南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 1-6.doi: 10.12302/j.issn.1000-2006.202104022
收稿日期:
2021-04-15
接受日期:
2021-06-28
出版日期:
2022-01-30
发布日期:
2022-02-09
基金资助:
YANG Yong(), YANG Zhi(), DUAN Yifan, FANG Yanming
Received:
2021-04-15
Accepted:
2021-06-28
Online:
2022-01-30
Published:
2022-02-09
摘要:
树木学是一门不断发展、高度综合的学科。系统发生是树木学的基础,研究材料和序列数据一直是限制系统发生重建的重要因素。新技术的发展和应用通过拓展材料利用、改进和提升系统发生树的分辨率而将树木学的研究推向新的高度。标本馆不仅是树木物种凭证标本的保存地,保存了物种的形态、地理分布、生态、物候等信息,而且是重要的材料库。标本材料因制作和保存过程中高温和氧化导致基因组DNA降解和破碎化,一代测序技术由于技术限制而无法充分利用馆藏标本开展生命之树重建研究。新兴的标本组学是近年来基于二代测序技术发展起来的获取标本材料中基因组DNA的技术,这种技术通过对短片段测序和生物信息学方法拼接获得基因组DNA序列,因此可以充分利用馆藏标本材料,结合浅层测序和靶序列捕获能获得包括nrITS、叶绿体基因组、线粒体基因组以及单拷贝核基因等序列,从而满足系统发生重建的需要,且有着经济、省时、高效、准确的优势。新兴标本组学的应用将加速生命之树重建、DNA条形码、物种保护和资源可持续利用等方面的研究。
中图分类号:
杨永,杨智,段一凡,等. 标本组学——树木学研究的新方法[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 1-6.
YANG Yong, YANG Zhi, DUAN Yifan, FANG Yanming. Herbariomics: a new and powerful approach for dendrological studies[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 1-6.DOI: 10.12302/j.issn.1000-2006.202104022.
表1
标本组学与一代测序、扩增子测序、浅层测序、转录组测序、简化基因组和靶序列捕获技术的比较(修改自Yu等[36])"
技术 technique | 材料要求 material requirements | DNA质量 要求 DNA quality requirements | 测序方法 sequencing method | 测序对象 sequencing object | 引物或 探针设计 primer or probe design | 获得数据 get data | 同源性确定 homology determination | 测序成本 sequencing cost | 适用分类等级 applicable classification level |
---|---|---|---|---|---|---|---|---|---|
标本组学 herbariomics | 要求较低,标本材料 | 较低 | 二代测序 | 全基因组或探针捕获位点 | 不需要 | 叶绿体基因组、线粒体基因组、nrDNA、核基因组的大多数位点 | 容易 | 较低 | 各个等级 |
一代测序 sanger sequencing | 新鲜材料、硅胶干燥材料 | 适中 | 一代测序 | 目标序列片段 | 引物设计 | nrITS、rbcL、psbA-trnH、matK、LEAFY等常规片段 | 容易 | 较低 | 各个等级 |
扩增子测序 amplicon sequencing | 新鲜材料、硅胶干燥材料 | 适中 | 一代测序 | 目标序列片段 | 引物设计 | 确定的目标片段 | 容易 | 适中 | 各个等级 |
浅层测序 genome skimming | 要求较低,标本、硅胶干燥材料、新鲜材料等 | 较低 | 二代测序 | 全基因组 | 不需要 | 叶绿体基因组、线粒体基因组、nrDNA、基因的编码区和非编码区 | 容易 | 较低 | 各个等级 |
靶序列捕获 targeted sequence capture | 要求较低,标本、硅胶干燥材料、新鲜材料等 | 较低 | 二代测序 | 探针捕获位点 | 探针设计 | 核基因、叶绿体、线粒体,编码区和非编码区 | 容易 | 较低 | 各个等级 |
转录组测序 transcriptome | 要求严格,新鲜材料 | 较高 | 二代测序 | cDNA | 不需要 | 核基因组的大多数位点,编码基因 | 相对容易 | 较高 | 属以上等级 |
简化基因组 genotyping-by- sequencing | 要求较高,硅胶干燥材料、新鲜材料 | 适中 | 二代测序 | 限制性 片段 | 不需要 | 主要是来自核基因组的SNP位点,编码区和非编码区 | 较难 | 适中 | 近缘属、近缘种或群体水平 |
[1] | 祁承经, 汤庚国. 树木学(南方版)[M]. 北京: 中国林业出版社, 2020. |
[2] | JUDD W S, CAMPBELL C S, KELLOGG E A, 等. 植物系统学[M].李德铢,等,译. 北京: 高等教育出版社, 2012. |
JUDD W S, CAMPBELL C S, KELLOGG E A, et al. Plant systematics:a phylogenetic approach[M]. LI D Z, et al, trans. Beijing: Higher Education Press, 2012. | |
[3] | 达尔文. 物种起源[M].周建人,等,译. 北京: 商务印书馆, 1995. |
DARWIN C. The origin of species[M]. ZHOU J R, et al, trans. Beijing: The Commercial Press, 1995. | |
[4] | 郑万钧, 傅立国. 中国植物志(第7卷): 裸子植物门[M]. 北京: 科学出版社, 1978. |
[5] |
ARNOLD C A. Classification of gymnosperms from the viewpoint of paleobotany[J]. Bot Gazette, 1948, 110(1):2-12.DOI: 10.1086/335513.
