黄栌光合和呈色特性对重庆阴雨天气的响应

李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 95-103.

PDF(2164 KB)
PDF(2164 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 95-103. DOI: 10.12302/j.issn.1000-2006.202105051
研究论文

黄栌光合和呈色特性对重庆阴雨天气的响应

作者信息 +

Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing

Author information +
文章历史 +

摘要

【目的】探讨重庆地区阳性植物黄栌的光合和呈色特性对当地阴雨天气的响应,为黄栌人工抚育提供科学依据。【方法】以黄栌为研究对象,于2019年4—11月定期监测(避开雨天)自然条件下控根容器内种植的4年生黄栌的光合特性、叶片色素含量、叶色参数等,并与2018年所测数据进行比较;收集2016—2019年重庆市气象数据,分析重庆地区2019年阴雨天气占比、降水量、日照时间、相对湿度等特征与2016—2018年的差异性,了解气象因子与黄栌叶片光合、呈色特性间的相关关系。【结果】2019年4—11月(黄栌生长期),重庆遭遇罕见的连绵阴雨天气,监测期超过半数时间为阴雨天气。相比2016—2018年,2019年日照时间减少10%~25%,最大日降水量增加30%~37%,平均降水量增加12.5%~25.0%,平均气温(Q)降低1%~2%。高湿、多雨、寡日照环境不利于黄栌光合色素合成,导致其净光合速率(Pn)降低,叶片呈色质量较差。相关性分析表明:Pn与日照时间(SD)和Q极显著正相关(P<0.01),与光合有效辐射(PAR)显著正相关(P<0.05),与日降水量≥0.1 mm天数(DPD)极显著负相关(P<0.01);蒸腾速率(Tr)与SD和Q极显著正相关(P<0.01),与PAR显著正相关(P<0.05),与DPD极显著负相关(P<0.01),与大气CO2浓度(Ca)显著负相关(P<0.05)。叶绿素a(Chla)含量与Q显著正相关(P<0.05);花青素含量与DPD显著负相关(P<0.05)。叶色亮度(L*)与叶绿素b(Chlb)含量极显著正相关(P<0.01),与Chla含量显著正相关(P<0.05);红/绿属性色相(a*)与Chla、Chlb含量极显著负相关(P<0.01);其他色素含量与叶色参数间相关性均不显著(P>0.05)。a*TrPn、气孔导度(Gs)极显著负相关(P<0.01);黄/蓝属性色相(b*)与TrPnGs极显著负相关(P<0.01);彩度(C*)与TrPn极显著负相关(P<0.01)与Gs显著负相关(P<0.05)。【结论】在2019年4—11月的连绵阴雨天气条件下,重庆地区黄栌表观量子效率(AQY)和Pn降低,利用弱光的能力和叶片呈色质量较差,但具有较宽的CO2生态利用幅度与光照耐受范围,叶片Chlb含量的增加提高了对散射光的利用能力,从而增强对连绵阴雨天气的适应与耐受能力。研究结果可为我国黄栌引种栽培及科学管理提供参考。

