南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 207-214.doi: 10.12302/j.issn.1000-2006.202105039
所属专题: 南京林业大学120周年校庆特刊
收稿日期:
2021-05-24
修回日期:
2021-10-02
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
魏强
基金资助:
QUE Feng(), ZHA Ruofei, WEI Qiang()
Received:
2021-05-24
Revised:
2021-10-02
Online:
2022-11-30
Published:
2022-11-24
Contact:
WEI Qiang
摘要:
纤维素是自然界分布最广、含量最多的一种多糖,占植物碳含量的50%以上。在植物中,纤维素是细胞壁的主要组分和承重元件,由纤维素合成酶复合体(CSCs)在质膜上催化合成。笔者综述了纤维素合成酶(CESA)的类型、结构、互作基因及关于CSCs结构、组装、运输的研究进展。植物细胞壁分为初生细胞壁和次生细胞壁,不同类型细胞壁中控制纤维素合成的CSCs由不同类型的纤维素合成酶(CESA)构成,且CSCs中CESAs的比例可能具有物种特异性。大多数植物中CESAs的化学计量比都是1∶1∶1,但在杨树的应力木组织中次生细胞壁相关CESAs的化学计量比为8∶3∶1。CSCs在高尔基体上装配并通过跨高尔基体网络分泌到质膜,而质膜上CSCs的丰度和分布很大程度上决定了纤维素的定向沉积。纤维素的合成和定向沉积在植物生长发育及抵御胁迫过程中发挥重要的作用。目前已发现多个关键基因通过与CSCs中特定CESA互作来识别和调控CSCs的运输。CESAs基因的表达水平也是影响纤维素合成的重要因素,油菜素甾醇等激素能通过调控CESAs的表达来控制纤维素的合成。未来在CESA功能、CSCs结构模型、CSCs中不同类型CESA所占比例、CSCs组装和运输与纤维素合成速度之间的关系,以及CESA基因的表达调控机制等方面可运用基因编辑技术进一步开展工作,从而完善植物纤维素合成的调控机制。
中图分类号:
却枫,查若飞,魏强. 植物纤维素合成酶研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 207-214.
QUE Feng, ZHA Ruofei, WEI Qiang. Advances in research of cellulose synthase genes in plants[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 207-214.DOI: 10.12302/j.issn.1000-2006.202105039.
表1
与CESA互作的基因和蛋白"
基因或蛋白名称 gene or protein | 纤维素合成酶基因 CESA gene | 参考文献 reference |
---|---|---|
AtBES1 | AtCESA1、AtCESA3和AtCESA6; AtCESA4和AtCESA8 | [ |
BIN2 | AtCESA1 | [ |
HDG2 | AtCESA5 | [ |
CSI1 | AtCESA1、AtCESA3和AtCESA6 | [ |
μ2 | AtCESA6 | [ |
TML | AtCESA6 | [ |
TPLATE | AtCESA6 | [ |
SHOU4和 SHOU4L | AtCESA1(强);AtCESA3(弱); AtCESA6(不明显) | [ |
KOR1 | AtCESA1、AtCESA3和AtCESA6; AtCESA4和AtCESA8 | [ |
CC1和CC2 | AtCESA1、AtCESA3、AtCESA6 | [ |
[1] | SIRÓ I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials:a review[J]. Cellulose, 2010, 17(3):459-494.DOI:10.1007/s10570-010-9405-y. |
[2] | ABE K, YANO H. Comparison of the characteristics of cellulose microfibril aggregates of wood,rice straw and potato tuber[J]. Cellulose, 2009, 16(6):1017-1023.DOI:10.1007/s10570-009-9334-9. |
[3] | POLKO J K, KIEBER J J. The regulation of cellulose biosynthesis in plants[J]. Plant Cell, 2019, 31(2):282-296. DOI: 10.1105/tpc.18.00760. |
[4] | SAXENA I M, BROWN R M. Cellulose biosynthesis:current views and evolving concepts[J]. Ann Bot, 2005, 96(1):9-21.DOI:10.1093/aob/mci155. |
[5] | 赵广荣, 刘进元. 棉纤维形态建成研究的新进展[J]. 棉花学报, 2002, 14(2):121-125. |
ZHAO G R, LIU J Y. Progress in studies on cotton fiber morphogenesis[J]. Cotton Sci, 2002, 14(2):121-125.DOI:10.3969/j.issn.1002-7807.2002.02.013. | |
[6] | SCHNEIDER R, HANAK T, PERSSON S, et al. Cellulose and callose synthesis and organization in focus,what’s new?[J]. Curr Opin Plant Biol, 2016, 34:9-16.DOI:10.1016/j.pbi.2016.07.007. |
[7] | SOMERVILLE C. Cellulose synthesis in higher plants[J]. Annu Rev Cell Dev Biol, 2006, 22:53-78.DOI:10.1146/annurev.cellbio.22.022206.160206. |
[8] | BROWN R M Jr. Cellulose microfibril assembly and orientation:recent developments[J]. J Cell Sci Suppl, 1985, 2:13-32.DOI:10.1242/jcs.1985.supplement_2.2. |
[9] | NEWMAN R H, HILL S J, HARRIS P J. Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls[J]. Plant Physiol, 2013, 163(4):1558-1567.DOI:10.1104/pp.113.228262. |
