南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5): 40-48.doi: 10.12302/j.issn.1000-2006.202104031
张庆源1(), 田野1,*(), 王淼2, 翟政1, 周诗朝1
收稿日期:
2021-04-21
修回日期:
2021-08-22
出版日期:
2022-09-30
发布日期:
2022-10-19
通讯作者:
田野
基金资助:
ZHANG Qingyuan1(), TIAN Ye1,*(), WANG Miao2, ZHAI Zheng1, ZHOU Shichao1
Received:
2021-04-21
Revised:
2021-08-22
Online:
2022-09-30
Published:
2022-10-19
Contact:
TIAN Ye
摘要:
【目的】研究美洲黑杨‘I-69’杨(Populus deltoides ‘Lux’)×青杨(P. cathayana)F1代初选无性系苗期表型性状指标的分化,解析不同性状分化的生物学和生态学意义,并对无性系进行类型划分,综合考虑无性系性状以及对应的目标用途,为应对干旱等条件下杨树造林的适地适树(无性系)选择提供参考。【方法】以江苏省宿迁市泗洪县半城马浪湖林场36个‘I-69’杨×青杨F1代无性系3根1干苗为材料,调查苗木的生长量、叶片形态、气孔特征、侧芽萌发情况和分枝特性等17个指标,分析各指标的变异特征,并根据性状变化对无性系进行分类和评价。【结果】F1代无性系的生长和表型指标均具有显著的分化,总体上呈连续的正态分布特征,其中侧枝数与侧芽萌发率的变异系数最大,分别达102.0%和93.5%。相关分析表明,苗木生长指标与叶片形态以及分枝特性指标显著正相关,但与叶片气孔特征无显著相关。叶面积以及叶干质量分别与叶片长宽比呈显著负相关,与上下表皮气孔密度比呈显著正相关。叶片长宽比与叶柄相对长呈显著负相关,同时也与上下表皮气孔密度比呈显著负相关。叶面积和叶干质量的异速生长指数为1.007 4,整体呈等速生长关系,与分枝特性等无相关关系。基于主成分分析方法,利用表型性状可以把36个F1代无性系分为8类,不同类型具有独特的生长、分枝特性和潜在的抗旱性能。【结论】美洲黑杨和青杨杂交F1代无性系表型性状变异丰富,通过早期判断可以针对不同气候和立地条件造林提供无性系选择的初步信息,其中类型Ⅳ中的4个无性系生长量最大、侧枝少,叶型和气孔特性等表型性状表现出一定的耐旱特征,可以选择用于在偏干旱的平原地区或山地进行进一步的适应性造林试验。
中图分类号:
张庆源,田野,王淼,等. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48.
ZHANG Qingyuan, TIAN Ye, WANG Miao, ZHAI Zheng, ZHOU Shichao. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(5): 40-48.DOI: 10.12302/j.issn.1000-2006.202104031.