Abstract

【Objective】The aim of this research is to study the effects of unusual continuous rainy weather on photosynthesis of Cotinus coggygria of Chongqing, and to investigate the responses in photosynthesis and color of the C. coggygria plant to weather changes so as to provide a scientific basis for artificial care of C. coggygria.【Method】 Local meteorological data in recent years were collected and analyzed to clarify the difference between the proportion of cloudy and rainy days, precipitation, sunshine duration, and the relative humidity in Chongqing in 2019 and those of recent years. In 2018, at the same time, N,P,K was used to examine the Cotinus coggygria leaf growth, photosynthesis, and the influence of color based on this research. In 2019 from April to November, monthly monitoring avoiding rainy days was undertaken as a control. This was undertaken under the conditions of natural root container planting for four years for Cotinus coggygria. The photosynthetic characteristics, the leaf blade pigment content, and the leaf color parameters were measured and compared with the data collected in 2018. The correlation between the meteorological factors, the photosynthetic characteristics, and the leaf color was analyzed.【Result】 In 2019, during the growing period for Cotinus coggygria from April to November, a rare rainy weather event was observed in Chongqing, and rainy weather was observed during more than half of the monitoring period. In 2019, compared with 2016-2018, the sunshine hours decreased by 10%-25%, the maximum daily precipitation increased by 30%-37%, the average rainfall increased by 12.5%-25.0%, and the average temperature decreased by 1%-2%. High humidity, high levels of rainfall, and an environment with low levels of sunshine is not conducive to Cotinus photosynthetic pigment synthesis. As a result, the net photosynthetic rate (Pn) decreased and the leaf color quality was found to be poor. The correlation analysis showed that Pn was significantly positively correlated with the sunshine duration (SD), temperature (Q) (P < 0.01), photosynthetically active radiation (PAR) (P < 0.05), and the daily precipitation ≥ 0.1 mm (DPD).The transpiration rate (Tr) was significantly positively correlated with SD and Q (P < 0.01), PAR (P < 0.05), DPD (P < 0.01), and the atmospheric carbon dioxide concentration (Ca) (P < 0.05). There was a significant positive correlation between the chlorophyll a (Chla) content and Q (P < 0.05). Anthocyanin content was negatively correlated with DPD (P < 0.5). The luminance (L*) was significantly positively correlated with chlorophyll b (Chlb) content (P < 0.01) and was significantly positively correlated with the Chla content (P < 0.05). The red/green hue (a*) was significantly negatively correlated with the contents of Chla and Chlb (P < 0.01). There was no significant correlation between the contents of other pigments and the leaf color parameters (P > 0.05). The a*was significantly negatively correlated with Tr, Pn and Gs (P < 0.01). The yellow/blue hue (b*) was significantly negatively correlated with Tr, Pn and Gs (P < 0.01). The chroma (C*) was significantly negatively correlated with Tr and Pn (P < 0.01) and the stomatal conductance(Gs) (P < 0.05).【Conclusion】 Results from the study showed that for Cotinus coggygria under continuous wet weather conditions, while the apparent quantum efficiency (AQY) is reduced, the Pn is reduced, the ability to photosynthesize under low light levels is weak, and the leaf color quality is poor. However, in terms of CO2, this taxon has a wide ecological amplitude and a wider tolerance range for illumination. By increasing the Chlb content, it improves their ability to use scattered light to adapt to poor weather conditions, supporting a strong tolerance to continuous rainy weather. These results can provide a reference for the introduction and cultivation of Cotinus coggygria and its scientific management in China.

关键词

黄栌 / 色素含量 / 光合参数 / 呈色质量 / 阴雨天气 / 重庆地区

Key words

Cotinus coggygria / pigment content / photosynthesis parameter / color quality / overcast and rainy / Chongqing

引用本文

导出引用
李林珂, 王一诺, 薛潇, . 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 95-103 https://doi.org/10.12302/j.issn.1000-2006.202105051
LI Linke, WANG Yinuo, XUE Xiao, et al. Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 95-103 https://doi.org/10.12302/j.issn.1000-2006.202105051
中图分类号: S718.512;S793.9   