[10] | NIXON B T, MANSOURI K, SINGH A, et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex[J]. Sci Rep, 2016, 6:28696.DOI:10.1038/srep28696. |
[11] | FERNANDES A N, THOMAS L H, ALTANER C M, et al. Nanostructure of cellulose microfibrils in spruce wood[J]. Proc Natl Acad Sci USA, 2011, 108(47):E1195-E1203.DOI:10.1073/pnas.1108942108. |
[12] | RICHMOND T. Higher plant cellulose synthases[J]. Genome Biol, 2000, 1(4):review3001.DOI:10.1186/gb-2000-1-4-reviews3001. |
[13] | BI Y C, HUBBARD C, PURUSHOTHAM P, et al. Insights into the structure and function of membrane-integrated processive glycosyltransferases[J]. Curr Opin Struct Biol, 2015, 34:78-86.DOI:10.1016/j.sbi.2015.07.008. |
[14] | PEAR J R, KAWAGOE Y, SCHRECKENGOST W E, et al. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase[J]. Proc Natl Acad Sci USA, 1996, 93(22):12637-12642.DOI:10.1073/pnas.93.22.12637. |
[15] | ENDLER A, PERSSON S. Cellulose synthases and synthesis in Arabidopsis[J]. Mol Plant, 2011, 4(2):199-211.DOI:10.1093/mp/ssq079. |
[16] | KUMAR M, THAMMANNAGOWDA S, BULONE V, et al. An update on the nomenclature for the cellulose synthase genes in Populus[J]. Trends Plant Sci, 2009, 14(5):248-254.DOI:10.1016/j.tplants.2009.02.004. |
[17] | WANG L Q, GUO K, LI Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010, 10:282.DOI:10.1186/1471-2229-10-282. |
[18] | BEECKMAN T, PRZEMECK G K H, STAMATIOU G, et al. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis[J]. Plant Physiol, 2002, 130(4):1883-1893.DOI:10.1104/pp.102.010603. |
[19] | TAYLOR N G, HOWELLS R M, HUTTLY A K, et al. Interactions among three distinct CesA proteins essential for cellulose synthesis[J]. Proc Natl Acad Sci USA, 2003, 100(3):1450-1455.DOI:10.1073/pnas.0337628100. |
[20] | TAYLOR N G, LAURIE S, TURNER S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. Plant Cell, 2000, 12(12):2529-2540.DOI:10.1105/tpc.12.12.2529. |
[21] | KUMAR M, MISHRA L, CARR P, et al. Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis[J]. Plant Physiol, 2018, 177(1):151-167.DOI:10.1104/pp.18.00263. |
[22] | ZHANG X Y, DOMINGUEZ P G, KUMAR M, et al. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce[J]. Plant Physiol, 2018, 177(3):1096-1107.DOI:10.1104/pp.18.00394. |
[23] | PURUSHOTHAM P, HO R, ZIMMER J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex[J]. Science, 2020, 369(6507):1089-1094.DOI:10.1126/science.abb2978. |
[24] | SAURIN A J, BORDEN K L B, BODDY M N, et al. Does this have a familiar RING?[J]. Trends Biochem Sci, 1996, 21(6):208-214.DOI:10.1016/S0968-0004(96)80017-X. |
[25] | PARK S, DING S Y. The N-terminal zinc finger of CELLULOSE SYNTHASE6 is critical in defining its functional properties by determining the level of homodimerization in Arabidopsis[J]. Plant J, 2020, 103(5):1826-1838.DOI:10.1111/tpj.14870. |
[26] | RAMÍREZ-RODRÍGUEZ E A, MCFARLANE H E. Insights from the structure of a plant cellulose synthase trimer[J]. Trends Plant Sci, 2021, 26(1):4-7.DOI:10.1016/j.tplants.2020.09.010. |
[27] | TIMMERS J, VERNHETTES S, DESPREZ T, et al. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall[J]. FEBS Lett, 2009, 583(6):978-982.DOI:10.1016/j.febslet.2009.02.035. |
