南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1): 199-208.doi: 10.12302/j.issn.1000-2006.202103050
收稿日期:
2021-03-30
接受日期:
2021-08-31
出版日期:
2023-01-30
发布日期:
2023-02-01
通讯作者:
姜静
基金资助:
WANG Yang(), WANG Wei, JIANG Jing(), GU Chenrui, YANG Yunli
Received:
2021-03-30
Accepted:
2021-08-31
Online:
2023-01-30
Published:
2023-02-01
Contact:
JIANG Jing
摘要: 【目的】 根际土壤细菌及真菌群落组成不仅受植物种类及植物生长时期等影响,外源基因的导入也可改变根际微生物群落组成。通过基因工程技术获得的转betA或转TaLEA基因小黑杨(populus simonii x p. nigra )能够提高甜菜碱或晚期胚胎富集蛋白的含量,进而增强转基因植物的抗旱耐盐性,PsnWRKY70是胁迫应答信号转导网络中的负调控因子,WRKY70干扰表达小黑杨的耐盐性显著高于对照株系。在明确了转betA、转TaLEA、转WRKY70小黑杨抗旱耐盐性的同时,开展转基因小黑杨根际土壤细菌、真菌群落组成分析,为其环境生态安全性评价提供参考。【方法】 以2年生转TaLEA、betA、WRKY70基因小黑杨及对照野生型(WT)小黑杨根际土壤为试材,利用Illumina-Miseq高通量测序平台对根际土壤微生物进行16S rRNA和ITS测序分析,对根际土壤细菌和真菌群落丰富度和多样性变化、结构差异性、群落组成进行分析,了解转基因活动对小黑杨根际土壤微生物组成的影响。【结果】 Alpha多样性分析显示,针对根际细菌群落组成,转betA小黑杨的Simpson指数显著低于WT小黑杨,而转WRKY70小黑杨观察物种数、Shannon及Simpson指数均显著低于WT小黑杨。针对根际真菌群落组成,3种转基因小黑杨的各项Alpha指数均显著低于WT小黑杨。韦恩图、主成分分析和聚类热图结果显示,在与WT小黑杨根际土壤细菌和真菌群落结构相似性上,转TaLEA小黑杨与WT小黑杨的群落差异较小,转betA小黑杨与转WRKY70小黑杨的群落组成更接近。基于属水平上的组成和丰度分析显示,转基因小黑杨根际土壤中,产黄杆菌属(Rhodanobacter)、芽单胞菌属(Gemmatimonas)等有益细菌相对丰度均有不同程度提高;而有益菌根真菌丝盖伞属(Inocybe)丰度在转TaLEA、转betA小黑杨中显著高于另外两个样品,小球孢盘菌属(Sphaerosporella)、粘滑菇属(Hebeloma)、蜡蘑属(Laccaria)丰度仅在转TaLEA小黑杨中显著提高;相反,亚隔孢壳属(Didymella)和背芽突霉属(Cadophora)等致病真菌丰度较WT小黑杨的降低85%以上。【结论】 这些结果表明转基因活动可能利于植物生长并提升其抗逆性,但这些有益微生物是否发挥了重要作用并在实际环境中长期存在,仍需开展更多研究。
中图分类号:
王阳,王伟,姜静,等. 转基因小黑杨根际土壤微生物群落特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 199-208.
WANG Yang, WANG Wei, JIANG Jing, GU Chenrui, YANG Yunli. Diversity of microbial community in rhizosphere of genetically modified Populus simonii × P. nigra[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(1): 199-208.DOI: 10.12302/j.issn.1000-2006.202103050.