参考文献

[1]
陈书文, 李娟娟, 雷新彦, 周建云. 观赏植物黄栌快繁技术研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(9):117-120.
CHEN S W, LI J J, LEI X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria[J]. J Northwest Sci Tech Univ Agric For, 2005, 33(9):117-120.DOI:10.13207/j.cnki.jnwafu.2005.09.025.
[2]
李海龙, 李端亮. 黄栌属植物研究进展[J]. 陕西林业科技, 2009(6):22-27.
LI H L, LI D L. Advances in studies on genus Cotinus(Tourn.)Mill[J]. Shaanxi For Sci Technol, 2009(6):22-27.
[3]
葛雨萱, 王亮生, 周肖红, 等. 香山黄栌叶色和色素组成的相互关系及时空变化[J]. 林业科学, 2011, 47(4):38-42.
GE Y X, WANG L S, ZHOU X H, et al. Correlation between the leaf color and pigments composition of Cotinus coggygria in fragrant hills park and their temporal and spatial variation[J]. Sci Silvae Sin, 2011, 47(4):38-42.
[4]
葛雨萱, 赵阳, 甘长青, 等. 不同光环境对黄栌光合特性及生长势和叶色的影响[J]. 中国农学通报, 2011, 27(19):19-22.
GE Y X, ZHAO Y, GAN C Q, et al. The effects of different light environments on photosynthetic characteristics,growth potential and leaves color of Cotinus coggygria Scop[J]. Chin Agric Sci Bull, 2011, 27(19):19-22.
[5]
陆秀君, 董胜君, 毛红玉. 黄栌容器育苗及其对苗木耐旱性的影响[J]. 北京林业大学学报, 2001, 23(S2):30-31.
LU X J, DONG S J, MAO H Y. Study on container seedling-raising of Continus coggygria var. pubescens and its effect on seedling's drought resistance[J]. J Beijing For Univ, 2001, 23(S2):30-31.
[6]
李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J]. 水土保持学报, 2006, 20(3):13-16.
LI H Y, LI H P, YANG J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery[J]. J Soil Water Conserv, 2006, 20(3):13-16.DOI:10.13870/j.cnki.stbcxb.2006.03.004.
[7]
王艺霖. 黄栌幼苗在瘠薄环境中的养分吸收对策研究[D]. 北京: 北京林业大学, 2017.
WANG Y L. Study on nutrient uptake strategies of Cotinus coggygria seedlings in barren environment[D]. Beijing: Beijing Forestry University, 2017.
[8]
周华健, 冯文新, 赵国红, 等. 黄栌在高陡岩质边坡覆绿中的环境适应特征[J]. 湖南师范大学自然科学学报, 2019, 42(5):60-64,80.
ZHOU H J, FENG W X, ZHAO G H, et al. Environmental adaptation characteristics of Cotinus coggygria in high and steep rock slopes greening[J]. J Nat Sci Hunan Norm Univ, 2019, 42(5):60-64,80.DOI:10.7612/j.issn.2096-5281.2019.05.008.
[9]
吴焦焦, 田秋玲, 乐佳兴, 等. 黄栌叶片光合特性对氮磷钾配施的响应[J]. 北京林业大学学报, 2021, 43(2):63-71.
WU J J, TIAN Q L, YUE J X, et al. Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen,phosphorus and potassium[J]. J Beijing For Univ, 2021, 43(2):63-71.DOI:10.12171/j.1000-1522.20200199.
[10]
王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):3255-3265.
WANG Q W, YU D P, DAI L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chin J Appl Ecol, 2010, 21(12):3255-3265.DOI:10.13287/j.1001-9332.2010.0440.
[11]
吕运舟, 董筱昀, 杨小鑫, 等. 黄山栾树新品种‘金焰彩栾’叶片呈色的生理特性及影响因子分析[J]. 植物资源与环境学报, 2020, 29(6):51-56.
LYU Y Z, DONG X Y, YANG X X, et al. Analyses on physiological characteristics and influence factors of leaf color of new cultivar ‘Jinyan’ of Koelreuteria bipinnata[J]. J Plant Resour Environ, 2020, 29(6):51-56.DOI: 10.3969/j.issn.1674-7895.2020.06.06.
[12]
