不同供氮水平的核桃幼苗生长及叶绿素荧光特性

黄小辉, 吴焦焦, 王玉书, 冯大兰, 孙向阳

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 119-126.

PDF(2296 KB)
PDF(2296 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 119-126. DOI: 10.12302/j.issn.1000-2006.202104016
研究论文

不同供氮水平的核桃幼苗生长及叶绿素荧光特性

作者信息 +

Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels

Author information +
文章历史 +

摘要

【目的】探讨核桃对缺氮胁迫的适应性及其机制。【方法】以核桃幼苗为研究对象,设置不同程度的缺氮处理:对照(CK)、中度缺氮(MN)和重度缺氮(SN),分析缺氮胁迫对核桃幼苗外部形态特征、生长情况及叶绿素荧光参数的影响。【结果】缺氮会使核桃幼苗失绿黄化,长势下降,地上部分和地下部分生物量、叶绿素a、叶绿素b和类胡萝卜素含量均显著低于对照,且总体随着缺氮程度加深和时间延长显著下降,尤其是处理后期(60~75 d)表现更明显;MN和SN处理下,核桃幼苗的光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)和光条件下PSⅡ天线转化效率(Fv'/Fm' )在前期(0~30 d)和后期(60~75 d)受影响较大,实际光化学效率(ΦPSII)、电子传递速率(ETR)和光化学猝灭系数(qP)随胁迫程度加深明显下降,反之非光化学猝灭系数(NPQ)随胁迫程度加深而上升,且同样在处理后期(60~75 d)受影响较大;地上部分生物量与地下部分生物量、叶面积、根表面积、叶绿素a含量、Fv/Fm和ETR呈显著正相关,叶绿素a含量与叶面积、叶片厚度、Fv/FmFv'/Fm' 显著正相关。【结论】缺氮会抑制核桃幼苗对氮素的吸收和同化,阻碍根系生长,影响核桃幼苗对营养物质的吸收利用,导致植株矮小瘦弱、叶片变小、叶色变淡。在缺氮胁迫下,核桃光合色素含量下降也会造成叶绿体吸收光照的能力减弱,降低光合电子传递速率及对光能的利用效率,进而限制光合速率,影响植株生长。

Abstract

【Objective】The adaptability of walnut (Juglans regia L.) to nitrogen deficiency and respective adaptive mechanisms were studied.【Method】Different nitrogen deficiency treatments, including a control (CK), moderate nitrogen deficiency (MN), and severe nitrogen deficiency (SN), were used to study the effects of nitrogen deficiency stress on morphological characteristics, growth, and chlorophyll fluorescence parameters of walnut seedlings.【Result】Nitrogen deficiency caused walnut seedlings to lose green but a show yellow coloration, and the growth was decreased. Biomass of the above-ground and below-ground parts, chlorophyll a, chlorophyll b, and carotenoid content were significantly lower compared to the control, and the decrease was more pronounced with the increasing nitrogen deficiency and over time, especially in the late treatment (60-75 d). The values of Fv/Fm and Fv'/Fm' of walnut seedlings treated subjected to MN and SN treatments were significantly affected at the early (0-30 d) and late stage (60-75 d). The actual photochemical efficiency (ΦPSII), electron transfer rate (ETR), and photochemical quenching coefficient (qP) decreased significantly with the increasing stress, whereas the non-photochemical quenching coefficient (NPQ) increased with the increasing stress, and the effect was more pronounced in the late stage (60-75 d). The aboveground biomass was positively correlated with the belowground biomass, leaf area, root surface area, chlorophyll a content, Fv/Fm, and ETR, whereas the chlorophyll a content was positively correlated with the leaf area, leaf thickness, Fv/Fm, and Fv/Fm'. 【Conclusion】Nitrogen deficiency inhibits absorption and assimilation of nitrogen, hinders the root growth, and affects absorption and utilization of nutrients in walnut seedlings; as a result, the seedlings show dwarfism, weak growth, and smaller leaves with the brighter coloration. Under the nitrogen deficiency stress, the decrease in photosynthetic pigment content in walnuts can also reduce the ability of chloroplasts to absorb light and reduce photosynthetic electron transfer rates and the utilization efficiency of light energy, thereby limiting the photosynthetic rates and plant growth.