表1
参试小黑杨根际土壤细菌及真菌Alpha 多样性分析"
种类 type | 样品 sample | 观察物种数 observed species | Chao1指数 | Shannon指数 | Simpson指数 | 覆盖度 coverage |
---|---|---|---|---|---|---|
细菌 bacteria | 野生型WT | 3 279±154 a | 3 541.71±277.77 ab | 10.43±0.06 ab | 0.998 4±0.000 1 a | 0.979 50±0.004 94 a |
TaLEA | 3 365±257 a | 3 692.13±269.05 a | 10.46±0.09 a | 0.998 4±0.000 1 a | 0.976 58±0.003 44 a | |
betA | 3 074±73 ab | 3 404.13±44.67 ab | 10.25±0.03 b | 0.998 1±0.000 0 b | 0.977 55±0.000 16 a | |
WRKY70 | 2 726±44 b | 2 955.77±23.36 b | 10.03±0.06 c | 0.997 8±0.000 0 c | 0.982 56±0.000 55 a | |
真菌 fungi | 野生型WT | 512±4.00 a | 512.70±3.57 a | 5.09±0.01 a | 0.926 6±0.000 9 a | 0.999 93±0.000 01 a |
TaLEA | 367±26.00 b | 368.77±26.62 b | 4.08±0.04 b | 0.886 3±0.006 9 b | 0.999 89±0.000 03 a | |
betA | 402±18.00 b | 403.75±18.45 b | 4.11±0.10 b | 0.846 0±0.006 8 c | 0.999 89±0.000 02 a | |
WRKY70 | 375±17.00 b | 375.88±17.39 b | 4.08±0.06 b | 0.820 7±0.008 6 d | 0.999 96±0.000 02 a |
图3
参试小黑杨根际土壤细菌及真菌群落属水平排序前50的丰度聚类热图 A:Gemmatimonas.芽单胞菌属;Rhodanobacter.产黄杆菌属;Lactobacillus.乳(酸)杆菌属;Sphingomonas.鞘氨醇单胞菌属;Pseudomonas.假单胞菌属;Arenimonas.砂单胞菌属;Novosphingobium.新鞘氨醇杆菌属;Flavobacterium.黄杆菌属;Phenylobacterium.苯基杆菌属;Hyphomicrobium.生丝微菌属;Pseudolabrys.假双头斧形菌属;Amycolatopsis.拟无枝酸菌属;Devosia.德沃斯氏菌属;Bradyrhizobium.慢生根瘤菌属;Nocardioides.类诺卡氏属。测序结果未能将Subgroup_7、Burkholderia-Caballeronia-Paraburkholderia、Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、Subgroup_6、Subgroup_2准确归类。Saccharimonadales、Ellin6067、SC-I-84、Occallatibacter、Bryobacter、Candidatus_Solibacter、KD4-96、Ramlibacter、IMCC26256、MND1、IS-44、Haliangium、Dokdonella、Mucilaginibacter、Rhizobacter、Granulicella、GOUTA6、Bauldia、Dongia、Jatrophihabitans、67-14、Reyranella、Acidibacter、Candidatus_Koribacter、A4b、SWB02、WPS-2、Micropepsis、Chloroplast、Rhodovastum尚未确定中文名称。B:Tomentella.棉革菌属;Clavulina.锁瑚菌属;Neurospora.链孢霉属;Pseudogymnoascus.假裸囊菌属;Mrakia.木拉克酵母属;Coniochaeta.锥毛壳属;Penicillium.青霉属;Byssochlamys.丝衣霉属;Talaromyces.踝节霉属;Paecilomyces.拟青霉属;Fusarium.镰刀菌属;Trichoderma.木霉属;Pseudeurotium.假散囊菌属;Plenodomus.丰屋菌属;Inocybe.丝盖伞属;Hebeloma.粘滑菇属;Sphaerosporella.小球孢盘菌属;Geopora.地孔菌属;Laccaria.蜡蘑属;Didymella.亚隔孢壳属;Cadophora.背芽突霉属;Thanatephorus.亡革菌属;Aureobasidium.短梗霉属;Galerina.盔孢伞属;Plectosphaerella.小不整球壳属;Mycosphaerella.球腔菌属;Filobasidium.线黑粉菌属;Mortierella.被孢霉属;Epicoccum.附球霉属;Paraglomus.类球囊霉属;Leptosphaeria.小球腔菌属;Rhodotorula.红酵母属;Aspergillus.曲霉属;Peziza.盘菌属;Gibberella.赤霉属;Alternaria.链格孢霉属;Septoria.壳针孢属;Olpidium.油壶菌属。Serendipita、Capronia、Protostropharia、Fibulochlamys、Archaeorhizomyces、Paraphaeosphaeria、Cystofilobasidium、Ceratobasidium、Echria、Naganishia、Tausonia、Neoascochyta尚未确定中文名称。Z值为该样品在属分类水平的相对丰度与所有样品在该水平的平均相对丰度的差除以所有样品在该水平上的标准差所得到的值。Z value represents the data obtained by dividing the difference between the relative abundance of the sample at the genera classification level and the average relative abundance of all samples at that level by the standard deviation of all samples at that level."
