美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分

张庆源, 田野, 王淼, 翟政, 周诗朝

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 40-48.

PDF(1694 KB)
PDF(1694 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 40-48. DOI: 10.12302/j.issn.1000-2006.202104031
研究论文

美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分

作者信息 +

Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage

Author information +
文章历史 +

摘要

【目的】研究美洲黑杨‘I-69’杨(Populus deltoides ‘Lux’)×青杨(P. cathayana)F1代初选无性系苗期表型性状指标的分化,解析不同性状分化的生物学和生态学意义,并对无性系进行类型划分,综合考虑无性系性状以及对应的目标用途,为应对干旱等条件下杨树造林的适地适树(无性系)选择提供参考。【方法】以江苏省宿迁市泗洪县半城马浪湖林场36个‘I-69’杨×青杨F1代无性系3根1干苗为材料,调查苗木的生长量、叶片形态、气孔特征、侧芽萌发情况和分枝特性等17个指标,分析各指标的变异特征,并根据性状变化对无性系进行分类和评价。【结果】F1代无性系的生长和表型指标均具有显著的分化,总体上呈连续的正态分布特征,其中侧枝数与侧芽萌发率的变异系数最大,分别达102.0%和93.5%。相关分析表明,苗木生长指标与叶片形态以及分枝特性指标显著正相关,但与叶片气孔特征无显著相关。叶面积以及叶干质量分别与叶片长宽比呈显著负相关,与上下表皮气孔密度比呈显著正相关。叶片长宽比与叶柄相对长呈显著负相关,同时也与上下表皮气孔密度比呈显著负相关。叶面积和叶干质量的异速生长指数为1.007 4,整体呈等速生长关系,与分枝特性等无相关关系。基于主成分分析方法,利用表型性状可以把36个F1代无性系分为8类,不同类型具有独特的生长、分枝特性和潜在的抗旱性能。【结论】美洲黑杨和青杨杂交F1代无性系表型性状变异丰富,通过早期判断可以针对不同气候和立地条件造林提供无性系选择的初步信息,其中类型Ⅳ中的4个无性系生长量最大、侧枝少,叶型和气孔特性等表型性状表现出一定的耐旱特征,可以选择用于在偏干旱的平原地区或山地进行进一步的适应性造林试验。

Abstract

【Objective】 The variations in growth and phenotypic traits of the F1 hybrid progenies of Populus deltoides ‘Lux’ × P. cathayana were investigated at the cutting-seedling stage to interpret their biological and ecological significance, and to classify the F1 hybrid clones in order to evaluate the resistance of clones and their target uses comprehensively. The results can provide basic information for matching suitable poplar clones with afforestation sites under the background of climate change such as frequent drought. 【Method】 Using the cuttings with one-year stem and three-year root of 36 F1 hybrid progenies in Bancheng-Malanghu Forest Farm of Sihong City, Jiangsu Province, 17 traits on seedling growth, leaf morphology, stomatal properties, and lateral branching characteristics were investigated and the variations of each trait were analyzed. Based on the trait variations, the 36 hybrid clones were categorized and evaluated for potential use on afforestation selection on different sites. 【Result】 The 36 F1 hybrid progeny showed a significant variation on growth and phenotypic traits, expressing continuous normal distributions for each trait in general. Among all the traits, the number of lateral branches and the germination ratio of lateral buds showed the largest coefficients of variations as 102.0% and 93.5%, respectively. A correlation analysis showed that the traits related to growth were positively correlated with those related to leaf morphology and branching characteristics significantly; however, no significant correlation was found with stomatal properties. The single leaf area and dry mass were negatively correlated with the leaf length-to-width ratio, and positively correlated with the upper-to-lower ratio of leaf stomatal density significantly. The leaf length-to-width ratio was also negatively correlated with the relative length of petiole (the ratio of petiole length to leaf length) and the upper-to-lower ratio of leaf stomatal density significantly. Single leaf area and dry mass showed a constant scaling relation for all the 36 clones, with an allometric index of 1.007 4, which was not related to branching characteristics. Using a principal component analysis, the 36 F1 hybrid clones were classified into eight categories with specific properties on growth, branching and potential drought resistance. 【Conclusion】The F1 hybrid progenies of P. deltoides × P. cathayana have abundant variations in growth and phenotypic traits, which provides phenotype-function information for clone choice for afforestation under changing climate and site conditions at an early stage. The four clones in category Ⅳ have highest growth performances, few lateral branches, and phenotypic traits such as leaf morphology and stomatal characteristics that show drought tolerance, and are suitable for further adaptive afforestation experiments in arid plains or mountainous areas.