表1
美洲黑杨×青杨F1代无性系的生长和表型性状变异"
性状 traits | 量符号 symbol | 变异范围 range | 平均值 average | 标准差 SD | 变异 系数/% CV | 偏度 skewness | 峰度 kurtosis | F | P |
---|---|---|---|---|---|---|---|---|---|
苗高/m seedling height | X1 | 2.3~4.7 | 3.3 | 0.5 | 15.7 | 0.7 | 0.7 | 12.2 | <0.001 |
地径/cm ground diameter | X2 | 1.3~3.1 | 2.1 | 0.4 | 20.4 | 0.7 | 0.0 | 8.9 | <0.001 |
总芽数 number of buds | X3 | 54.3~96.7 | 74.2 | 9.2 | 12.4 | 0.4 | 0.3 | 9.1 | <0.001 |
侧枝数 number of lateral branches | X4 | 0.0~19.2 | 5.0 | 5.1 | 102.0 | 1.1 | 0.4 | 6.8 | <0.001 |
侧芽萌发率/% germination ratio of lateral buds | X5 | 0.0~20.0 | 6.2 | 5.8 | 93.5 | 0.8 | -0.6 | 6.4 | <0.001 |
叶长/cm leaf length | X6 | 16.0~27.2 | 21.5 | 2.4 | 11.1 | 0.1 | 0.3 | 6.8 | <0.001 |
叶宽/cm leaf width | X7 | 11.6~22.2 | 16.6 | 2.5 | 15.1 | 0.3 | -0.2 | 9.6 | <0.001 |
叶片长宽比 leaf length-to-width ratio | X8 | 1.0~1.5 | 1.3 | 0.1 | 7.1 | -0.5 | 1.0 | 5.4 | <0.001 |
叶柄长/cm petiole length | X9 | 6.1~14.0 | 8.8 | 1.6 | 17.6 | 1.6 | 3.7 | 24.4 | <0.001 |
叶柄相对长 relative length of petiole | X10 | 0.3~0.6 | 0.4 | 0.1 | 14.3 | 1.5 | 3.8 | 7.5 | <0.001 |
单叶面积/cm2 single leaf area | X11 | 118.0~376.5 | 235.0 | 62.8 | 26.7 | 0.4 | 0.0 | 7.8 | <0.001 |
单叶干质量/g single leaf dry mass | X12 | 1.0~3.3 | 2.1 | 0.5 | 26.0 | 0.2 | 0.0 | 7.3 | <0.001 |
比叶质量/(g·m-2) specific leaf mass | X13 | 70.5~112.8 | 88.4 | 9.9 | 11.2 | 0.5 | 0.2 | 6.8 | <0.001 |
上表皮气孔密度/(个·mm-2) stomatal density of upper leaf epidermis | X14 | 53.6~169.0 | 88.0 | 22.5 | 25.6 | 1.2 | 3.3 | 35.4 | <0.001 |
下表皮气孔密度/(个·mm-2) stomatal density of lower leaf epidermis | X15 | 108.2~175.8 | 137.7 | 16.1 | 11.7 | 0.2 | -0.5 | 16.3 | <0.001 |
上下表皮气孔密度比 upper-to-lower ratio of leaf stomatal density | X16 | 0.4~1.0 | 0.6 | 0.2 | 25.0 | 0.5 | -0.2 | 50.7 | <0.001 |
总气孔密度/(个·mm-2) total leaf stomatal density | X17 | 88.6~151.8 | 112.9 | 14.3 | 12.7 | 0.6 | 0.0 | 17.6 | <0.001 |
表2
美洲黑杨×青杨F1代无性系的生长和表型性状指标的相关性(n=108)"
性状 traits | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X2 | 0.90** | |||||||||||||||
X3 | 0.57** | 0.41* | ||||||||||||||
X4 | 0.63** | 0.61** | 0.79** | |||||||||||||
X5 | 0.62** | 0.64** | 0.74** | 0.99** | ||||||||||||
X6 | 0.71** | 0.66** | 0.39* | 0.41* | 0.42* | |||||||||||
X7 | 0.69** | 0.66** | 0.37* | 0.42* | 0.43** | 0.88** | ||||||||||
X8 | -0.37* | -0.38* | -0.19 | -0.27 | -0.29 | -0.32 | -0.72** | |||||||||
X9 | 0.62** | 0.63** | 0.14 | 0.25 | 0.26 | 0.55** | 0.69** | -0.56** | ||||||||
X10 | 0.18 | 0.23 | -0.16 | -0.03 | -0.02 | -0.11 | 0.15 | -0.44** | 0.76** | |||||||
X11 | 0.70** | 0.68** | 0.37* | 0.43** | 0.44** | 0.94** | 0.98** | -0.59** | 0.65** | 0.05 | ||||||
X12 | 0.54** | 0.56** | 0.11 | 0.17 | 0.20 | 0.91** | 0.88** | -0.44** | 0.56** | -0.03 | 0.92** | |||||