[1] | 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4):291-297,395. |
TIAN Y C, LI T Y, MANG K Q, et al. Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chin J Biotechnol, 1993, 9(4):291-297,395.DOI:10.13345/j.cjb.1993.04.001.
doi: 10.13345/j.cjb.1993.04.001 |
|
[2] | 卢孟柱, 胡建军. 我国转基因杨树的研究及应用现状[J]. 林业科技开发, 2006, 20(6):1-4. |
LU M Z, HU J J. Research and application status of transgenic poplar in China[J]. J For Eng, 2006, 20(6):1-4. | |
[3] |
ZHAO H, JIANG J, LI K L, et al. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses[J]. Tree Physiol, 2017, 37(6):827-844.DOI:10.1093/treephys/tpx020.
doi: 10.1093/treephys/tpx020 |
[4] | 吕威, 卢楠, 侯荣轩, 等. 12年生转基因毛白杨外源基因转移及其对土壤微生物的影响[J]. 东北林业大学学报, 2018, 46(9):1-6. |
LÜ W, LU N, HOU R X, et al. Exogenous gene transfer of 12 a transgenic Populus [(Populus tomentosa × P.bolleana)× P. tomentosa]and its effect on soil microbial quantity[J]. J Northeast For Univ, 2018, 46(9):1-6.DOI:10.13759/j.cnki.dlxb.2018.09.001.
doi: 10.13759/j.cnki.dlxb.2018.09.001. |
|
[5] | 孙伟博, 魏朝琼, 马晓星, 等. 3类转基因‘南林895’杨田间试验的安全性评估[J]. 林业科学, 2020, 56(10):53-62. |
SUN W B, WEI Z Q, MA X X, et al. Safety assessment of a field trial of three types of transgenic poplar ‘Nanlin895’[J]. Sci Silvae Sin, 2020, 56(10):53-62.DOI:10.11707/j.1001-7488.20201006.
doi: 10.11707/j.1001-7488.20201006 |
|
[6] | 胡建军, 张蕴哲, 卢孟柱, 等. 欧洲黑杨转基因稳定性及对土壤微生物的影响[J]. 林业科学, 2004, 40(5):105-109. |
HU J J, ZHANG Y Z, LU M Z, et al. Transgene stability of transgenic Populus nigra and its effects on soil microorganism[J]. Sci Silvae Sin, 2004, 40(5):105-109.DOI:10.3321/j.issn:1001-7488.2004.05.017.
doi: 10.3321/j.issn:1001-7488.2004.05.017 |
|
[7] | 马晓星, 孙伟博, 魏辉, 等. 转AtSnRK2C基因杨树田间试验及生物安全性分析[J]. 分子植物育种, 2019, 17(11):3570-3578. |
MA X X, SUN W B, WEI H, et al. Field trials and biosafety analysis of transgenic poplar with AtSnRK2C gene[J]. Mol Plant Breed, 2019, 17(11):3570-3578.DOI:10.13271/j.mpb.017.003570.