关键词

缺氮 / 核桃 / 形态特征 / 叶绿素荧光参数

Key words

nitrogen deficiency / walnut / morphological characteristics / chlorophyll fluorescence parameters

引用本文

导出引用
黄小辉, 吴焦焦, 王玉书, . 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 119-126 https://doi.org/10.12302/j.issn.1000-2006.202104016
HUANG Xiaohui, WU Jiaojiao, WANG Yushu, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 119-126 https://doi.org/10.12302/j.issn.1000-2006.202104016
中图分类号: S687.9;S718   

参考文献

[1]
傅本重, 邹路路, 朱洁倩, 等. 中国核桃生产现状与发展思路[J]. 江苏农业科学, 2018, 46(18):5-8.
FU B Z, ZOU L L, ZHU J Q, et al. Current status and development ideas of China’s walnut production[J]. Jiangsu Agric Sci, 2018, 46(18):5-8. DOI: 10.15889/j.issn.1002-1302.2018.18.002.
[2]
马庆国, 乐佳兴, 宋晓波, 等. 新中国果树科学研究70年:核桃[J]. 果树学报, 2019, 36(10):1360-1368.
MA Q G, YUE J X, SONG X B, et al. Fruit scientific research in new China in the past 70 years:walnut[J]. J Fruit Sci, 2019, 36(10):1360-1368. DOI: 10.13925/j.cnki.gsxb.Z10.
[3]
郭向华. 主要矿质元素含量与早实核桃产量质量的关系[D]. 保定: 河北农业大学, 2006.
GUO X H. The relationship of main mineral elements contents and yield,quality of early bearing walnut[D]. Baoding: Hebei Agricultural University, 2006.
[4]
樊卫国, 葛慧敏, 吴素芳, 等. 氮素形态及配比对铁核桃苗生长及营养吸收的影响[J]. 林业科学, 2013, 49(5):77-84.
FAN W G, GE H M, WU S F, et al. Effect of nitrogen forms and the ratios on growth and nutrient absorption of Juglans sigillata seedling[J]. Sci Silvae Sin, 2013, 49(5):77-84. DOI: 10.11707/j.1001-7488.20130511.
[5]
王益明, 卢艺, 张慧, 等. 指数施肥对美国山核桃幼苗生长及叶片养分含量的影响[J]. 中国土壤与肥料, 2018(6):136-140.
WANG Y M, LU Y, ZHANG H, et al. Effects of exponential fertilization on growth and foliar nutrient status of pecan seedlings[J]. Soils Fertil Sci China, 2018(6):136-140. DOI: 10.11838/sfsc.20180619.
[6]
宋岩, 张锐, 鱼尚奇, 等. 不同施氮水平对核桃砧木苗形态特征及生理特性的影响[J]. 福建农业学报, 2020, 35(3):309-316.
SONG Y, ZHANG R, YU S Q, et al. Morphology and physiology of walnut stock seedlings as affected by nitrogen fertilizations[J]. Fujian J Agric Sci, 2020, 35(3):309-316. DOI: 10.19303/j.issn.1008-0384.2020.03.010.
[7]
林郑和, 陈荣冰, 陈常颂. 植物对氮胁迫的生理适应机制研究进展[J]. 湖北农业科学, 2011, 50(23):4761-4764.
LIN Z H, CHEN R B, CHEN C S. Research progress on physiological adaptability of plants to nitrogen deficiency[J]. Hubei Agric Sci, 2011, 50(23):4761-4764. DOI: 10.14088/j.cnki.issn0439-8114.2011.23.003.
[8]
李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204-212.
LI Q, LUO Y H, LONG W J, et al. Effect of low nitrogen stress on different low nitrogen tolerance maize cultivars seedling stage growth and physiological characteristics[J]. Acta Prataculturae Sin, 2014, 23(4):204-212. DOI: 10.11686/cyxb20140425.
[9]
EVANS J R, CLARKE V C. The nitrogen cost of photosynthesis[J]. J Exp Bot, 2019, 70(1):7-15. DOI: 10.1093/jxb/ery366.
[10]
LIU X, YIN C M, XIANG L, et al. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency[J]. BMC Plant Biol, 2020, 20(1):448. DOI: 10.1186/s12870-020-02662-3.
[11]
蔡瑞国, 张敏, 戴忠民, 等. 施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响[J]. 植物营养与肥料学报, 2006, 12(1):49-55.
CAI R G, ZHANG M, DAI Z M, et al. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat[J]. Plant Nutr Fertil Sci, 2006, 12(1):49-55. DOI: 10.3321/j.issn:1008-505X.2006.01.009.
[12]
ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris[J]. Planta, 2010, 232(4):887-898. DOI: 10.1007/s00425-010-1227-5.
[13]
黄小辉, 冯大兰, 刘芸, 等. 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性[J]. 北京林业大学学报, 2016, 38(10):50-58.
HUANG X H, FENG D L, LIU Y, et al. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area[J]. J Beijing For Univ, 2016, 38(10):50-58. DOI: 10.13332/j.1000-1522.20150324.
[14]
WEI W, YE C, HUANG H C, et al. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability[J]. J Ginseng Res, 2020, 44(4):627-636. DOI: 10.1016/j.jgr.2019.04.003.