X13 | -0.38* | -0.26 | -0.64** | -0.59** | -0.57** | -0.10 | -0.25 | 0.37* | -0.21 | -0.18 | -0.22 | 0.19 | ||||
X14 | 0.13 | 0.15 | -0.07 | -0.00 | -0.01 | 0.20 | 0.48** | -0.67** | 0.51** | 0.48** | 0.39* | 0.37* | -0.07 | |||
X15 | -0.24 | -0.42* | 0.03 | -0.11 | -0.14 | -0.14 | -0.22 | 0.21 | -0.24 | -0.16 | -0.22 | -0.18 | 0.06 | 0.07 | ||
X16 | 0.28 | 0.37* | -0.01 | 0.10 | 0.10 | 0.32 | 0.60** | -0.72** | 0.59** | 0.46** | 0.53** | 0.49** | -0.10 | 0.87** | -0.39* | |
X17 | -0.03 | -0.12 | -0.04 | -0.07 | -0.09 | 0.08 | 0.25 | -0.41* | 0.27 | 0.28 | 0.18 | 0.19 | -0.03 | 0.83** | 0.62** | 0.46** |
表3
前3个主成分对应的因子载荷(旋转后)"
性状 traits | PC1 | PC2 | PC3 | 性状 traits | PC1 | PC2 | PC3 |
---|---|---|---|---|---|---|---|
X3 | 0.20 | -0.09 | 0.86 | X11 | 0.91 | 0.28 | 0.24 |
X4 | 0.26 | -0.02 | 0.91 | X12 | 0.96 | 0.20 | -0.10 |
X5 | 0.29 | -0.02 | 0.88 | X13 | 0.11 | -0.21 | -0.83 |
X6 | 0.93 | 0.05 | 0.20 | X14 | 0.17 | 0.92 | -0.08 |
X7 | 0.86 | 0.40 | 0.26 | X15 | -0.36 | 0.07 | -0.03 |
X8 | -0.36 | -0.72 | -0.25 | X16 | 0.40 | 0.78 | -0.02 |
X9 | 0.49 | 0.64 | 0.15 | X17 | -0.07 | 0.77 | -0.08 |
X10 | -0.14 | 0.75 | 0.03 |
表4
F1代无性系类型划分及基本性状描述"
类型 category | 无性系数 number of clones | 表型性状 phenotypic traits | 生长性状 growth traits |
---|---|---|---|
Ⅰ | 3 | 侧芽萌发率接近0,几乎无侧枝,叶片长宽比小,上下表皮气孔密度比大 | 生长量大 |
Ⅱ | 6 | 侧芽萌发率较高,侧枝多,叶片长宽比小,上下表皮气孔密度比大 | 生长量大 |
Ⅲ | 5 | 侧芽萌发率高,侧枝多,叶片长宽比大,上下表皮气孔密度比小 | 生长量大 |
Ⅳ | 4 | 侧芽萌发率较低,侧枝较少,叶片长宽比大,上下表皮气孔密度比小 | 生长量最大 |
Ⅴ | 5 | 侧芽萌发率较低,侧枝较少,叶片长宽比小,上下表皮气孔密度比大 | 生长量较小 |
Ⅵ | 3 | 侧芽萌发率低,侧枝少,叶片长宽比小,上下表皮气孔密度比大 | 生长量较小 |
Ⅶ | 7 | 侧芽萌发率较低,侧枝较少,叶片长宽比大,上下表皮气孔密度比小 | 生长量较小 |
Ⅷ | 3 | 侧芽萌发率较高,侧枝多,叶片长宽比大,上下表皮气孔密度比小 | 生长量较小 |
[1] | ISEBRANDS J G, RICHARDSON J. Poplars and willows: trees for society and the environment[M]. Wallingford: CABI, 2014. DOI: 10.1079/9781780641089.00000. |
[2] | 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019. |
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019. | |
[3] | 陈良华, 赖娟, 胡相伟, 等. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. |
CHEN L H, LAI J, HU X W, et al. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution[J]. Chin J Plant Ecol, 2017, 41(4): 480-488. DOI: 10.17521/cjpe.2016.0210. | |
[4] | 中华人民共和国中央人民政府. 中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见[EB/OL].(2021-02-21). http://www.gov.cn/xinwen/2021-02/21/content_5588098.htm. |
[5] | ZHANG Z Z, CHAO B F, CHEN J L, et al. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO[J]. Glob Planet Change, 2015, 126: 35-45. DOI: 10.1016/j.gloplacha.2015.01.002. |
[6] | 李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37-41. |