doi: 10.13271/j.mpb.017.003570 |
|
[8] | 吕威, 孙宇涵, 张华新, 等. 转基因三倍体毛白杨花粉活力及枯落物外源基因检测[J]. 北京林业大学学报, 2019, 41(7):91-100. |
LÜ W, SUN Y H, ZHANG H X, et al. Pollen vigor and detection of exogenous genes of litter for transgenic triploid Populus tomentosa[J]. J Beijing For Univ, 2019, 41(7):91-100.DOI:10.13332/j.1000-1522.20190105.
doi: 10.13332/j.1000-1522.20190105 |
|
[9] | 汤沂, 向东, 裘芳, 等. 转基因植物的环境及食品安全性研究[J]. 现代食品, 2019(15):126-127,130. |
TANG Y, XIANG D, QIU F, et al. Study on the environment and food safety of transgenic plants[J]. Mod Food, 2019(15):126-127, 130.DOI:10.16736/j.cnki.cn41-1434/ts.2019.15.040.
doi: 10.16736/j.cnki.cn41-1434/ts.2019.15.040 |
|
[10] | 陈静怡, 刘瑞华, 王丽丽, 等. 磷高效转基因水稻连续种植对土壤微生物功能多样性的影响[J]. 天津农学院学报, 2019, 26(2):1-7. |
CHEN J Y, LIU R H, WANG L L, et al. Effects of continuous planting of phosphorus-efficient transgenic rice on soil microbial functional diversity[J]. J Tianjin Agric Univ, 2019, 26(2):1-7.DOI:10.19640/j.cnki.jtau.2019.02.001.
doi: 10.19640/j.cnki.jtau.2019.02.001 |
|
[11] |
SHEN R F, CAI H, GONG W H. Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil[J]. Plant Soil, 2006, 285(1):149-159.DOI:10.1007/s11104-006-9000-z.
doi: 10.1007/s11104-006-9000-z |
[12] |
ICOZ I, SAXENA D, ANDOW D A, et al. Microbial populations and enzyme activities in soil in situ under transgenic corn expres-sing cry proteins from Bacillus thuringiensis[J]. J Environ Qual, 2008, 37(2):647-662.DOI:10.2134/jeq2007.0352.
doi: 10.2134/jeq2007.0352 |
[13] |
GUO Q, LU N, LUO Z J, et al. An assessment of the environmental impacts of transgenic triploid Populus tomentosa in field condition[J]. Forests, 2018, 9(8):482.DOI:10.3390/f9080482.
doi: 10.3390/f9080482 |
[14] |
FAN J M, DONG Y, YU X Y, et al. Assessment of environmental microbial effects of insect-resistant transgenic Populus × euramericana cv. 74/76 based on high-throughput sequencing[J]. Acta Physiol Plant, 2020, 42(11):167.DOI:10.1007/s11738-020-03148-3.
doi: 10.1007/s11738-020-03148-3 |
[15] | 朱文旭, 丁昌俊, 张伟溪, 等. 8年生转基因库安托杨外源基因转移及对土壤微生物数量影响的检测[J]. 林业科学研究, 2017, 30(2):349-353. |
ZHU W X, DING C J, ZHANG W X, et al. Exogenous gene transformation of 8-year-old multi-gene transgenic Populus × euramericana‘Guariento’and its influence on soil microbial quantity[J]. For Res, 2017, 30(2):349-353.DOI:10.13275/j.cnki.lykxyj.2017.02.023.
doi: 10.13275/j.cnki.lykxyj.2017.02.023 |
|
[16] | 周培军, 李玲玲, 李红岩, 等. 转Bt基因‘南林895’杨时空表达及生物安全分析[J]. 分子植物育种, 2022, 20(5):1568-1580. |
ZHOU P J, LI L L, LI H Y, et al. Spatio-temporal expression and biosafety analysis of transgenic ‘Nanlin895’ poplar with Bt[J]. Mol Plant Breed, 2022, 20(5):1568-1580.DOI:10.13271/j.mpb.020.001568.
