无患子初果期人工林土壤和叶片C、N、P化学计量特征

刘俊涛, 仲静, 刘济铭, 罗水晶, 王冕之, 范嘉霖, 贾黎明

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 67-75.

PDF(1644 KB)
PDF(1644 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 67-75. DOI: 10.12302/j.issn.1000-2006.202104011
专题报道Ⅱ(执行主编方升佐)

无患子初果期人工林土壤和叶片C、N、P化学计量特征

作者信息 +

Stoichiometric characteristics of soil and leaves in Sapindus mukorossi plantation at an early fruiting stage

Author information +
文章历史 +

摘要

【目的】了解无患子无性系人工林初果期C、N、P化学计量差异及其养分元素间相互作用。【方法】以福建省建宁县无患子无性系媛华人工林为研究对象,选择其初果期具有代表性的地段,分别设置3块20 m×10 m样地,测定了土壤(有机碳、全氮、全磷、全钾、有效磷、有效钾、碱解氮)和叶片(碳、氮、磷、钾)养分含量,并计算土壤和叶片的碳、氮、磷元素计量比(记为C/N、C/P、N/P),分析处于初果期的无患子人工林土壤和叶片养分含量及化学计量特征。【结果】无患子无性系媛华人工林土壤有机碳、全氮、全钾、有效磷含量在初果期随林龄增大而增加,土壤全磷变化不明显且含量较低(0.36 g/kg);土壤C/N随林龄增加逐步减小,而C/P和N/P有一定增加趋势;叶片碳和磷含量随林龄增加而逐渐增大,氮含量逐渐降低,钾含量无显著变化,其人工林叶片C/N有一定程度升高,C/P和N/P随林龄增加出现逐渐降低的趋势。此外,无患子人工林土壤有机碳和全氮含量具有显著正相关;无患子叶片碳与氮之间呈负相关,但碳与磷、钾呈正相关。同时,无患子无性系人工林叶片C含量与土壤有机碳含量在0~20和≥40~60 cm的土层呈显著正相关,在≥20~40 cm的土层中呈极显著正相关;叶片磷P含量与土壤有机碳含量在0~20 cm呈极显著正相关,在≥20~40和≥40~60 cm的土层中呈显著正相关;N/P与土壤有机碳含量在0~20 和≥40~60 cm呈极显著负相关,在≥20~40 cm土层中呈显著负相关。【结论】在无患子人工林初果期,土壤养分主要受P的限制,因此,苗木定植后的结果初期,可适当增加磷肥的投入。

Abstract

【Objective】 This study aimed to elucidate differences in C, N and P in a soapberry (Sapindus mukorossi) plantation at the first fruit stage of clones and their nutrient element interactions. 【Method】 A clonal plantation in Jianning County, Fujian Province, was used to establish three plots of 20 m×10 m. Soil parameters (organic C, total N, total P, total K, effective P, available P, and alkali N) and leaf parameters (C, N, P and K) were measured, and the C, N and P element ratios were calculated. Nutrient contents and chemical characteristics of soil and leaves at different forest ages at the initial fruit stage were analyzed. 【Result】 The content of organic C, total N, total P and available P increased with forest age, while no change in total P in soil was observed, and the content was low (0.36 g/kg). Soil C/N ratios decreased gradually with the increase of forest age, while C/P and N/P ratios increased to a certain extent. With the increase of forest age, the contents of C and P in leaves increased gradually, while the contents of N decreased gradually, while the contents of K had no significant change. The C/N ratio of leaves increased to a certain extent, while the C/P and N/P ratios decreased gradually. In addition, there was a significant positive correlation between soil organic carbon (SOC) and total N in Sapindus mukorossi plantation. There was a negative correlation between C and N, but a positive correlation between C and P, K. At the same time, there was a significant positive correlation between leaf C content and SOC content in 0-20 cm and ≥ 40-60 cm soil layers, and a very significant positive correlation in ≥20-40 cm soil layers. There was a significant positive correlation between leaf P content and SOC content in 0-20 cm, and a significant positive correlation between leaf P content and SOC content in ≥20-40 and ≥ 40-60 cm soil layers; N/P was significantly negatively correlated with SOC content in 0-20 cm and ≥40-60 cm soil layers, and significantly negatively correlated with SOC content in ≥ 20-40 cm soil layers. 【Conclusion】 Plantation soils at the early fruiting stage were mainly limited regarding P, thus P fertilization should be increased accordingly for future planting processes.