LI S W, ZHANG Z Y, HE C Z, et al. Progress on hybridization breeding of poplar in China[J]. World For Res, 2004, 17(2): 37-41. DOI: 10.13348/j.cnki.sjlyyj.2004.02.010. | |
[7] | 王明庥, 黄敏仁, 吕士行, 等. 黑杨派新无性系研究: Ⅰ、苗期测定[J]. 南京林业大学学报, 1987, 11(2): 1-12. |
WANG M X, HUANG M R, LU S X, et al. Study of new clones of the aegeiros poplar I. nursery testing[J]. J Nanjing For Univ, 1987, 11(2): 1-12. | |
[8] | 符毓秦, 刘玉媛, 李均安, 等. 美洲黑杨杂种无性系: 陕林3、4号杨的选育[J]. 陕西林业科技, 1990(3): 1-9, 13. |
FU Y Q, LIU Y Y, LI J N, et al. Cottonwood hybrided clones: selection of ‘Shaanlin No. 3’ and ‘No. 4’[J]. Shaanxi For Sci Technol, 1990(3): 1-9, 13. | |
[9] | 庞金宣, 郑世锴, 刘国兴, 等. 窄冠型杨树新品种的选育[J]. 林业科技通讯, 2001(4): 8-9. |
PANG J X, ZHENG S K, LIU G X, et al. Selection of new poplar tree variety with narrow crown type[J]. For Sci Technol, 2001(4): 8-9. DOI: 10.13456/j.cnki.lykt.2001.04.002. | |
[10] | 张玉波, 王庆斌, 李淑玲, 等. 牡丹江地区杨树遗传改良现状、问题及对策[J]. 东北林业大学学报, 2002, 30(4): 65-66. |
ZHANG Y B, WANG Q B, LI S L, et al. Present situation, problem and countermeasure of poplar genetic improvement in Mudanjiang region[J]. J Northeast For Univ, 2002, 30(4): 65-66. DOI: 10.3969/j.issn.1000-5382.2002.04.018. | |
[11] | 姬慧娟. 丹红杨与小叶杨杂交子代苗期抗旱相关性状遗传分析[D]. 北京: 中国林业科学研究院, 2015. |
JI H J. Genetic analysis of characters related to drought tolerance in seedlings of Populus deltoides cv. ‘Danhong’ × P. simonii progeny[D]. Beijing: Chinese Academy of Forestry, 2015. | |
[12] | 李娟, 郭斌, 安新民. 欧美杨与藏川杨杂交子代苗期性状QTLs定位分析[J]. 西南林业大学学报, 2016, 36(5): 10-15. |
LI J, GUO B, AN X M. Mapping of QTLs in hybrid progeny of Populus euramericana and Populus szechuanica var. tibetica[J]. J Southwest For Univ (Nat Sci), 2016, 36(5): 10-15. DOI: 10.11929/j.issn.2095-1914.2016.05.002. | |
[13] | BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants[J]. Adv Genet, 1965, 13: 115-155. DOI: 10.1016/S0065-2660(08)60048-6. |
[14] | PINTADO A, VALLADARES F, SANCHO L G. Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north-and south-facing populations[J]. Ann Bot, 1997, 80(3): 345-353. DOI: 10.1006/anbo.1997.0453. |
[15] | 潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(2): 175-186. |
PAN Y H. Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agron Sin, 2015, 41(2): 175-186. DOI: 10.3724/SP.J.1006.2015.00175. | |
[16] | PITMAN E J G. A note on normal correlation[J]. Biometrika, 1939, 31(1/2): 9-12. DOI: 10.1093/biomet/31.1-2.9. |
[17] | 刘静涵, 刘宣劭, 金昊, 等. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2): 11-21. |
LIU J H, LIU X S, JIN H, et al. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. J Beijing For Univ, 2018, 40(2): 11-21. DOI: 10.13332/j.1000-1522.20170317. | |
[18] | CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4): 335. DOI: 10.1071/bt02124. |
