al. Effects of biogas slurry irrigation DOC/N ratios on the fate of soil nitrogen and GHG emissions: a laboratory study[J]. Geoderma, 2020, 375:114458.DOI:10.1016/j.geoderma.2020.114458.
[18]
NIELSEN K, ROß C L, HOFFMANN M, et al. The chemical composition of biogas digestates determines their effect on soil microbial activity[J]. Agriculture, 2020, 10(6):244.DOI:10.3390/agriculture10060244.
[19]
BERTRAND I, DELFOSSE O, MARY B. Carbon and nitrogen mineralization in acidic,limed and calcareous agricultural soils: apparent and actual effects[J]. Soil Biol Biochem, 2007, 39(1):276-288.DOI:10.1016/j.soilbio.2006.07.016.
[20]
WANG C W, LI W, SHEN T M, et al. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical Karst area[J]. Geoderma, 2018, 313:17-24.DOI:10.1016/j.geoderma.2017.10.016.
[21]
SAUZE J, JONES S P, WINGATE L, et al. The role of soil pH on soil carbonic anhydrase activity[J]. Biogeosciences, 2018, 15(2):597-612.DOI:10.5194/bg-15-597-2018.
[22]
TAMIR G, SHENKER M, HELLER H, et al. Can soil carbonate dissolution lead to overestimation of soil respiration?[J]. Soil Sci Soc Am J, 2011, 75(4):1414-1422.DOI:10.2136/sssaj2010.0396.
[23]
LOUGHRIN J H, COOK K L, LOVANH N. Recirculating swine waste through a silicone membrane in an aerobic chamber improves biogas quality and wastewater malodors[J]. Trans ASABE, 2012, 55(5):1929-1937.DOI:10.13031/2013.42355.
[24]
陈永杏, 董红敏, 陶秀萍, 等. 猪场沼液灌溉冬小麦对土壤质量的影响[J]. 中国农学通报, 2011, 27(3):154-158.
CHEN Y X, DONG H M, TAO X P, et al. Effect of irrigating winter wheat with anaerobic digested swine farm wastewater (ADSFW) on soil quality[J]. Chin Agric Sci Bull, 2011, 27(3):154-158.
[25]
朱金山, 张慧, 马连杰, 等. 不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 2018, 39(5):2400-2411.
ZHU J S, ZHANG H, MA L J, et al. Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumina sequencing technology[J]. Environ Sci, 2018, 39(5):2400-2411.DOI:10.13227/j.hjkx.201708085.
[26]
DU Z J, XIAO Y T, QI X B, et al. Peanut-shell biochar and biogas slurry improve soil properties in the north China plain:a four-year field study[J]. Sci Rep, 2018, 8(1):13724.DOI:10.1038/s41598-018-31942-0.
[27]
RANI S, SATYAVAN, KUMAR A, et al. Effect of integrated use of nutrients on soil properties and productivity of pearl millet-wheat cropping system irrigated with saline water in northwestern India[J]. Curr Sci, 2020, 119(8):1343.DOI:10.18520/cs/v119/i8/1343-1348.
[28]
THOMSEN I K, OLESEN J E, MOLLER H B, et al. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces[J]. Soil Biol Biochem, 2013, 58:82-87.DOI:10.1016/j.soilbio.2012.11.006
[29]
RISBERG K, CEDERLUND H, PELL M, et al. Comparative characterization of digestate versus pig slurry and cow manure-chemical composition and effects on soil microbial activity[J]. Waste Manag, 2017, 61:529-538.DOI:10.1016/j.wasman.2016.12.016.

基金

国家重点研发计划(2017YFC0505803)
国家自然科学基金项目(41977354)

编辑: 郑琰燚
PDF(1665 KB)

Accesses

Citation

Detail

段落导航
相关文章

/