关键词

无患子无性系 / 初果期 / 土壤养分 / 叶片养分 / 生态化学计量 / 无性系媛华

Key words

soapberry (Sapindus mukorossi) clone / primary fruit period / soil nutrient / leaf nutrient / ecological stoichiometry / Yuanhua clone

引用本文

导出引用
刘俊涛, 仲静, 刘济铭, . 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 67-75 https://doi.org/10.12302/j.issn.1000-2006.202104011
LIU Juntao, ZHONG Jing, LIU Jiming, et al. Stoichiometric characteristics of soil and leaves in Sapindus mukorossi plantation at an early fruiting stage[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 67-75 https://doi.org/10.12302/j.issn.1000-2006.202104011
中图分类号: S725.5   

参考文献

[1]
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6):1007-1019.
摘要
20世纪以来,生物科学的发展异军突起,成为发展最快的学科,不仅学科分类逐渐细化,而且研究领域也逐渐深入,然而,这种分化和深入也可能会掩盖生物的一些最普遍特征。地球上的生物是否具有统一的、更本质的特征?能否把不同生物学领域和不同层次的知识联系起来?随着对这些问题的不断探索,一门新兴的学科——生态化学计量学,在最近20年悄然兴起。生态化学计量学结合了生物学、化学和物理学等基本原理,是研究生物系统能量平衡和多重化学元素(主要是C、N、P)平衡的科学。这一研究领域使得生物学科不同层次(分子、细胞、有机体、种群、生态系统和全球尺度)的研究理论能够有机地统一起来。目前,生态化学计量学已经广泛应用于种群动态、生物体营养动态、微生物营养、寄主_病原关系、生物共生关系、消费者驱动的养分循环、限制性元素的判断、生态系统比较分析和森林演替与衰退及全球C、N、P生物地球化学循环等研究中,并取得了许多研究成果。该文概述了生态化学计量的概念、历史起源和基本理论,重点介绍了生态化学计量学理论在消费者驱动的养分循环、限制性养分元素判别以及全球C、N、P循环等方面的应用进展,并对生态化学计量学未来的研究方向进行了展望,期望引起国内同行的重视并有助于推动我国在此领域开展相关研究。
ZENG D H, CHEN G S. Ecological stoichiometry:a science to explore the complexity of living systems[J]. Acta Phytoecol Sin, 2005, 29(6):1007-1019.
[2]
葛晓改, 曾立雄, 肖文发, 等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J]. 生态学报, 2015, 35(3):779-787.
GE X G, ZENG L X, XIAO W F, et al. Dynamic of leaf litter stoichiometric traits dynamic and its relations with decomposition rates under three forest types in Three Gorges Reservoir Area[J]. Acta Ecol Sin, 2015, 35(3):779-787.DOI: 10.5846/stxb201304090653.
[3]
TESSIER J T, RAYNAL D J. Vernal nitrogen and phosphorus retention by forest understory vegetation and soil microbes[J]. Plant Soil, 2003, 256(2):443-453.DOI: 10.1023/A:1026163313038.
[4]
TJOELKER M G, CRAINE J M, WEDIN D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species[J]. New Phytol, 2005, 167(2):493-508.DOI: 10.1111/j.1469-8137.2005.01428.x.
[5]
贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2-6.
HE J S, HAN X G. Ecological stoichiometry:searching for unifying principles from individuals to ecosystems[J]. Chin J Plant Ecol, 2010, 34(1):2-6.DOI: 10.3773/j.issn.1005-264x.2010.01.002.
[6]
罗林, 周应书, 毕宁, 等. 喀斯特山区药用植物栽培环境变化与土壤化学性质的相关性[J]. 西部林业科学, 2018, 47(3):35-40.
LUO L, ZHOU Y S, BI N, et al. Correlation between environmental changes and soil chemical properties of medicinal plant cultivated in Karst mountainous area[J]. J West China For Sci, 2018, 47(3):35-40.DOI: 10.16473/j.cnki.xblykx1972.2018.03.006.
[7]
顾鸿昊, 翁俊, 孔佳杰, 等. 粗放和集约经营毛竹林叶片的生态化学计量特征[J]. 浙江农林大学学报, 2015, 32(5):661-667.
GU H H, WENG J, KONG J J, et al. Ecological stoichio-metry of Phyllostachys edulis leaves with extensive and intensive management[J]. J Zhejiang A&F Univ, 2015, 32(5):661-667.DOI: 10.11833/j.issn.2095-0756.2015.05.002.
[8]