[19] | STEARNS S C. The role of development in the evolution of life histories[C]. Evol Dev, 1982: 237-258. DOI: 10.1007/978-3-642-45532-2_12. |
[20] | 杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究: 异速生长分析[J]. 植物研究, 2011, 31(4): 472-477. |
YANG D M, MAO L C, PENG G Q. Within-twig biomass allocation in evergreen and deciduous broad-leaved species: allometric scaling analyses[J]. Bull Bot Res, 2011, 31(4): 472-477. DOI: 10.7525/j.issn.1673-5102.2011.04.015. | |
[21] | WRIGHT I J, REICH P B, WESTOBY M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high-and low-nutrient habitats[J]. Funct Ecol, 2001, 15(4): 423-434. DOI: 10.1046/j.0269-8463.2001.00542.x. |
[22] | LIU Z G, LI F R. The generalized Chapman-Richards function and applications to tree and stand growth[J]. J For Res, 2003, 14(1): 19-26. DOI: 10.1007/BF02856757. |
[23] | 董玉峰. 杨树纸浆材优良无性系选择及高效群体结构研究[D]. 泰安: 山东农业大学, 2014. |
DONG Y F. Studies on selection of poplar clones for pulpwood and population structure for high-efficient cultivation[D]. Tai'an: Shandong Agricultural University, 2014. | |
[24] | REISS M. Plant resource allocation[J]. Trends Ecol Evol, 1989, 4(12): 379-380. DOI: 10.1016/0169-5347(89)90104-3. |
[25] | 罗敬. 美洲黑杨杂交试验及杂种苗期重要性状变异研究[D]. 南京: 南京林业大学, 2008. |
LUO J. Study on Populus deltoides hybridization and genetic variations of seedling important traits of hybrids[D]. Nanjing: Nanjing Forestry University, 2008. | |
[26] | 黄文娟, 李志军, 杨赵平, 等. 胡杨异形叶结构型性状及其与胸径关系[J]. 生态学杂志, 2010, 29(12): 2347-2352. |
HUANG W J, LI Z J, YANG Z P, et al. Heteromorphic leaf structural characteristics and their correlations with diameter at breast height of Populus euphratica[J]. Chin J Ecol, 2010, 29(12): 2347-2352. DOI: 10.13292/j.1000-4890.2010.0385. | |
[27] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. DOI: 10.1038/nature02403. |
[28] | VENDRAMINI F, DÍAZ S, GURVICH D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytol, 2002, 154(1): 147-157. DOI: 10.1046/j.1469-8137.2002.00357.x. |
[29] | XUE Z J, AN S S, CHENG M, et al. Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau[J]. J Plant Interact, 2014, 9(1): 889-900. DOI: 10.1080/17429145.2014.990063. |
[30] | 高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6): 721-728. |
GAO M, DING C J, SU X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. For Res, 2014, 27(6): 721-728. DOI: 10.13275/j.cnki.lykxyj.2014.06.002. | |
[31] | 王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457. |
WANG J, ZHU J, AI X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China[J]. Chin J Plant Ecol, 2019, 43(5): 447-457. DOI: 10.17521/cjpe.2018.0228. | |