doi: 10.1086/335513 |
[6] |
CHAMBERLAIN C J. Gymnosperms:structure and evolution[J]. Nature, 1935, 136(3434):278-279.DOI: 10.1038/136278a0.
doi: 10.1038/136278a0 |
[7] |
FU D Z, YANG Y, ZHU G H. A new scheme of classification of living gymnosperms at family level[J]. Kew Bull, 2004, 59(1):111.DOI: 10.2307/4111081.
doi: 10.2307/4111081 |
[8] |
KENG H. A new scheme of classification of the conifers[J]. Taxon, 1975, 24(2/3):289-292.DOI: 10.2307/1218337.
doi: 10.2307/1218337 |
[9] | PILGER R. Gymnospermae[M]// ENGLER A. Die Naturlichen Pflanzenfamilien. Leipzig: Verlag von Wilhelm Engelmann, 1926: 1-447. |
[10] | PILGER R, MELCHIOR H. XVI: Abteilung: Gymnospermae. Nackstamer. (Archispermae)[M]// MELCHIOR H, WERDERMANN E A. Engler’s Syllabus der Pflanzenfamilien. Band 1. Allgemeiner Teil Bakterien bis Gymnospermen. Allgemeiner Teil Bakterien bis Gymnospermen. Gebruder Borntraeger, Berlin-Nikolassee, 1954: 312-344. |
[11] | 杨永, 王志恒, 徐晓婷. 世界裸子植物的分类和地理分布[M]. 上海: 上海科学技术出版社, 2017. |
YANG Y, WANG Z H, XU X T. Taxonomy and distribution of global gymnosperms[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017. | |
[12] | 傅德志, 杨亲二. 银杏雌性生殖器官的形态学本质及其系统学意义[J]. 植物分类学报, 1993, 31(3):294-296. |
[13] | 傅德志, 杨亲二. 银杏雌性生殖器官的形态学本质及其系统学意义(续)[J]. 植物分类学报, 1993, 31(4):309-317. |
[14] |
DOUGLAS A W, STEVENSON D W, LITTLE D P. Ovule development in Ginkgo biloba L.,with emphasis on the collar and nucellus[J]. Int J Plant Sci, 2007, 168(9):1207-1236.DOI: 10.1086/521693.
doi: 10.1086/521693 |
[15] | KRAMER K U, GREEN P S. The families and genera of vascular plants I: Pteridophytes and gymnosperms[M]. Berlin: Springer-Verlag, 1990. |
[16] | 路安民, 汤彦承. 原始被子植物的起源与演化[M]. 北京: 科学出版社, 2020. |
[17] | 王文采. 当代四被子植物分类系统简介(一)[J]. 植物学通报, 1990, 25(2):1-17. |
WANG W C. An introduction to four important current systems of classification of the angiosperms (I)[J]. Chin Bull Bot, 1990, 25(2):1-17. | |
[18] | 王文采. 当代四被子植物分类系统简介(二)[J]. 植物学通报, 1990, 25(3):1-18. |
WANG W C. An introduction to four important current systems of classification of the angiosperms(Ⅱ)[J]. Chin Bull Bot, 1990, 25(3):1-18. | |
[19] |
GROUP T A P. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV[J]. Bot J Linn Soc, 2016, 181(1):1-20.DOI: 10.1111/boj.12385.