闫道良, 梅丽, 夏国华, 等. 山核桃林地土壤和叶养分生态化学计量变异及重吸收特征[J]. 东北林业大学学报, 2013, 41(6):41-45.
YAN D L, MEI L, XIA G H, et al. Leaves nutrient resorption characteristics and stoichiometry of C,N,P and K in Carya cathayensis and soil[J]. J Northeast For Univ, 2013, 41(6):41-45.DOI: 10.13759/j.cnki.dlxb.2013.06.003.
[9]
陈婵, 王光军, 赵月, 等. 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系[J]. 生态学报, 2016, 36(23):7614-7623.
CHEN C, WANG G J, ZHAO Y, et al. Seasonal dynamics and allometric growth relationships of C,N,and P stoichio-metry in the organs of Cunninghamia lanceolata from Huitong[J]. Acta Ecol Sin, 2016, 36(23):7614-7623.DOI: 10.5846/stxb201512142500.
[10]
李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化[J]. 生态学报, 2016, 36(20):6547-6555.
LI H L, GONG L, HONG Y. Seasonal variations in C,N,and P stoichiometry of roots,stems,and leaves of Phragmites australis in the Keriya Oasis,Xinjiang,China[J]. Acta Ecol Sin, 2016, 36(20):6547-6555.DOI: 10.5846/stxb201507081451.
[11]
韩瑞芸, 陈哲, 杨世琦. 秸秆还田对土壤氮磷及水土的影响研究[J]. 中国农学通报, 2016, 32(9):148-154.
HAN R Y, CHEN Z, YANG S Q. Effect of straw-returning on nitrogen and phosphorus and water of soil[J]. Chin Agric Sci Bull, 2016, 32(9):148-154.
[12]
中国植物志编辑委员会. 中国植物志:47卷[M]. 北京: 科学出版社, 1998.
Editorial Board of Flora of China. Flora of China: 47 volumes[M]. Beijing: Science Press, 1998.
[13]
刘济铭, 孙操稳, 何秋阳, 等. 国内外无患子属种质资源研究进展[J]. 世界林业研究, 2017, 30(6):12-18.
LIU J M, SUN C W, HE Q Y, et al. Research progress in Sapindus L. germplasm resources[J]. World For Res, 2017, 30(6):12-18.DOI: 10.13348/j.cnki.sjlyyj.2017.0071.y.
[14]
孙操稳, 贾黎明, 叶红莲, 等. 无患子果实经济性状地理变异评价及与脂肪酸成分相关性[J]. 北京林业大学学报, 2016, 38(12):73-83.
SUN C W, JIA L M, YE H L, et al. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp.fruits[J]. J Beijing For Univ, 2016, 38(12):73-83.DOI: 10.13332/j.1000-1522.20160143.
[15]
邵文豪, 岳华峰, 姜景民, 等. 不同种源无患子苗期生长性状遗传变异研究[J]. 浙江林业科技, 2012, 32(1):21-25.
SHAO W H, YUE H F, JIANG J M, et al. Study on genetic variation of seedling growth from different provenances of Sapindus mukorossi[J]. J Zhejiang For Sci Technol, 2012, 32(1):21-25.DOI: 10.3969/j.issn.1001-3776.2012.01.005.
[16]
林文荣. 无患子开发利用前景[J]. 林业勘察设计, 2007(2):118-120.
LIN W R. The utilized prospect of the Sapindus mukorossi[J]. For Prospect Des, 2007(2):118-120.DOI: 10.3969/j.issn.1004-2180.2007.02.036.
[17]
卫星杓, 戴腾飞, 刘诗琦, 等. 施肥对无患子叶片养分动态及产量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(5):17-24.
WEI X B, DAI T F, LIU S Q, et al. Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):17-24.DOI: 10.3969/j.issn.1000-2006.201803015.
[18]
王福根, 卫星杓, 赵国春, 等. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(4):58-66.
WANG F G, WEI X B, ZHAO G C, et al. Response of morphology and vertical distribution of fine roots in Sapindus mukorossi to formula fertilization[J]. J Nanjing For Univ( Nat Sci Ed)(, 2021, 45(4) :58-66.DOI: 10.12302/ j.issn.1000-2006.201910007.
[19]
高媛, 贾黎明, 高世轮, 等. 无患子树体合理光环境及高光效调控[J]. 2016, 52(11):29-38.
GAO Y, JIA L M, GAO S L, et al. Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J]. Sci Silvae Sin, 2016, 52(11):29-38.DOI: 10.11707/j.1001-7488.20161104.