doi: 10.13271/j.mpb.020.001568 |
|
[17] | 侯英杰, 苏晓华, 焦如珍, 等. 转基因银腺杂种杨对土壤微生物的影响[J]. 林业科学, 2009, 45(5):148-152. |
HOU Y J, SU X H, JIAO R Z, et al. Effects of transgenic Populus alba × P. glandulosa on soil microorganism[J]. Sci Silvae Sin, 2009, 45(5):148-152.DOI:10.3321/j.issn:1001-7488.2009.05.023.
doi: 10.3321/j.issn:1001-7488.2009.05.023 |
|
[18] | 吕秀华. 转基因银中杨ABJ系列对土壤微生物类群的影响[J]. 基因组学与应用生物学, 2017, 36(5):1991-1996. |
LV X H. The impact of transgenic poplar(ABJ series) on soil microorganism group[J]. Genom Appl Biol, 2017, 36(5):1991-1996.DOI:10.13417/j.gab.036.001991.
doi: 10.13417/j.gab.036.001991. |
|
[19] | 吕秀华. 转基因银中杨对根际土壤微生物的影响[J]. 基因组学与应用生物学, 2018, 37(5):1965-1970. |
LV X H. The impact of transgenic poplar on soil microorganism group[J]. Genom Appl Biol, 2018, 37(5):1965-1970.DOI:10.13417/j.gab.037.001965.
doi: 10.13417/j.gab.037.001965 |
|
[20] | 马晓星, 孙伟博, 魏辉, 等. 转PeTLP基因‘南林895’杨对土壤微生物的影响及外源基因分子检测[J]. 浙江林业科技, 2018, 38(4):28-37. |
MA X X, SUN W B, WEI H, et al. Effect of transgenic Populus deltoides × P. euramericanna cv.Nanlin 895 with PeTLP on soil microbes and molecular analysis on exogenous genes[J]. J Zhejiang For Sci Technol, 2018, 38(4):28-37.DOI:10.3969/j.issn.1001-3776.2018.04.005.
doi: 10.3969/j.issn.1001-3776.2018.04.005 |
|
[21] | 杨传平, 刘桂丰, 梁宏伟, 张慧. 耐盐基因Bet-A转化小黑杨的研究[J]. 林业科学, 2001, 37(6):34-38. |
YANG C P, LIU G F, LIANG H W, et al. Study on the transformation of Populus simonii × P. nigra with salt resistance gene Bet-A[J]. Sci Silvae Sin, 2001, 37(6):34-38.DOI:10.11707/j.1001-7488.20010607.
doi: 10.11707/j.1001-7488.20010607 |
|
[22] |
GAO W D, BAI S, LI Q M, et al. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra)[J]. PLoS One, 2013, 8(6):e67462.DOI:10.1371/journal.pone.0067462.
doi: 10.1371/journal.pone.0067462 |
[23] | 杜金友, 陈晓阳, 李伟, 等. 林木抗旱的渗透调节及其基因工程研究进展[J]. 西北植物学报, 2004, 24(6):1154-1159. |
DU J Y, CHEN X Y, LI W, et al. Progress of osmoregulation mechanism and genetic engineering under drought stress in forest trees[J]. Acta Bot Boreali Occidentalia Sin, 2004, 24(6):1154-1159.DOI:10.3321/j.issn:1000-4025.2004.06.036.
doi: 10.3321/j.issn:1000-4025.2004.06.036 |
|
[24] | 刘桂丰, 杨传平, 蔡智军, 等. 转bet A基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7):33-36. |
LIU G F, YANG C P, CAI Z J, et al. Salt Tolerance of bet A transgenic Populus simonii × P.nigra and selection for superior transgenic plants[J]. Sci Silvae Sin, 2006, 42(7):33-36.DOI:10.3321/j.issn:1001-7488.2006.07.006.