[15]
陈静, 刘连涛, 孙红春, 等. 外源NO对缺氮胁迫下棉花幼苗形态及生长的调控效应[J]. 中国农业科学, 2014, 47(23):4565-4575.
CHEN J, LIU L T, SUN H C, et al. Regulatory effects of exogenous nitric oxide on morphology of cotton seedlings under nitrogen stress[J]. Sci Agric Sin, 2014, 47(23):4565-4575. DOI: 10.3864/j.issn.0578-1752.2014.23.005.
[16]
刘芳, 林李华, 张立丹, 等. 缺氮和恢复供氮对香蕉苗生长和根系形态参数的影响[J]. 果树学报, 2019, 36(1):67-75.
LIU F, LIN L H, ZHANG L D, et al. Effects of N deficiency and resupply of N nutrient on banana growth and root morphological parameters[J]. J Fruit Sci, 2019, 36(1):67-75. DOI: 10.13925/j.cnki.gsxb.20180168.
[17]
TRUBAT R, CORTINA J, VILAGROSA A. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.)[J]. Trees, 2006, 20(3):334-339. DOI: 10.1007/s00468-005-0045-z.
[18]
FERREIRA V S, PINTO R F, SANT’ANNA C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus[J]. J Appl Microbiol, 2016, 120(3):661-670. DOI: 10.1111/jam.13007.
[19]
朱超, 冀爱青, 宁婵娟, 等. 氮素形态对早实核桃叶片光合特性和果实品质的影响[J]. 河南农业大学学报, 2012, 46(5):526-529,534.
ZHU C, JI A Q, NING C J, et al. Effects of different forms of nitrogen on leaf photosynthetic characteristics and nuts quality of early-fruiting walnut[J]. J Henan Agric Univ, 2012, 46(5):526-529,534. DOI: 10.16445/j.cnki.1000-2340.2012.05.016.
[20]
ROSCIOLI J D, GHOSH S, LAFOUNTAIN A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. J Phys Chem Lett, 2017, 8(20):5141-5147. DOI: 10.1021/acs.jpclett.7b01791.
[21]
PAN S G, LIU H D, MO Z W, et al. Effects of nitrogen and shading on root morphologies,nutrient accumulation,and photosynthetic parameters in different rice genotypes[J]. Sci Rep, 2016, 6:32148. DOI: 10.1038/srep32148.
[22]
ZHANG T, YANG S B, GUO R, et al. Warming and nitrogen addition alter photosynthetic pigments,sugars and nutrients in a temperate meadow ecosystem[J]. PLoS One, 2016, 11(5):e0155375. DOI: 10.1371/journal.pone.0155375.
[23]
李小涵, 武建军, 吕爱锋, 等. 不同CO2浓度变化下干旱对冬小麦叶面积指数的影响差异[J]. 生态学报, 2013, 33(9):2936-2943.
LI X H, WU J J, A F, et al. The difference of drought impacts on winter wheat leaf area index under different CO2 concentration[J]. Acta Ecol Sin, 2013, 33(9):2936-2943.
[24]
高雪, 贾中立, 林凯丽, 等. 水旱条件下小麦叶面积指数和叶绿素含量QTL定位[J]. 植物遗传资源学报, 2021, 22(4):1109-1119.
GAO X, JIA Z L, LIN K L, et al. QTL mapping of leaf area index and chlorophyll content in wheat with normal irrigation and under drought stress[J]. J Plant Genet Resour, 2021, 22(4):1109-1119. DOI: 10.13430/j.cnki.jpgr.20210129002.
[25]
YAO X D, LI C H, LI S Y, et al. Effect of shade on leaf photosynthetic capacity,light-intercepting,electron transfer and energy distribution of soybeans[J]. Plant Growth Regul, 2017, 83(3):409-416. DOI: 10.1007/s10725-017-0307-y.
[26]
张青青, 周再知, 王西洋, 等. 施肥对柚木光合生理和叶绿素荧光特性的影响[J]. 中南林业科技大学学报, 2021, 41(4):31-38.
ZHANG Q Q, ZHOU Z Z, WANG X Y, et al. Effects of fertilization on photosynthetic and chlorophyll fluorescence characteristics of Tectona grandis[J]. J Central South Univ For Technol, 2021, 41(4):31-38. DOI: 10.14067/j.cnki.1673-923x.2021.04.004.
[27]
PARK S, FISCHER A L, STEEN C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. J Am Chem Soc, 2018, 140(38):11965-11973. DOI: 10.1021/jacs.8b04844.
[28]
WANG Y, JIN W W, CHE Y H, et al. Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy[J]. Forests, 2019, 10(4):312. DOI: 10.3390/f10040312.
[29]
相昆, 李宪利, 王晓芳, 等. 水分胁迫下外源NO对核桃叶绿素荧光的影响[J]. 果树学报, 2006, 23(4):616-619.
XIANG K, LI X L, WANG X F, et al. Effects of exogenous nitric oxide on the chlorophyll fluorescence parameters of walnut under water stress[J]. J Fruit Sci, 2006, 23(4):616-619. DOI: 10.3969/j.issn.1009-9980.2006.04.029.

基金

重庆市科研院所绩效激励引导专项(cstc2018jxjl20001)
重庆市科技兴林项目(cstd2019-1)

编辑: 郑琰燚 , 林木
PDF(2296 KB)

Accesses

Citation

Detail

段落导航
相关文章

/