[20]
张赟齐, 刘晨, 刘阳, 等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):189-198.
ZHANG Y Q, LIU C, LIU Y, et al. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):189-198. 10.3969/j.issn.1000-2006.202001031.
[21]
何必庭, 何秋阳, 刘济铭, 等. 无患子嫩枝扦插生根机理初探及对不同激素处理的响应[J]. 浙江林业科技, 2019, 39(2):22-28.
HE B T, HE Q Y, LIU J M, et al. Effect of different hormones with different concentration on rooting of Sapindus mukorossi softwood cuttings[J]. J Zhejiang For Sci Technol, 2019, 39(2):22-28.DOI: 10.3969/j.issn.1001-3776.2019.02.004.
[22]
焦如珍, 董玉红, 孙启武. LY/T 1228—2015 森林土壤氮的测定[S]. 北京:国家林业局, 2016-01-01. http://std.samr.gov.cn
[23]
焦如珍, 董玉红, 孙启武. LY/T 1232—2015 森林土壤磷的测定[S]. 北京:国家林业局, 2016-01-01. http://std.samr.gov.cn
[24]
焦如珍, 董玉红, 孙启武. LY/T 1234—2015 森林土壤钾的测定[S]. 北京:国家林业局, 2016-01-01. http://std.samr.gov.cn
[25]
王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 23(2):7119-7124.
WANG W Q, XU L L, ZENG C S, et al. Carbon,nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland[J]. Acta Ecol Sin, 2011, 23(2):7119-7124.
[26]
鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M].3rd ed. Beijing: Chinese Agriculture Press, 2000.
[27]
邓成华, 吴龙龙, 张雨婷, 等. 不同林龄油茶人工林土壤-叶片碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(24):9152-9161.
DENG C H, WU L L, ZHANG Y T, et al. The stoichio-metry characteristics of soil and plant carbon,nitrogen,and phosphorus in different stand ages in Camellia oleifera plantation[J]. Acta Ecol Sin, 2019, 39(24):9152-9161.DOI: 10.5846/stxb201809202055.
[28]
阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1):48-57.
摘要
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。
YAN E R, WANG X H, GUO M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests,evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region,Zhejiang Province,Eastern China[J]. Chin J Plant Ecol, 2010, 34(1):48-57.DOI: 10.3773/j.issn.1005-264x.2010.01.008.
[29]
李天平. 湘北丘陵区混交阔叶林不同树种土壤C、N、P生态化学计量学特征研究[D]. 长沙:中南林业科技大学, 2015.
LI T P. Soil carbon,nitrogen,phosphorus ecological stoichiometry of different trees in mixed broad-leaved forest in the hill region of northern Hunan[D]. Changsha:Central South University of Forestry & Technology, 2015.
[30]
俞月凤, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2014, 25(4):947-954.
YU Y F, PENG W X, SONG T Q, et al. Stoichiometric characteristics of plant and soil C,N and P in different fo-rest types in depressions between Karst hills,southwest China[J]. Chin J Appl Ecol, 2014, 25(4):947-954.DOI: 10.13287/j.1001-9332.2014.0068.
[31]
TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C∶N ratios in China’s soils:a synjournal of observational data[J]. Biogeochemistry, 2010, 98(1/2/3):139-151.DOI: 10.1007/s10533-009-9382-0.
[32]
吴锡麟, 叶功富, 张尚炬, 等. 不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J]. 应用与环境生物学报, 2011, 17(5):645-650.
WU X L, YE G F, ZHANG S J, et al. Contents of some mineral elements and their resorption efficiencies in Casuarina equisetifolia branchlets across a coastal gradient[J]. Chin J Appl Environ Biol, 2011, 17(5):645-650.DOI: 10.3724/SP.J.1145.2011.00645.