TAN X, WU J J, LIU Y, et al. Estimation of leaf color variances of Cotinus coggygria based on geographic and environmental variables[J]. J For Res, 2021, 32(2):609-622.DOI:10.1007/s11676-020-01118-6.
[13]
王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2):206-216.
WANG C S, WANG S P. A review of research on responses of leaf traits to climate change[J]. Chin J Plant Ecol, 2015, 39(2):206-216.DOI:10.17521/cjpe.2015.0020.
[14]
杨吉华, 张永涛, 王贵霞, 李红云, 夏江宝. 栾树、 黄连木、黄栌水分生理生态特性的研究[J]. 水土保持学报, 2002, 16(4):152-154,158.
YANG J H, ZHANG Y T, WANG G X, et al. Study on moisture physiological and ecological characters of several tree species[J]. J Soil Water Conserv, 2002, 16(4):152-154,158.DOI:10.13870/j.cnki.stbcxb.2002.04.040.
[15]
周平, 李吉跃, 招礼军. 北方主要造林树种苗木蒸腾耗水特性研究[J]. 北京林业大学学报, 2002, 24(S1):50-55.
ZHOU P, LI J Y, ZHAO L J. Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China[J]. J Beijing For Univ, 2002, 24(S1):50-55.DOI:10.3321/j.issn:1000-1522.2002.05.010.
[16]
鲍玉海, 杨吉华, 李红云, 郑兆亮, 宗萍萍. 不同灌木树种蒸腾速率时空变异特征及其影响因子的研究[J]. 水土保持学报, 2005, 19(3):184-187.
BAO Y H, YANG J H, LI H Y, et al. Study on characteristic of temporal and spatial variability of transpiration rate of different bushes and its influencing factors[J]. J Soil Water Conserv, 2005, 19(3):184-187.DOI:10.13870/j.cnki.stbcxb.2005.03.044.
[17]
尤扬, 贾文庆, 周建, 等. 黄栌叶片光合特性[J]. 东北林业大学学报, 2009, 37(7):25-26,29.
YOU Y, JIA W Q, ZHOU J, et al. Photosynthetic characteristics of Cotinus coggygria leaves[J]. J Northeast For Univ, 2009, 37(7):25-26,29.DOI:10.3969/j.issn.1000-5382.2009.07.009.
[18]
刘刚, 张光灿, 刘霞. 土壤干旱胁迫对黄栌叶片光合作用的影响[J]. 应用生态学报, 2010, 21(7):1697-1701.
LIU G, ZHANG G C, LIU X. Responses of Cotinus coggygria var. cinerea photosynthesis to soil drought stress[J]. Chin J Appl Ecol, 2010, 21(7):1697-1701.DOI:10.13287/j.1001-9332.2010.0237.
[19]
李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29-41.
LI J H, QI X H, XU C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Sci Silvae Sin, 2015, 51(1):29-41.DOI:10.11707/j.1001-7488.20150104.
[20]
李金航, 徐程扬, 朱济友, 等. 黄栌幼苗在持续干旱胁迫环境中的表型适应对策[J]. 西北林学院学报, 2019, 34(2):28-34.
LI J H, XU C Y, ZHU J Y, et al. Phenotypic adaptation strategy of Cotinus coggygria seedlings in continuous drought environments[J]. J Northwest For Univ, 2019, 34(2):28-34.DOI:10.3969/j.issn.1001-7461.2019.02.05
[21]
李金航, 朱济友, JANDUG C, 等. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系[J]. 北京林业大学学报, 2020, 42(2):68-78.
LI J H, ZHU J Y, JANDUG C, et al. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. J Beijing For Univ, 2020, 42(2):68-78.
[22]
张文, 吴焦焦, 高岚, 等. 巫山红叶呈色对生境异质性的响应[J]. 西北农林科技大学学报(自然科学版), 2020, 48(10):48-55.
ZHANG W, WU J J, GAO L, et al. Response of Cotinus coggygria to habitat heterogeneity in Wushan[J]. J Northwest A F Univ (Nat Sci Ed), 2020, 48(10):48-55.DOI:10.13207/j.cnki.jnwafu.2020.10.006.
[23]
葛雨萱, 周肖红, 刘洋, 等. 黄栌属种质资源、栽培繁殖、化学成分、叶色调控研究进展[J]. 园艺学报, 2014, 41(9):1833-1845.
GE Y X, ZHOU X H, LIU Y, et al. Recent advances in germplasm,cultivation,propagation,chemical components and leaf color regulation of Cotinus[J]. Acta Hortic Sin, 2014, 41(9):1833-1845.DOI:10.16420/j.issn.0513-353x.2014.09.015.