关键词

南方型杨树 / 杂交子代 / 表型性状 / 叶型 / 异速生长分析 / 分枝特性 / 气孔密度

Key words

southern type poplar / hybrid progeny / phenotypic traits / leaf morphology / allometric scaling analysis / branching characteristics / stomatal density

引用本文

导出引用
张庆源, 田野, 王淼, . 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 40-48 https://doi.org/10.12302/j.issn.1000-2006.202104031
ZHANG Qingyuan, TIAN Ye, WANG Miao, et al. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 40-48 https://doi.org/10.12302/j.issn.1000-2006.202104031
中图分类号: S722   

参考文献

[1]
ISEBRANDS J G, RICHARDSON J. Poplars and willows: trees for society and the environment[M]. Wallingford: CABI, 2014. DOI: 10.1079/9781780641089.00000.
[2]
国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019.
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019.
[3]
陈良华, 赖娟, 胡相伟, 等. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488.
CHEN L H, LAI J, HU X W, et al. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution[J]. Chin J Plant Ecol, 2017, 41(4): 480-488. DOI: 10.17521/cjpe.2016.0210.
[4]
中华人民共和国中央人民政府. 中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见[EB/OL].(2021-02-21). http://www.gov.cn/xinwen/2021-02/21/content_5588098.htm.
[5]
ZHANG Z Z, CHAO B F, CHEN J L, et al. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO[J]. Glob Planet Change, 2015, 126: 35-45. DOI: 10.1016/j.gloplacha.2015.01.002.
[6]
李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37-41.
LI S W, ZHANG Z Y, HE C Z, et al. Progress on hybridization breeding of poplar in China[J]. World For Res, 2004, 17(2): 37-41. DOI: 10.13348/j.cnki.sjlyyj.2004.02.010.
[7]
王明庥, 黄敏仁, 吕士行, 等. 黑杨派新无性系研究: Ⅰ、苗期测定[J]. 南京林业大学学报, 1987, 11(2): 1-12.
WANG M X, HUANG M R, LU S X, et al. Study of new clones of the aegeiros poplar I. nursery testing[J]. J Nanjing For Univ, 1987, 11(2): 1-12.
[8]
符毓秦, 刘玉媛, 李均安, 等. 美洲黑杨杂种无性系: 陕林3、4号杨的选育[J]. 陕西林业科技, 1990(3): 1-9, 13.
FU Y Q, LIU Y Y, LI J N, et al. Cottonwood hybrided clones: selection of ‘Shaanlin No. 3’ and ‘No. 4’[J]. Shaanxi For Sci Technol, 1990(3): 1-9, 13.
[9]
庞金宣, 郑世锴, 刘国兴, 等. 窄冠型杨树新品种的选育[J]. 林业科技通讯, 2001(4): 8-9.
PANG J X, ZHENG S K, LIU G X, et al. Selection of new poplar tree variety with narrow crown type[J]. For Sci Technol, 2001(4): 8-9. DOI: 10.13456/j.cnki.lykt.2001.04.002.
[10]
张玉波, 王庆斌, 李淑玲, 等. 牡丹江地区杨树遗传改良现状、问题及对策[J]. 东北林业大学学报, 2002, 30(4): 65-66.
ZHANG Y B, WANG Q B, LI S L, et al. Present situation, problem and countermeasure of poplar genetic improvement in Mudanjiang region[J]. J Northeast For Univ, 2002, 30(4): 65-66. DOI: 10.3969/j.issn.1000-5382.2002.04.018.
[11]
姬慧娟. 丹红杨与小叶杨杂交子代苗期抗旱相关性状遗传分析[D]. 北京: 中国林业科学研究院, 2015.
JI H J. Genetic analysis of characters related to drought tolerance in seedlings of Populus deltoides cv. ‘Danhong’ × P. simonii progeny[D]. Beijing: Chinese Academy of Forestry, 2015.
[12]
李娟, 郭斌, 安新民. 欧美杨与藏川杨杂交子代苗期性状QTLs定位分析[J]. 西南林业大学学报, 2016, 36(5): 10-15.
LI J, GUO B, AN X M. Mapping of QTLs in hybrid progeny of Populus euramericana and Populus szechuanica var. tibetica[J]. J Southwest For Univ (Nat Sci), 2016, 36(5): 10-15. DOI: 10.11929/j.issn.2095-1914.2016.05.002.
[13]
BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants[J]. Adv Genet, 1965, 13: 115-155. DOI: 10.1016/S0065-2660(08)60048-6.
[14]
PINTADO A, VALLADARES F, SANCHO L G. Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north-and south-facing populations[J]. Ann Bot, 1997, 80(3): 345-353. DOI: 10.1006/anbo.1997.0453.
[15]
潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(2): 175-186.
PAN Y H. Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agron Sin, 2015, 41(2): 175-186. DOI: 10.3724/SP.J.1006.2015.00175.
[16]
PITMAN E J G. A note on normal correlation[J]. Biometrika, 1939, 31(1/2): 9-12. DOI: 10.1093/biomet/31.1-2.9.
[17]
刘静涵, 刘宣劭, 金昊, 等. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2): 11-21.