[28] | GUTIERREZ R, LINDEBOOM J J, PAREDEZ A R, et al. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments[J]. Nat Cell Biol, 2009, 11(7):797-806.DOI:10.1038/ncb1886. |
[29] | HERTH W. Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation of Spirogyra[J]. Planta, 1983, 159(4):347-356.DOI:10.1007/BF00393174. |
[30] | HILL J L, HAMMUDI M B, MING T E. The Arabidopsis cellulose synthase complex:a proposed hexamer of CESA trimers in an equimolar stoichiometry[J]. Plant Cell, 2014, 26(12):4834-4842.DOI:10.1105/tpc.114.131193. |
[31] | KUBICKI J D, YANG H, SAWADA D, et al. The shape of native plant cellulose microfibrils[J]. Sci Rep, 2018, 8(1):13983.DOI:10.1038/s41598-018-32211-w. |
[32] | THOMAS L H, FORSYTH V T, STURCOVÁ A, et al. Structure of cellulose microfibrils in primary cell walls from collenchyma[J]. Plant Physiol, 2013, 161(1):465-476.DOI:10.1104/pp.112.206359. |
[33] | DOBLIN M S, KUREK I, JACOB-WILK D, et al. Cellulose biosynthesis in plants:from genes to rosettes[J]. Plant Cell Physiol, 2002, 43(12):1407-1420.DOI:10.1093/pcp/pcf164. |
[34] | DING S Y, HIMMEL M E. The maize primary cell wall microfibril: a new model derived from direct visualization[J]. J Agric Food Chem, 2006, 54(3):597-606.DOI:10.1021/jf051851z. |
[35] | MÜSSIG C. Brassinosteroid-promoted growth[J]. Plant Biol (Stuttg),2005, 7(2):110-117.DOI:10.1055/s-2005-837493. |
[36] | OH E, ZHU J Y, BAI M Y, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. eLife, 2014, 3:e03031.DOI:10.7554/eLife.03031. |
[37] | XIE L Q, YANG C J, WANG X L. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis[J]. J Exp Bot, 2011, 62(13):4495-4506.DOI:10.1093/jxb/err164. |
[38] | SÁNCHEZ-RODRÍGUEZ C, KETELAAR K, SCHNEIDER R, et al. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1[J]. Proc Natl Acad Sci USA, 2017, 114(13):3533-3538.DOI:10.1073/pnas.1615005114. |
[39] | QUE F, KHADR A, WANG G L, et al. Exogenous brassinosteroids altered cell length,gibberellin content,and cellulose deposition in promoting carrot petiole elongation[J]. Plant Sci, 2018, 277:110-120.DOI:10.1016/j.plantsci.2018.10.010. |
[40] | GEHRING W J, AFFOLTER M, BÜRGLIN T. Homeodomain proteins[J]. Annu Rev Biochem, 1994, 63:487-526.DOI:10.1146/annurev.bi.63.070194.002415. |
[41] | KONG Y Z, PEI S Q, WANG Y P, et al. HOMEODOMAIN GLABROUS2 regulates cellulose biosynthesis in seed coat mucilage by activating CELLULOSE SYNTHASE5[J]. Plant Physiol, 2021, 185(1):77-93.DOI:10.1093/plphys/kiaa007. |
[42] | GU Y, KAPLINSKY N, BRINGMANN M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis[J]. Proc Natl Acad Sci USA, 2010, 107(29):12866-12871.DOI:10.1073/pnas.1007092107. |
[43] | YANG Q H, WAN X S, WANG J Y, et al. The loss of function of HEL,which encodes a cellulose synthase interactive protein,causes helical and vine-like growth of tomato[J]. Hortic Res, 2020, 7(1):180.DOI:10.1038/s41438-020-00402-0. |
[44] | BASHLINE L, LI S D, ANDERSON C T, et al. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2,a clathrin-mediated endocytosis adaptin[J]. Plant Physiol, 2013, 163(1):150-160.DOI:10.1104/pp.113.221234. |
[45] | GADEYNE A, SÁNCHEZ-RODRÍGUEZ C, VANNESTE S, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants[J]. Cell, 2014, 156(4):691-704.DOI:10.1016/j.cell.2014.01.039. |