[24]
李海龙. 黄栌生物学特性及DUS测试指南的研究[D]. 南京: 南京林业大学, 2010.
LI H L. Studies on the biological characters and DUS testing guideline for Cotinus coggygria Scop[D]. Nanjing: Nanjing Forestry University, 2010.
[25]
陈磊, 潘青华, 金洪. 温湿度对紫叶黄栌光合特性变化的影响[J]. 中国农学通报, 2008, 24(6):124-128.
CHEN L, PAN Q H, JIN H. Research on influence of relative humidity and air temparature on photosynthetic characteristics of Cotinus coggygria “purpureus”[J]. Chin Agric Sci Bull, 2008, 24(6):124-128.
[26]
唐江. 重庆市紫色土的系统分类研究[D]. 重庆: 西南大学, 2017.
TANG J. Taxonomic classification of purple soil in Chongqing[D]. Chongqing: Southwest University, 2017.
[27]
叶子飘, 于强. 光合作用对胞间和大气CO2响应曲线的比较[J]. 生态学杂志, 2009, 28(11):2233-2238.
YE Z P, YU Q. A comparison of response curves of winter wheat photosynthesis to flag leaf inte rcellular and air CO2 concentrations[J]. Chin J Ecol, 2009, 28(11):2233-2238.
[28]
苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013.
CANG J, ZHAO H J. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2013.
[29]
张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009.
ZHANG Z L, QU W J, LI X F. Experimental instruction of plant physiology[M]. 4th ed. Beijing: Higher Education Press, 2009.
[30]
朱婷, 章陆杨, 郝亮, 等. 基于Lab模型的三种观赏草叶色研究[J]. 草地学报, 2018, 26(5):1267-1272.
ZHU T, ZHANG L Y, HAO L, et al. Research on three kinds of ornamental grasses color based on Lab model[J]. Acta Agrestia Sin, 2018, 26(5):1267-1272.DOI:10.11733/j.issn.1007-0435.2018.05.001.
[31]
吴焦焦. 黄栌生长和叶片呈色对氮磷钾配施的响应[D]. 重庆: 西南大学, 2020.
WU J J. Responses of growth and leaf coloring of Cotinus coggygria to combined N,P and K fertilization[D]. Chongqing: Southwest University, 2020.
[32]
HARDWICK R C. Mathematical models in plant physiology[J]. Ex Agric, 1977, 13(1):112.DOI:10.1017/s0014479700007675.
[33]
张振文, 张保玉, 童海峰, 等. 葡萄开花期光合作用光补偿点和光饱和点的研究[J]. 西北林学院学报, 2010, 25(1):24-29.
ZHANG Z W, ZHANG B Y, TONG H F, et al. Photosynthetic LCP and LSP of different grapevine cultivars[J]. J Northwest For Univ, 2010, 25(1):24-29.
[34]
王晓冰, 宋雅迪, 庄静静, 等. 不同光照条件下大百合光合生理特性研究[J]. 中药材, 2019, 42(7):1489-1493.
WANG X B, SONG Y D, ZHUANG J J, et al. Study on photosynthetic physiological characteristics of Lilium brownii under different light conditions[J]. J Chin Med Mater, 2019, 42(7):1489-1493.DOI:10.13863/j.issn1001-4454.2019.07.006.
[35]
陈景玲. 实用光源的lx与μmol·m-2·s-1的转换关系[J]. 河南农业大学学报, 1998, 32(2):199-202.
CHEN J L. The conversion between the lx and μmol·m-2·s-1 of practical light sources[J]. J Henan Agric Univ, 1998, 32(2):199-202. DOI:10.16445/j.cnki.1000-2340.1998.02.021.
[36]
魏跟东. C3植物、C4植物和阳生植物、阴生植物比较[J]. 生物学教学, 2007(8):69.
WEI G D. Comparison of C3 plants and C4 plants with Sun plants and shade plants[J]. Biol Teach, 2007(8): 69.DOI:10.3969/j.issn.1004-7549.2007.08.040.
[37]
高岚, 乐佳兴, 张文, 等. 2种树龄巴山榧对光照的响应[J]. 北京林业大学学报, 2018, 40(10):34-42.
GAO L, YUE J X, ZHANG W, et al. Response to light intensity of Torreya fargesii in two kinds of tree age[J]. J Beijing For Univ, 2018, 40(10):34-42.DOI:10.13332/j.1000-1522.20180208.