doi: 10.3321/j.issn:1001-7488.2006.07.006 |
|
[25] | 孙延爽, 邢宝月, 杨光, 等. NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响[J]. 北京林业大学学报, 2017, 39(10):33-41. |
SUN Y S, XING B Y, YANG G, et al. Effects of NaHCO3 stress on growth,photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. J Beijing For Univ, 2017, 39(10):33-41.DOI:10.13332/j.1000-1522.20170099.
doi: 10.13332/j.1000-1522.20170099 |
|
[26] |
IWANG Y, YANG Y L, WANG F S, et al. Growth adaptability and foreign gene stability of TaLEA transgenic Populus simonii × nigra[J]. Ann For Sci, 2021, 78(2):42.DOI:10.1007/s13595-021-01038-3.
doi: 10.1007/s13595-021-01038-3 |
[27] | 李志新, 赵曦阳, 杨成君, 等. 转TaLEA基因小黑杨株系变异及生长稳定性分析[J]. 北京林业大学学报, 2013, 35(2):57-62. |
LI Z X, ZHAO X Y, YANG C J, et al. Variation and growth adaptability analysis of transgenic Populus simonii × P.nigra lines carrying TaLEA gene[J]. J Beijing For Univ, 2013, 35(2):57-62.DOI:10.13332/j.1000-1522.2013.02.024.
doi: 10.13332/j.1000-1522.2013.02.024 |
|
[28] | 葛梦妍, 顾宸瑞, 陈坤, 等. 转betA基因小黑杨生长及适应性[J]. 东北林业大学学报, 2021, 49(4):12-16,23. |
GE M Y, GU C R, CHEN K, et al. Growth and adaptability of transgenic Populus simonii × P. nigra with betA gene[J]. J Northeast For Univ, 2021, 49(4):12-16,23.DOI:10.13759/j.cnki.dlxb.2021.04.003.
doi: 10.13759/j.cnki.dlxb.2021.04.003 |
|
[29] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13(7):581-583.DOI:10.1038/nmeth.3869.
doi: 10.1038/nmeth.3869 |
[30] |
BARDGETT R D, FREEMAN C, OSTLE N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. ISME J, 2008, 2(8):805-814.DOI:10.1038/ismej.2008.58.
doi: 10.1038/ismej.2008.58 pmid: 18615117 |
[31] | 徐征. 农业转基因生物对土壤生态系统功能影响的研究进展[J]. 中国农学通报, 2004, 20(4):47-50,72. |
XU Z. Studies on the effects influenced the furction of soil-ecosystem by transgrenies[J]. Chin Agric Sci Bull, 2004, 20(4):47-50,72.DOI:10.3969/j.issn.1000-6850.2004.04.017.
doi: 10.3969/j.issn.1000-6850.2004.04.017 |
|
[32] |
BAUMGARTE S, TEBBE C C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere[J]. Mol Ecol, 2005, 14(8):2539-2551.DOI:10.1111/j.1365-294X.2005.02592.x.
doi: 10.1111/j.1365-294X.2005.02592.x |
[33] |
LIU B, ZENG Q, YAN F M, et al. Effects of transgenic plants on soil microorganisms[J]. Plant Soil, 2005, 271(1):1-13.DOI:10.1007/s11104-004-1610-8.
doi: 10.1007/s11104-004-1610-8 |
[34] |
GYAMFI S, PFEIFER U, STIERSCHNEIDER M, et al. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2002, 41(3):181-190.DOI:10.1016/S0168-6496(02)00290-8.
doi: 10.1016/S0168-6496(02)00290-8 |
[35] | 陈晓雯, 林胜, 尤民生, 等. 转基因水稻对土壤微生物群落结构及功能的影响[J]. 生物安全学报, 2011, 20(2):151-159. |
CHEN X W, LIN S, YOU M S, et al. Effects of transgenic rice on the structure and function of soil microbial communities[J]. J Biosaf, 2011, 20(2):151-159. | |
[36] |
MIAO Y, JOHNSON N W, GEDALANGA P B, et al. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants[J]. Water Res, 2019, 149:74-85.DOI:10.1016/j.watres.2018.10.070.