doi: 10.1111/boj.12385 |
[20] | 胡亚亚, 刘兰服, 冀红柳, 等. 简化基因组测序技术研究进展[J]. 江苏师范大学学报(自然科学版), 2018, 36(4):63-68. |
HU Y Y, LIU L F, JI H L, et al. Research progress on the reduced-representation genome sequencing technique[J]. J Jiangsu Norm Univ (Nat Sci Ed), 2018, 36(4):63-68.DOI: 10.3969/j.issn.2095-4298.2018.04.012.
doi: 10.3969/j.issn.2095-4298.2018.04.012 |
|
[21] |
STRAUB S C, PARKS M, WEITEMIER K, et al. Navigating the tip of the genomic iceberg:next-generation sequencing for plant systematics[J]. Am J Bot, 2012, 99(2):349-364.DOI: 10.3732/ajb.1100335.
doi: 10.3732/ajb.1100335 |
[22] |
BAKKER F T. Herbarium genomics:plant archival DNA explored[M]//Population genomics. Cham: Springer International Publishing, 2018:205-224. DOI: 10.1007/13836_2018_40.
doi: 10.1007/13836_2018_40 |
[23] |
BESNARD G, CHRISTIN P A, MALÉ P J G, et al. From museums to genomics:old herbarium specimens shed light on a C3 to C4 transition[J]. J Exp Bot, 2014, 65(22):6711-6721.DOI: 10.1093/jxb/eru395.
doi: 10.1093/jxb/eru395 |
[24] |
ZEDANE L, HONG-WA C, MURIENNE J, et al. Museomics illuminate the history of an extinct,paleoendemic plant lineage (Hesperelaea,Oleaceae) known from an 1875 collection from Guadalupe Island,Mexico[J]. Biol J Linn Soc, 2016, 117(1):44-57.DOI: 10.1111/bij.12509.
doi: 10.1111/bij.12509 |
[25] |
DODSWORTH S, GUIGNARD M S, CHRISTENHUSZ M J M, et al. Potential of herbariomics for studying repetitive DNA in angiosperms[J]. Front Ecol Evol, 2018, 6:174.DOI: 10.3389/fevo.2018.00174.
doi: 10.3389/fevo.2018.00174 |
[26] |
JIN J J, YU W B, YANG J B, et al. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241.DOI: 10.1186/s13059-020-02154-5.
doi: 10.1186/s13059-020-02154-5 |
[27] |
DIERCKXSENS N, MARDULYN P, SMITS G. NOVOPlasty:de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Res, 2017, 45(4):e18.DOI: 10.1093/nar/gkw955.
doi: 10.1093/nar/gkw955 |
[28] |
JOHNSON M G, GARDNER E M, LIU Y, et al. HybPiper:Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment[J]. Appl Plant Sci, 2016, 4(7):1600016.DOI: 10.3732/apps.1600016.
doi: 10.3732/apps.1600016 |
[29] |
ALSOS I G, LAVERGNE S, MERKEL M K F, et al. The treasure vault can be opened:large-scale genome skimming works well using herbarium and silica gel dried material[J]. Plants, 2020, 9(4):432.DOI: 10.3390/plants9040432.
doi: 10.3390/plants9040432 |
[30] |
NEVILL P G, ZHONG X, TONTI-FILIPPINI J, et al. Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics[J]. Plant Methods, 2020, 16:1.DOI: 10.1186/s13007-019-0534-5.
doi: 10.1186/s13007-019-0534-5 |
[31] |
ZENG C X, HOLLINGSWORTH P M, YANG J, et al. Genome skimming herbarium specimens for DNA barcoding and phylogenomics[J]. Plant Methods, 2018, 14:43.DOI: 10.1186/s13007-018-0300-0.
doi: 10.1186/s13007-018-0300-0 |
[32] |
BAKKER F T, LEI D, YU J Y, et al. Herbarium genomics:plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline[J]. Biol J Linn Soc, 2016, 117(1):33-43.DOI: 10.1111/bij.12642.