[38]
孟金柳, 周本智, 曹永慧, 等. 基于Farquhar改进模型的北亚热带森林常见树种光合限速因子研究[J]. 热带亚热带植物学报, 2016, 24(4):359-366.
MENG J L, ZHOU B Z, CAO Y H, et al. Limiting states of photosynthesis of common tree species in the north-subtropical forest based on improved Farquhar model[J]. J Trop Subtrop Bot, 2016, 24(4):359-366.DOI:10.11926/j.issn.1005-3395.2016.04.001
[39]
谢会成, 姜志林, 叶镜中. 麻栎光合作用的特性及其对CO2倍增的响应[J]. 南京林业大学学报(自然科学版), 2002, 26(4):67-70.
XIE H C, JIANG Z L, YE J Z. A study on the photosynthetic characteristics of sawtooth oak and its response to elevated CO2[J]. J Nanjing For Univ, 2002, 26(4):67-70.DOI:10.3969/j.issn.1000-2006.2002.04.017.
[40]
许中秋, 隋德宗, 谢寅峰, 等. 两个乌桕新品种苗木光合特性比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):93-100.
XU Z Q, SUI D Z, XIE Y F, et al. Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):93-100.DOI:10.12302/j.issn.1000-2006.202003080.
[41]
张宏建. Lab色彩模式在图像处理中的应用[J]. 福建电脑, 2011, 27(1):146-147.
ZHANG H J. Application of Lab color mode in image processing[J]. Fujian Comput, 2011, 27(1):146-147.DOI:10.3969/j.issn.1673-2782.2011.01.074.
[42]
路涛. 外源独脚金内酯缓解番茄幼苗弱光胁迫的机制研究[D]. 北京: 中国农业科学院, 2019.
LU T. Alleviation of adverse impacts of low light on tomato plants:new insight into the protective role of strigolactones[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[43]
杨逢建, 庞海河, 张学科, 等. 光胁迫对南方红豆杉叶片中叶绿体色素和紫杉醇含量的影响[J]. 植物研究, 2007, 27(5):556-558.
YANG F J, PANG H H, ZHANG X K, et al. Effect of light stress on the content of chloroplast pigment and taxol in the leaves of Taxus chinensis var. maireei[J]. Bull Bot Res, 2007, 27(5):556-558.DOI:10.3969/j.issn.1673-5102.2007.05.011.
[44]
潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008.
PAN R C. Phytophysiology[M]. 6th ed. Beijing: Higher Education Press, 2008.
[45]
陶俊, 张上隆, 安新民, 等. 光照对柑橘果皮类胡萝卜素和色泽形成的影响[J]. 应用生态学报, 2003, 14(11):1833-1836.
TAO J, ZHANG S L, AN X M, et al. Effects of light on carotenoid biosynthesis and color formation of citrus fruit peel[J]. Chin J Appl Ecol, 2003, 14(11):1833-1836.
[46]
郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5):967-973.
GUO C N, LIU F, XU X M. Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiol Commun, 2006, 42(5):967-973.
[47]
张伟, 高雪笛, 丁晓璐, 等. 六种叶状体苔藓植物叶绿素含量和光合效率研究[J]. 亚热带植物科学, 2018, 47(4):312-316.
ZHANG W, GAO X D, DING X L, et al. Chlorophyll content and photosynthetic efficiency of six thalloid bryophytes[J]. Subtrop Plant Sci, 2018, 47(4):312-316.DOI:10.3969/j.issn.1009-7791.2018.04.002.
[48]
万东璞, 于卓, 吴燕民, 等. 花青素代谢调控植物彩叶研究进展[J]. 中国农业科技导报, 2020, 22(2):30-38.
WAN D P, YU Z, WU Y M, et al. Regulation of anthocyanin metabolism on colored leaves of plants[J]. J Agric Sci Technol, 2020, 22(2):30-38.DOI:10.13304/j.nykjdb.2018.0233.
[49]
韩晓, 王海波, 王孝娣, 等. 基于4种光响应模型模拟不同砧木对夏黑葡萄耐弱光能力的影响[J]. 应用生态学报, 2017, 28(10):3323-3330.
HAN X, WANG H B, WANG X D, et al. Effects of different rootstocks on the weak light tolerance ability of summer black grape based on 4 photo-response models[J]. Chin J Appl Ecol, 2017, 28(10):3323-3330.DOI:10.13287/j.1001-9332.201710.030.