doi: S0043-1354(18)30873-X pmid: 30419469 |
[37] | 赖宝春, 戴瑞卿, 吴振强, 等. 辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究[J]. 福建农业学报, 2019, 34(9):1073-1080. |
LAI B C, DAI R Q, WU Z Q, et al. Bacterial diversities in rhizosphere soils at sites of healthy and Fusarium wilt infected chili plants[J]. Fujian J Agric Sci, 2019, 34(9):1073-1080.DOI:10.19303/j.issn.1008-0384.2019.09.012.
doi: 10.19303/j.issn.1008-0384.2019.09.012 |
|
[38] | NGUYEN N L, TRAN B, PHAM H, et al. Illumina miseq-based sequencing analysis of bacterial community in Vietnamese ginseng cultivated soil in the Ngoc Linh Mountain,Vietnam[J]. TiEu Ban Tai Nguyen Sinh Vat, 2016:1274-1282. |
[39] |
NALIN R, SIMONET P, VOGEL T M, et al. Rhodanobacter lindaniclasticus Gen nov,sp.nov,a lindane-degrading bacterium[J]. Int J Syst Bacteriol, 1999, 49(1):19-23.DOI:10.1099/00207713-49-1-19.
doi: 10.1099/00207713-49-1-19 |
[40] |
KANALY R A, HARAYAMA S, WATANABE K. Rhodanobacter sp.strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium[J]. Appl Environ Microbiol, 2002, 68(12):5826-5833.DOI:10.1128/AEM.68.12.5826-5833.2002.
doi: 10.1128/AEM.68.12.5826-5833.2002 |
[41] |
BANERJEE S, KIRKBY C A, SCHMUTTER D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biol Biochem, 2016, 97:188-198.DOI:10.1016/j.soilbio.2016.03.017.
doi: 10.1016/j.soilbio.2016.03.017 |
[42] |
XIA S Q, SHI Y, FU Y G, et al. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems[J]. Appl Microbiol Biotechnol, 2005, 69(1):99-105.DOI:10.1007/s00253-005-0035-5.
doi: 10.1007/s00253-005-0035-5 pmid: 15983805 |
[43] |
DOBROVOLSKAYA T, GOLOVCHENKO A, LYSAK L, et al. Taxonomic structure of bacterial communities of rhizospheric soil under bogs’ plants[J]. Mosc Univ Soil Sci Bull, 2020, 75(2):93-100.DOI:10.3103/S0147687420020039.
doi: 10.3103/S0147687420020039 |
[44] |
CROMEY M G, GANEV S, BRAITHWAITE M, et al. Didymella exitialis on wheat in New Zealand[J]. N Z J Crop Hortic Sci, 1994, 22(2):139-144.DOI:10.1080/01140671.1994.9513817.
doi: 10.1080/01140671.1994.9513817 |
[45] |
周琳, 杨柳燕, 蔡友铭, 等. 崇明西红花根际土壤和球茎微生物多样性分析[J]. 核农学报, 2020, 34(11):2452-2459.
doi: 10.11869/j.issn.100-8551.2020.11.2452 |
ZHOU L, YANG L Y, CAI Y M, et al. Diversity analysis of microorganism in rhizosphere soil and bulbs of Chongming saffron (Crocus sativus L.)[J]. J Nucl Agric Sci, 2020, 34(11):2452-2459. | |
[46] | 靳微, 杨预展, 孙海菁, 等. 弗吉尼亚栎母树林外生菌根的真菌多样性[J]. 林业科学, 2020, 56(1):120-132. |
JIN W, YANG Y Z, SUN H J, et al. Diversity of ectomycorrhizal fungi a seed collecting forest of Quercus virginiana[J]. Sci Silvae Sin, 2020, 56(1):120-132.DOI:10.11707/j.1001-7488.20200112.