[32] | REICH P B, WALTERS M B, ELLSWORTH D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471-482. DOI: 10.1007/s004420050471. |
[33] | CASTRO-DÍEZ P, PUYRAVAUD J P, CORNELISSEN J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. DOI: 10.1007/PL00008873. |
[34] | NIKLAS K J. A mechanical perspective on foliage leaf form and function[J]. New Phytol, 1999, 143(1): 19-31. DOI: 10.1046/j.1469-8137.1999.00441.x. |
[35] | LI G Y, YANG D M, SUN S C. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude[J]. Funct Ecol, 2008, 22(4): 557-564. DOI: 10.1111/j.1365-2435.2008.01407.x. |
[36] | 晏新安, 符毓秦, 刘玉媛. 美洲黑杨杂种无性系叶片解剖及同工酶分析[J]. 陕西林业科技, 1989(4): 5-9. |
YAN X A, FU Y Q, LIU Y Y. Dissecting blade and analysing isoenzyme of hybrid clones of Populus deltoides[J]. Shaanxi For Sci Technol, 1989(4): 5-9. | |
[37] | 李春萍, 李刚, 肖春旺. 异速生长关系在陆地生态系统生物量估测中的应用[J]. 世界科技研究与发展, 2007, 29(2): 51-57. |
LI C P, LI G, XIAO C W. The application of allometric relationships in biomass estimation in terrestrial ecosystems[J]. World Sci-Tech R & D, 2007, 29(2): 51-57. DOI: 10.16507/j.issn.1006-6055.2007.02.010. |
[1] | 陶涛, 刘耀辉, 薛中俊, 高越, 袁璐鸿, 郑芬, 吴炜, 黄界颍. 7株香榧优株坚果表型性状与品质特性的研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 37-44. |
[2] | 张赟齐, 董宁光, 郝艳宾, 陈永浩, 张俊佩, 侯智霞, 苏淑钗, 吴佳庆, 齐建勋. 109份丰产核桃单株坚果表型多样性分析及性状评价[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 87-96. |
[3] | 程娟, 丁访军, 谭正洪, 廖立国, 周汀, 崔迎春. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 125-132. |
[4] | 袁金玲, 马婧瑕, 钟远标, 岳晋军. 基于SSR标记的丛生竹杂种鉴定、遗传分析和指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 10-18. |
[5] | 朱显亮, 周长品, 贾翠蓉, 翁启杰, 李发根. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150. |
[6] | 田力, 徐骋炜, 尚旭岚, 洑香香. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 21-28. |
[7] | 刘曙光,段佩玲,张利霞,段祥光,郭丽丽,刘伟,侯小改. 氮素形态对‘凤丹’表型性状、光合及产量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 161-168. |
[8] | 麦宝莹,洪舟,徐大平,罗明道,张宁南,黄锡钊. 不同家系交趾黄檀种子萌发及幼苗生长差异[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 153-160. |
[9] | 张琳,郭丽丽,郭大龙,侯小改. 牡丹杂交F1代性状分离规律及混合遗传分析[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 51-60. |
[10] | 陈茜,范佳露,王宝腾,王瑞琪,袁斌玲,魏子涵,陈颖. 落叶型冬青雌、雄株茎段的组织培养技术[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 181-186. |
[11] | 靳高中,任华东,姚小华,王开良,杨水平. 滇西腾冲红花油茶天然居群种实表型性状变异分析[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 53-58. |
[12] | 赖焕林;邱进清;陈敬德;林文奖;陈泽祥. 马尾松种子园嫁接植株的分枝与结实特性探讨[J]. 南京林业大学学报(自然科学版), 1998, 22(03): 86-90. |
[13] | 梁军;徐锡增;吕士行. 南方型杨树工业用材林经营模型系统PMOES的建立[J]. 南京林业大学学报(自然科学版), 1997, 21(02): 18-21. |
[14] | 曹福亮. 林分密度对南方型杨树木材性质的影响[J]. 南京林业大学学报(自然科学版), 1994, 18(02): 41-46. |
[15] | 李火根,黄敏仁,王明庥. 美洲黑杨×欧美杨F_1无性系一级分枝特性与生长及干形关系的研究[J]. 南京林业大学学报(自然科学版), 1994, 18(01): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||