[46] | SÁNCHEZ-RODRÍGUEZ C, SHI Y Y, KESTEN C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex[J]. Mol Plant, 2018, 11(2):346-349.DOI:10.1016/j.molp.2017.11.012. |
[47] | POLKO J K, BARNES W J, VOINICIUC C, et al. SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane[J]. Curr Biol, 2018, 28(19):3174-3182.e6.DOI:10.1016/j.cub.2018.07.076. |
[48] | ZUO J, NIU Q W, NISHIZAWA N, et al. KORRIGAN,an Arabidopsis endo-1,4-beta-glucanase,localizes to the cell plate by polarized targeting and is essential for cytokinesis[J]. Plant Cell, 2000, 12(7):1137-1152.DOI:10.1105/tpc.12.7.1137. |
[49] | MANSOORI N, TIMMERS J, DESPREZ T, et al. KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery[J]. PLoS One, 2014, 9(11):e112387.DOI:10.1371/journal.pone.0112387. |
[50] | ENDLER A, KESTEN C, SCHNEIDER R, et al. A mechanism for sustained cellulose synthesis during salt stress[J]. Cell, 2015, 162(6):1353-1364.DOI:10.1016/j.cell.2015.08.028. |
[51] | HAIGLER C H, BROWN R M. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture[J]. Protoplasma, 1986, 134(2/3):111-120.DOI:10.1007/BF01275709. |
[52] | PAREDEZ A R, SOMERVILLE C R, EHRHARDT D W. Visualization of cellulose synthase demonstrates functional association with microtubules[J]. Science, 2006, 312(5779):1491-1495.DOI:10.1126/science.1126551. |
[53] | KUREK I, KAWAGOE Y, JACOB-WILK D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains[J]. Proc Natl Acad Sci USA, 2002, 99(17):11109-11114.DOI:10.1073/pnas.162077099. |
[54] | ZHANG X N, XUE Y, GUAN Z Y, et al. Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum[J]. Plant Biotechnol J, 2021, 19(8):1579-1587.DOI:10.1111/pbi.13571. |
[55] | QIAO Z, LAMPUGNANI E R, YAN X F, et al. Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis[J]. Proc Natl Acad Sci USA, 2021, 118(11):e2024015118.DOI:10.1073/pnas.2024015118. |
[56] | VELLOSILLO T, DINNENY J R, SOMERVILLE C R, et al. TRANVIA (TVA) facilitates cellulose synthase trafficking and delivery to the plasma membrane[J]. Proc Natl Acad Sci USA, 2021, 118(30):e2021790118.DOI:10.1073/pnas.2021790118. |
[57] | MCFARLANE H E, MUTWIL-ANDERWALD D, VERBANCIC J, et al. A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis[J]. Dev Cell, 2021, 56(10):1484-1497.e7.DOI:10.1016/j.devcel.2021.03.031. |
[58] | CROWELL E F, BISCHOFF V, DESPREZ T, et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis[J]. Plant Cell, 2009, 21(4):1141-1154.DOI:10.1105/tpc.108.065334. |
[59] | LEI L, SINGH A, BASHLINE L, et al. CELLULOSE SYNTHASE INTERACTIVE1 is required for fast recycling of cellulose synthase complexes to the plasma membrane in Arabidopsis[J]. Plant Cell, 2015, 27(10):2926-2940.DOI:10.1105/tpc.15.00442. |
[60] | CHAN J, COEN E. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories[J]. Curr Biol, 2020, 30(5):941-947.e2.DOI:10.1016/j.cub.2019.12.066. |
[61] | MCFARLANE H E, DÖRING A, PERSSON S. The cell biology of cellulose synthesis[J]. Annu Rev Plant Biol, 2014, 65:69-94.DOI:10.1146/annurev-arplant-050213-040240. |
[62] | BECK M, ZHOU J, FAULKNER C, et al. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting[J]. Plant Cell, 2012, 24(10):4205-4219.DOI:10.1105/tpc.112.100263. |