doi: 10.11707/j.1001-7488.20200112 |
|
[47] | 袁志林, 潘雪玉, 靳微. 林木共生菌系统及其作用机制:以杨树为例[J]. 生态学报, 2019, 39(1):381-397. |
YUAN Z L, PAN X Y, JIN W. Tree-associated symbiotic microbes and underlying mechanisms of ecological interactions:a case study of poplar[J]. Acta Ecol Sin, 2019, 39(1):381-397. | |
[48] | 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响[J]. 菌物学报, 2019, 38(11):1992-2006. |
LI M, YAN W. Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain,China[J]. Mycosystema, 2019, 38(11):1992-2006.DOI:10.13346/j.mycosystema.190243.
doi: 10.13346/j.mycosystema.190243 |
|
[49] | 魏松坡, 宋怡静, 贾黎明, 等. 太行山片麻岩区栓皮栎外生菌根真菌多样性[J]. 菌物学报, 2018, 37(4):422-433. |
WEI S P, SONG Y J, JIA L M, et al. Diversity of ectomycorrhizal fungi associated with Quercus variabilis in gneissose area of Taihang Mountains[J]. Mycosystema, 2018, 37(4):422-433.DOI:10.13346/j.mycosystema.170226.
doi: 10.13346/j.mycosystema.170226 |
|
[50] | 张彤彤, 耿增超, 许晨阳, 等. 秦岭辛家山林区落叶松外生菌根真菌多样性[J]. 微生物学报, 2018, 58(3):443-454. |
ZHANG T T, GENG Z C, XU C Y, et al. Diversity of ectomycorrhizal fungi associated with Larix gmelinii in Xinjiashan forest region of Qinling Mountains[J]. Acta Microbiol Sin, 2018, 58(3):443-454.DOI:10.13343/j.cnki.wsxb.20170228.
doi: 10.13343/j.cnki.wsxb.20170228 |
[1] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[2] | 郭丽丽, 张晨洁, 王菲, 沈佳佳, 张凯月, 何丽霞, 郭琪, 侯小改. 牡丹野生种根际土壤细菌群落特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 45-55. |
[3] | 孙美玲, 黄麟, 叶建仁, 何姣, 王志. 我国用材林主要真菌病害致病机制及内生菌对病害的生防作用[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 225-232. |
[4] | 吴佳雯, 尹艳楠, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58. |
[5] | 潘敏, 朱明龙, 谈家金, 李亮亮, 郝德君. 短小芽孢杆菌LYMC-3菌株对拟茎点霉的拮抗作用[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 151-156. |
[6] | 吴叶娇, 高源, 曹成亮, 蒋瑀霁, 闾连飞, 吴文龙, 蒋继宏, 朱泓, 李荣鹏. 不同蓝莓品种根际phoD基因相关土壤解磷细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 95-102. |
[7] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
[8] | 张晓荣, 段广德, 郝龙飞, 刘婷岩, 张友, 张盛晰. 氮沉降和接种菌根真菌对灌木铁线莲非结构性碳水化合物及根际土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 171-178. |
[9] | 王邵军, 左倩倩, 曹乾斌, 王平, 杨波, 赵爽, 陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 7-14. |
[10] | 陈佳, 缑晶毅, 赵祺, 韩庆庆, 李慧萍, 姚丹, 张金林. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 99-110. |
[11] | 蒙海勤, 叶建仁, 王旻嘉, 曹伊扬. 木腐真菌对松材线虫病疫木处理初探[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 183-189. |
[12] | 陈宏健, 郝德君, 田敏, 周杨, 夏小洪, 赵欣怡, 乔恒, 谈家金. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151. |
[13] | 杨瑞珍, 张焕朝, 胡立煌, 范之馨. 接种AMF及施氮对滨海盐土氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 145-153. |
[14] | 朱晗, 郝德君, 魏原芝, 孙丽昕, 文全民. 仁扇舟蛾幼虫肠道可培养细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 171-176. |
[15] | 王树梅, 王波, 范少辉, 肖箫, 夏雯, 官凤英. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 60-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||