[50]
李晓锐, 周樊, 冯刚, 等. 砧木对薄壳山核桃嫁接苗光合及荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2):84-90.
LI X R, ZHOU F, FENG G, et al. Photosynthetic and fluorescence characteristics of pecan grafting seedlings grafted on different rootstocks[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):84-90.DOI:10.3969/j.issn.1000-2006.201811043.
[51]
李春燕. 常绿阔叶树种栲树幼苗对不同光环境的光合生理响应[J]. 生态学杂志, 2009, 28(9):1801-1807.
LI C Y. Photo-physiological responses of Castanopsis fargesii seedlings to different light environment in an evergreen broad-leaved forest[J]. Chin J Ecol, 2009, 28(9):1801-1807.
[52]
李益清. 弱光影响番茄光合特性的钙素调控机理研究[D]. 沈阳: 沈阳农业大学, 2011.
LI Y Q. Studies on regulation mechanism of calcium on photosynthesis characteristic of tomato under low lght intensity environment[D]. Shenyang: Shenyang Agricultural University, 2011.
[53]
朱雨晴, 薛晓萍. 遮阴及复光对花果期番茄叶片光合特性的影响[J]. 中国农业气象, 2019, 40(2):126-134.
ZHU Y Q, XUE X P. Effects of shading and light restoration on photosynthetic characteristics of tomato leaves during flowering and fruit period[J]. Chin J Agrometeorology, 2019, 40(2):126-134.DOI:10.3969/j.issn.1000-6362.2019.02.007.
[54]
孙明霞, 王宝增, 范海, 赵可夫. 叶片中的花色素苷及其对植物适应环境的意义[J]. 植物生理学通讯, 2003, 39(6):688-694.
SUN M X, WANG B Z, FAN H, et al. Anthocyanins of leaves and their enviromental significance in plant stress responses[J]. Plant Physiol Commun, 2003, 39(6):688-694.DOI:10.13592/j.cnki.ppj.2003.06.051.
[55]
叶子飘, 康华靖, 杨小龙. 不同CO2浓度下番茄幼苗叶片的光能利用效率[J]. 应用生态学报, 2016, 27(8):2543-2550.
YE Z P, KANG H J, YANG X L. Light-use efficiency of tomato seedling leaves at different CO2 concentrations[J]. Chin J Appl Ecol, 2016, 27(8):2543-2550.DOI:10.13287/j.1001-9332.201608.035.
[56]
叶思源, 尚鹤, 陈展, 等. 不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6):71-78.
YE S Y, SHANG H, CHEN Z, et al. Effects of elevated CO2 on photosynthetic characteristics and monoterpene emissions in Pinus massoniana seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):71-78.DOI:10.3969/j.issn.1000-2006.201903034.
[57]
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):81-88.
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):81-88.DOI:10.3969/j.issn.1000-2006.201903004.
[58]
曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述[J]. 生态学报, 2009, 29(7):3882-3892.
CAO S K, FENG Q, SI J H, et al. Summary on the plant water use efficiency at leaf level[J]. Acta Ecol Sin, 2009, 29(7):3882-3892.DOI:10.3321/j.issn:1000-0933.2009.07.051.
[59]
姜卫兵, 高光林, 俞开锦, 等. 水分胁迫对果树光合作用及同化代谢的影响研究进展[J]. 果树学报, 2002, 19(6):416-420.
JIANG W B, GAO G L, YU K J, et al. A review of studies on effect of water stress on photosynthesis and assimilation metabolism in fruit crops[J]. J Fruit Sci, 2002, 19(6):416-420.DOI:10.3969/j.issn.1009-9980.2002.06.014.

基金

重庆市林业局科技兴林项目(2020-3)
中央财政林业科技推广示范项目(2021-1)
西南大学大学生创新创业训练项目(201910635109)
西南大学资源环境学院大学生科技创新“光炯”培育项目(201908)

编辑: 孟苗婧
PDF(2164 KB)

Accesses

Citation

Detail

段落导航
相关文章

/