doi: 10.1111/bij.12642 |
[33] |
LIU B B, MA Z Y, REN C, et al. Capturing single-copy nuclear genes,organellar genomes,and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:a case study in Vitaceae[J]. J Syst Evol, 2021, 59(5):1124-1138.DOI: 10.1111/jse.12806.
doi: 10.1111/jse.12806 |
[34] |
DODSWORTH S. Genome skimming for next-generation biodiversity analysis[J]. Trends Plant Sci, 2015, 20(9):525-527.DOI: 10.1016/j.tplants.2015.06.012.
doi: 10.1016/j.tplants.2015.06.012 |
[35] |
LEMMON A R, EMME S A, LEMMON E M. Anchored hybrid enrichment for massively high-throughput phylogenomics[J]. Syst Biol, 2012, 61(5):727-744.DOI: 10.1093/sysbio/sys049.
doi: 10.1093/sysbio/sys049 |
[36] |
YU X, YANG D, GUO C, et al. Plant phylogenomics based on genome-partitioning strategies: progress and prospects[J]. Plant Divers, 2018, 40(4):158-164.DOI: 10.1016/j.pld.2018.06.005.
doi: 10.1016/j.pld.2018.06.005 |
[37] |
DODSWORTH S, POKORNY L, JOHNSON M G, et al. Hyb-seq for flowering plant systematics[J]. Trends Plant Sci, 2019, 24(10):887-891.DOI: 10.1016/j.tplants.2019.07.011.
doi: 10.1016/j.tplants.2019.07.011 |
[38] |
STAATS M, ERKENS R H, VAN DE VOSSENBERG B, et al. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens[J]. PLoS One, 2013, 8(7):e69189.DOI: 10.1371/journal.pone.0069189.
doi: 10.1371/journal.pone.0069189 |
[39] |
SHEE Z Q, FRODIN D G, CÁMARA-LERET R, et al. Reconstructing the complex evolutionary history of the papuasian Schefflera radiation through herbariomics[J]. Front Plant Sci, 2020, 11:258.DOI: 10.3389/fpls.2020.00258.
doi: 10.3389/fpls.2020.00258 |
[40] |
SCHNEIDER J V, PAULE J, JUNGCURT T, et al. Resolving recalcitrant clades in the pantropical Ochnaceae: insights from comparative phylogenomics of plastome and nuclear genomic data derived from targeted sequencing[J]. Front Plant Sci, 2021, 12:638650.DOI: 10.3389/fpls.2021.638650.
doi: 10.3389/fpls.2021.638650 |
[41] |
VAN DE PAER C, HONG-WA C, JEZIORSKI C, et al. Mitogenomics of Hesperelaea,an extinct genus of Oleaceae[J]. Gene, 2016, 594(2):197-202.DOI: 10.1016/j.gene.2016.09.007.
doi: 10.1016/j.gene.2016.09.007 |
[42] |
ANDERMANN T, TORRES JIMÉNEZ M F, MATOS-MARAVÍ P, et al. A guide to carrying out a phylogenomic target sequence capture project[J]. Front Genet, 2019, 10:1407.DOI: 10.3389/fgene.2019.01407.
doi: 10.3389/fgene.2019.01407 |
[43] |
BREWER G E, CLARKSON J J, MAURIN O, et al. Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms[J]. Front Plant Sci, 2019, 10:1102.DOI: 10.3389/fpls.2019.01102.
doi: 10.3389/fpls.2019.01102 |
[44] |
SCHNEIDER J V, JUNGCURT T, CARDOSO D, et al. Phylogenomics of the tropical plant family Ochnaceae using targeted enrichment of nuclear genes and 250+ taxa[J]. TAXON, 2021, 70(1):48-71.DOI: 10.1002/tax.12421.
doi: 10.1002/tax.12421 |
[45] |
GARDNER E M, JOHNSON M G, PEREIRA J T, et al. Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus (Artocarpus,Moraceae)[J]. Syst Biol, 2021, 70(3):558-575.DOI: 10.1093/sysbio/syaa073.
doi: 10.1093/sysbio/syaa073 |
[46] |
VILLAVERDE T, POKORNY L, OLSSON S, et al. Bridging the micro-and macroevolutionary levels in phylogenomics:Hyb-Seq solves relationships from populations to species and above[J]. New Phytol, 2018, 220(2):636-650.DOI: 10.1111/nph.15312.