LIU J H, LIU X S, JIN H, et al. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. J Beijing For Univ, 2018, 40(2): 11-21. DOI: 10.13332/j.1000-1522.20170317.
[18]
CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4): 335. DOI: 10.1071/bt02124.
[19]
STEARNS S C. The role of development in the evolution of life histories[C]. Evol Dev, 1982: 237-258. DOI: 10.1007/978-3-642-45532-2_12.
[20]
杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究: 异速生长分析[J]. 植物研究, 2011, 31(4): 472-477.
YANG D M, MAO L C, PENG G Q. Within-twig biomass allocation in evergreen and deciduous broad-leaved species: allometric scaling analyses[J]. Bull Bot Res, 2011, 31(4): 472-477. DOI: 10.7525/j.issn.1673-5102.2011.04.015.
[21]
WRIGHT I J, REICH P B, WESTOBY M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high-and low-nutrient habitats[J]. Funct Ecol, 2001, 15(4): 423-434. DOI: 10.1046/j.0269-8463.2001.00542.x.
[22]
LIU Z G, LI F R. The generalized Chapman-Richards function and applications to tree and stand growth[J]. J For Res, 2003, 14(1): 19-26. DOI: 10.1007/BF02856757.
[23]
董玉峰. 杨树纸浆材优良无性系选择及高效群体结构研究[D]. 泰安: 山东农业大学, 2014.
DONG Y F. Studies on selection of poplar clones for pulpwood and population structure for high-efficient cultivation[D]. Tai'an: Shandong Agricultural University, 2014.
[24]
REISS M. Plant resource allocation[J]. Trends Ecol Evol, 1989, 4(12): 379-380. DOI: 10.1016/0169-5347(89)90104-3.
[25]
罗敬. 美洲黑杨杂交试验及杂种苗期重要性状变异研究[D]. 南京: 南京林业大学, 2008.
LUO J. Study on Populus deltoides hybridization and genetic variations of seedling important traits of hybrids[D]. Nanjing: Nanjing Forestry University, 2008.
[26]
黄文娟, 李志军, 杨赵平, 等. 胡杨异形叶结构型性状及其与胸径关系[J]. 生态学杂志, 2010, 29(12): 2347-2352.
HUANG W J, LI Z J, YANG Z P, et al. Heteromorphic leaf structural characteristics and their correlations with diameter at breast height of Populus euphratica[J]. Chin J Ecol, 2010, 29(12): 2347-2352. DOI: 10.13292/j.1000-4890.2010.0385.
[27]
WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. DOI: 10.1038/nature02403.
[28]
VENDRAMINI F, DÍAZ S, GURVICH D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytol, 2002, 154(1): 147-157. DOI: 10.1046/j.1469-8137.2002.00357.x.
[29]
XUE Z J, AN S S, CHENG M, et al. Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau[J]. J Plant Interact, 2014, 9(1): 889-900. DOI: 10.1080/17429145.2014.990063.
[30]
高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6): 721-728.
GAO M, DING C J, SU X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. For Res, 2014, 27(6): 721-728. DOI: 10.13275/j.cnki.lykxyj.2014.06.002.
[31]
王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457.
WANG J, ZHU J, AI X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China[J]. Chin J Plant Ecol, 2019, 43(5): 447-457. DOI: 10.17521/cjpe.2018.0228.
[32]
REICH P B, WALTERS M B, ELLSWORTH D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471-482. DOI: 10.1007/s004420050471.
[33]
CASTRO-DÍEZ P, PUYRAVAUD J P, CORNELISSEN J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. DOI: 10.1007/PL00008873.
[34]
NIKLAS K J. A mechanical perspective on foliage leaf form and function[J]. New Phytol, 1999, 143(1): 19-31. DOI: 10.1046/j.1469-8137.1999.00441.x.
[35]
LI G Y, YANG D M, SUN S C. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude[J]. Funct Ecol, 2008, 22(4): 557-564. DOI: 10.1111/j.1365-2435.2008.01407.x.
[36]
晏新安, 符毓秦, 刘玉媛. 美洲黑杨杂种无性系叶片解剖及同工酶分析[J]. 陕西林业科技, 1989(4): 5-9.
YAN X A, FU Y Q, LIU Y Y. Dissecting blade and analysing isoenzyme of hybrid clones of Populus deltoides[J]. Shaanxi For Sci Technol, 1989(4): 5-9.
[37]
李春萍, 李刚, 肖春旺. 异速生长关系在陆地生态系统生物量估测中的应用[J]. 世界科技研究与发展, 2007, 29(2): 51-57.
LI C P, LI G, XIAO C W. The application of allometric relationships in biomass estimation in terrestrial ecosystems[J]. World Sci-Tech R & D, 2007, 29(2): 51-57. DOI: 10.16507/j.issn.1006-6055.2007.02.010.

基金

国家重点研发计划(2016YFD0600402)

编辑: 吴祝华
PDF(1694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/