[33]
赵航, 贾彦龙, 王秋凤. 中国地带性森林和农田生态系统C-N-P化学计量统计特征[J]. 第四纪研究, 2014, 34(4):803-814.
ZHAO H, JIA Y L, WANG Q F. Statistical characteristics of C-N-P stoichiometry in Chinese zonal forest and farmland ecosystems[J]. Quat Sci, 2014, 34(4):803-814.DOI: 10.3969/j.issn.1001-7410.2014.04.13.
[34]
胡启武, 聂兰琴, 郑艳明, 等. 沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J]. 生态学报, 2014, 34(9):2246-2255.
HU Q W, NIE L Q, ZHENG Y M, et al. Effects of desertification intensity and stand age on leaf and soil carbon,nitrogen and phosphorus stoichiometry in Pinus elliottii plantation[J]. Acta Ecol Sin, 2014, 34(9):2246-2255.DOI: 10.5846/stxb201306081471.
[35]
张亚杰, 冯玉龙. 不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J]. 植物生理与分子生物学学报, 2004, 30(3):269-276.
ZHANG Y J, FENG Y L. The relationships between photosynthetic capacity and lamina mass per unit area,nitrogen content and partitioning in seedlings of two Ficus species grown under different irradiance[J]. Acta Photophysiol Sin, 2004, 30(3):269-276.DOI: 10.3321/j.issn:1671-3877.2004.03.004.
[36]
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665-2673.
REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environ Sci, 2007, 28(12):2665-2673.DOI: 10.13227/j.hjkx.2007.12.007.
[37]
王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C∶N∶P化学计量学特征[J]. 植物生态学报, 2011, 35(6):587-595.
WANG J Y, WANG S Q, LI R L, et al. C∶N∶P stoichiometric characteristics of four forest types’ dominant tree species in China[J]. Chin J Plant Ecol, 2011, 35(6):587-595.DOI: 10.3724/SP.J.1258.2011.00587.
[38]
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.DOI: 10.1038/35046058.
[39]
李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤C、N、P的化学计量特征[J]. 生态学报, 2013, 33(18):5760-5767.
LI C J, LEI J Q, XU X W, et al. The stoichiometric characteristics of C,N,P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecol Sin, 2013, 4(18):5760-5767.DOI: 10.5846/stxb201304300872.
[40]
叶柳欣, 张勇, 蒋仲龙, 等. 不同林龄杨梅叶片与土壤的碳、氮、磷生态化学计量特征[J]. 安徽农业大学学报, 2019, 46(3):454-459.
YE L X, ZHANG Y, JIANG Z L, et al. The stoichiometic characteristics of carbon,nitrogen and phosphorus in soil and leaves of different ages of Myrica rubra[J]. J Anhui Agric Univ, 2019, 46(3):454-459.DOI: 10.13610/j.cnki.1672-352x.20190717.012.
[41]
曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18):5484-5492.
ZENG D P, JIANG L L, ZENG C S, et al. Reviews on the ecological stoichiometry characteristics and its applications[J]. Acta Ecol Sin, 2013, 33(18):5484-5492.DOI: 10.5846/stxb201304070628.
[42]
冀盼盼, 张健飞, 张玉珍, 等. 不同林龄华北落叶松人工林生态化学计量特征[J]. 南京林业大学学报(自然科学版), 2020, 44(3):126-132.
JI P P, ZHANG J F, ZHANG Y Z, et al. Ecological stoichiometry characteristics of Larix principis plantations at different ages[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):126-132.DOI: 10.3969/j.issn.1000-2006.201811032.

基金

国家科技基础资源调查专项(2019FY100803)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/