doi: 10.1111/nph.15312 |
[47] |
HART M L, FORREST L L, NICHOLLS J A, et al. Retrieval of hundreds of nuclear loci from herbarium specimens[J]. TAXON, 2016, 65(5):1081-1092.DOI: 10.12705/655.9.
doi: 10.12705/655.9 |
[48] |
GERNANDT D S, AGUIRRE DUGUA X, VÁZQUEZ-LOBO A, et al. Multi-locus phylogenetics,lineage sorting,and reticulation in Pinus subsection Australes[J]. Am J Bot, 2018, 105(4):711-725.DOI: 10.1002/ajb2.1052.
doi: 10.1002/ajb2.1052 |
[49] | 王文采. 植物标本馆在植物分类学研究中的重要性[J]. 生命世界, 2011(9):1. |
[50] |
BAKKER F T, BIEKER V C, MARTIN M D. Editorial:herbarium collection-based plant evolutionary genetics and genomics[J]. Front Ecol Evol, 2020, 8:603948.DOI: 10.3389/fevo.2020.603948.
doi: 10.3389/fevo.2020.603948 |
[51] |
ALBANIROCCHETTI G, ARMSTRONG C G, ABELI T, et al. Reversing extinction trends: new uses of (old) herbarium specimens to accelerate conservation action on threatened species[J]. New Phytol, 2021, 230(2):433-450.DOI: 10.1111/nph.17133.
doi: 10.1111/nph.17133 |
[52] |
BAKKER F T, ANTONELLI A, CLARKE J A, et al. The global museum: natural history collections and the future of evolutionary science and public education[J]. PeerJ, 2020, 8:e8225.DOI: 10.7717/peerj.8225.
doi: 10.7717/peerj.8225 |
[53] | 马金双. 中国植物分类学的现状与挑战[J]. 科学通报, 2014, 59(6):510-521. |
MA J S. Current status and challenges of Chinese plant taxonomy[J]. Chin Sci Bull, 2014, 59(6):510-521. | |
[54] | 贺鹏, 陈军, 乔格侠. 中国科学院生物标本馆(博物馆)的现状与未来[J]. 中国科学院院刊, 2019, 34(12):1359-1370. |
HE P, CHEN J, QIAO G X. Current situation and future of biological collections of Chinese academy of sciences[J]. Bull Chin Acad Sci, 2019, 34(12):1359-1370.DOI: 10.16418/j.issn.1000-3045.2019.12.005.
doi: 10.16418/j.issn.1000-3045.2019.12.005 |
|
[55] | 胡启明, VIDA J E. 中南半岛紫金牛科植物志预报[J]. 热带亚热带植物学报, 1996(4):1-15. |
HU Q M, VIDA J E. Towards a revision of the Myrsinaceae of Indochina[J]. J Trop Subtrop Bot, 1996(4):1-15. | |
[56] | ZHU X Y, ZHANG R P, HE Y L. An inventory of legume species diversity of Myanmar[M]. Beijing: China Minzu University Press, 2021. |
[57] | 贺鹏, 陈军, 孔宏智, 等. 生物样本: 生物多样性研究与保护的重要支撑[J]. 中国科学院院刊, 2021, 36(4):425-435. |
HE P, CHEN J, KONG H Z, et al. Important supporting role of biological specimen in biodiversity conservation and research[J]. Bull Chin Acad Sci, 2021, 36(4):425-435.DOI: 10.16418/j.issn.1000-3045.20210323001.
doi: 10.16418/j.issn.1000-3045.20210323001 |
|
[58] |
WANDELER P, HOECK P E, KELLER L F. Back to the future: museum specimens in population genetics[J]. Trends Ecol Evol, 2007, 22(12):634-642.DOI: 10.1016/j.tree.2007.08.017.
doi: 10.1016/j.tree.2007.08.017 |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 向民,段一凡,向其柏. 巨紫荆Cercis gigantea Cheng et Keng f.名称考证及其分类处理[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 204-206. |
[3] | 方彦. 树木营养器官分类的研究[J]. 南京林业大学学报(自然科学版), 2002, 26(06): 67-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||