[63] | WANG C, YAN X, CHEN Q, et al. Clathrin light chains regulate clathrin-mediated trafficking,auxin signaling,and development in Arabidopsis[J]. Plant Cell, 2013, 25(2):499-516.DOI:10.1105/tpc.112.108373. |
[64] | MCMAHON H T, BOUCROT E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis[J]. Nat Rev Mol Cell Biol, 2011, 12(8):517-533.DOI:10.1038/nrm3151. |
[65] | COCUCCI E, AGUET F, BOULANT S, et al. The first five seconds in the life of a clathrin-coated pit[J]. Cell, 2012, 150(3):495-507.DOI:10.1016/j.cell.2012.05.047. |
[66] | BASHLINE L, LI S D, ZHU X Y, et al. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis[J]. Proc Natl Acad Sci USA, 2015, 112(41):12870-12875.DOI:10.1073/pnas.1509292112. |
[67] | FUJIMOTO M, SUDA Y, VERNHETTES S, et al. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(2):287-298.DOI:10.1093/pcp/pcu195. |
[68] | LUO Y, SCHOLL S, DOERING A, et al. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis[J]. Nat Plants, 2015, 1:15094.DOI:10.1038/nplants.2015.94. |
[69] | JOHANSEN J N, CHOW C M, MOORE I, et al. AtRAB-H1b and AtRAB-H1c GTPases,homologues of the yeast Ypt6,target reporter proteins to the Golgi when expressed in Nicotiana tabacum and Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(11):3179-3193.DOI:10.1093/jxb/erp153. |
[70] | HE M, LAN M, ZHANG B C, et al. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana[J]. J Integr Plant Biol, 2018, 60(11):1051-1069.DOI:10.1111/jipb.12694. |
[71] | XU W J, CHENG H, ZHU S R, et al. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts[J]. New Phytol, 2021, 231(4):1478-1495.DOI:10.1111/nph.17338. |
[1] | 张乔艳, 唐丽霞, 潘露, 陈龙. 基于根系化学组成的抗拉力学特性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 186-192. |
[2] | 曾健勇,于颖颖,张方明,李大波,张国财. 阿维菌素/乙基纤维素载药纤维的制备及稳定性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 186-190. |
[3] | 张志威,关明杰,刘源松. 竹笋壳/脲醛树脂改性淀粉胶黏剂复合材料的降解特性[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 160-166. |
[4] | 徐鹏,高娟,王利莹,梁娟,唐进根. 基于高压静电技术的戊唑醇/乙酸纤维素缓释剂的制备与性能研究[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 117-121. |
[5] | 尹园园,田秀枝,朱春波,蒋学,王鸿博,高卫东. 聚苯乙烯改性纤维素纳米晶体对聚甲基丙烯酸甲酯热稳定性的增强作用[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 138-142. |
[6] | 何文,李吉平,金辉,田佳西. 毛竹纳米纤维素的烷基化改性[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 144-148. |
[7] | 王琰,金永灿. 显微技术在木质纤维素生物质预处理 研究中的应用进展[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 155-161. |
[8] | 马立波,杨小林,王思群,张洋. 纳米纤维素丙烯腈-丁二烯-苯乙烯复合材料的特性[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 179-182. |
[9] | 白合超,蒋露,王步成,勇强,余世袁. 间歇出酶对里氏木霉产纤维素酶的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 87-91. |
[10] | 陈敏智,陈燕,周晓燕. 乙二醇提高大豆蛋白/纳米纤维素 复合材料相容性的研究[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 143-147. |
[11] | 谈旭,金永灿. QCM-D应用于纤维素酶水解分析中的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 155-162. |
[12] | 李寒,李鑫,徐勇,陈牧,余世袁,勇强. 竹加工废弃物制备低聚木糖和乙醇[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 145-149. |
[13] | 刘娟,南静娅,王春鹏,储富祥,陈日清. 纤维素基脲醛树脂模塑料改性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 127-131. |
[14] | 李韵卒,杨益琴,杨勤武,顾俐慧,王志国. 钛酸正丁酯催化纤维素纤维接枝聚己内酯[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 113-118. |
[15] | 国增超,侯静,郭炜,尹佟明,陈赢男. 簸箕柳材性性状株内纵向变异的趋势分析[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 149-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||