南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3): 65-73.doi: 10.12302/j.issn.1000-2006.202106021
王有良1(), 林开敏1,*(), 宋重升1, 崔朝伟1, 彭丽鸿1, 郑宏2, 郑鸣鸣3, 任正标1, 邱明镜4
收稿日期:
2021-06-18
接受日期:
2021-10-13
出版日期:
2022-05-30
发布日期:
2022-06-10
通讯作者:
林开敏
基金资助:
WANG Youliang1(), LIN Kaimin1,*(), SONG Chongsheng1, CUI Chaowei1, PENG Lihong1, ZHENG Hong2, ZHENG Mingming3, REN Zhengbiao1, QIU Mingjing4
Received:
2021-06-18
Accepted:
2021-10-13
Online:
2022-05-30
Published:
2022-06-10
Contact:
LIN Kaimin
摘要:
【目的】研究不同间伐强度下杉木人工林生态系统碳储量及其分配格局,进一步优化林分经营管理措施,准确评估间伐对杉木人工林生物量和碳储量的短期影响,为提高人工林的碳汇能力提供依据。【方法】以福建省三明市官庄国有林场11年生杉木人工林为研究对象,选择坡度、坡位、土壤条件相对一致的林分,按照完全随机区组试验设计,设置弱度间伐(31%,伐后林分2 250株/hm2,LIT)、中度间伐(45%,伐后林分1 800株/hm2,MIT)、强度间伐(63%,伐后林分1 200株/hm2,HIT)等3种间伐强度;共设置9块20 m×20 m样地,采集深度为1 m剖面内不同土层的土壤;并在样地内每木检尺,利用生物量回归方程对乔木层生物量进行估算,同时实测林下植被和凋落物生物量;通过元素分析仪测定植被和土壤碳含量,并根据碳含量估算碳储量。【结果】间伐后3年,杉木人工林乔木层碳储量随着间伐强度的增加而减小,LIT、MIT、HIT处理样地乔木层碳储量依次为66.16、58.78、49.71 t/hm2;杉木人工林灌木层和草本层的碳储量随着间伐强度的增加而显著增加,分别占生态系统碳储量的0.03%~0.19%和0.01%~0.67%;凋落物层碳储量占生态系统碳储量的2.87%~4.32%,间伐对凋落物层碳储量无显著影响;土壤有机碳储量在不同间伐处理间差异显著(P<0.05),杉木人工林土壤层碳储量随着间伐强度的增加而降低,HIT处理土壤层碳储量较LIT和MIT处理降低了32.07%和1.03%。间伐后3年,杉木人工林生态系统碳储量随着间伐强度增加而显著降低(P<0.05),LIT、MIT和HIT处理样地总碳储量依次为173.85、161.12、121.73 t/hm2。乔木层和土壤层碳储量之和占比超过90.00%,表明乔木层和土壤层是巨大的碳库,且间伐短期降低生态系统总碳储量。【结论】间伐后短期内杉木人工林乔木层、凋落物层和土壤层碳储量随着间伐强度的增加而下降,而灌木层和草本层的碳储量则随着间伐强度的增加而增加,表明间伐3年后试验林地还处于恢复期,杉木人工林间伐短期内会降低生态系统总碳储量。研究结果可部分解释间伐后短期内杉木人工林生态系统各组分碳储量的分布格局,并为研究区的人工林碳汇增加和可持续经营提供科学依据。
中图分类号:
王有良,林开敏,宋重升,等. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73.
WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(3): 65-73.DOI: 10.12302/j.issn.1000-2006.202106021.
表1
样地基本信息"
间伐处理 thinning treatment | 间伐强度/% thinning intensity | 间伐前 before thinning | 间伐后 after thinning | 伐后林分密度/ (株·hm-2) thinning retention forest density | |||
---|---|---|---|---|---|---|---|
平均胸径/cm average DBH | 平均树高/m average height | 平均胸径/cm average DBH | 平均树高/m average height | 单株材积/m3 individual volume | |||
LIT | 31 | 11.79±0.31 | 11.32±0.14 | 13.09±0.47 | 11.89±0.18 | 0.09±0.00 | 2 250 |
MIT | 45 | 11.79±0.61 | 11.34±0.28 | 13.47±0.47 | 12.04±0.09 | 0.09±0.01 | 1 800 |
HIT | 63 | 11.16±0.40 | 11.06±0.17 | 13.84±0.73 | 12.20±0.36 | 0.10±0.01 | 1 200 |
表2
试验林地土壤理化性质"
间伐处理 thinning treatment | 土壤pH soil pH | 有机碳含量/ (g·kg-1) organic carbon content | 全氮含量/ (g·kg-1) total nitrogen content | 全磷含量/ (g·kg-1) total phosphorus content | 全钾含量/ (g·kg-1) total potassium content | 速效钾含量/ (mg·kg-1) available potassium content | 有效磷含量/ (mg·kg-1) available phosphorus content |
---|---|---|---|---|---|---|---|
LIT | 4.97±0.19 | 11.81±1.64 | 0.95±0.08 | 0.42±0.04 | 11.59±2.51 | 140.06±12.02 | 2.70±0.26 |
MIT | 4.74±0.15 | 11.28±1.12 | 0.85±0.11 | 0.49±0.01 | 11.04±1.49 | 82.33±15.69 | 3.19±0.65 |
HIT | 4.64±0.05 | 8.52±0.56 | 0.88±0.15 | 0.70±0.09 | 10.52±2.02 | 74.31±17.41 | 2.63±0.05 |
表3
杉木人工林单木生物量模型[17]"
器官 organ | 拟合方程 fitting equation | 决定系数R2 coefficient of determination R2 | 残差平方和 sum of squared residuals |
---|---|---|---|
叶 leaf | W=0.003 9 D2.445 7 | 0.853** | 0.421 6 |
枝 branch | W=0.007 0 D2.133 5 | 0.802** | 0.460 7 |
干皮 bark | W=0.007 4(DH)1.305 6 | 0.986** | 0.027 6 |
去皮干 stem without bark | W=0.035 5(DH)1.278 2 | 0.990** | 0.018 7 |
根蔸 root head | W=0.018 3 D2.175 9 | 0.931** | 0.144 8 |
根 root | W=0.006 8 D2.308 2 | 0.817** | 0.488 7 |
表4
Carbon storage of different organs in Chinese fir with different thinning treatments单位:t/hm2"
时间time | 间伐 处理 thinning treatment | 碳储量分配 carbon storage of different organ | 总计 total | |||||
---|---|---|---|---|---|---|---|---|
叶 leaf | 枝 branch | 干皮 bark | 去皮干 stem without bark | 根蔸 root head | 根 root | |||
2017年间伐前 before thinning in 2017 (2017年10月) | LIT | 2.88±0.14 a (5.63%) | 2.24±0.09 a (4.38%) | 7.28±0.25 a (14.24%) | 29.18±0.97 a (57.09%) | 6.63±0.27 a (12.97%) | 2.91±0.64 a (5.69%) | 51.11±2.27 a |
MIT | 3.34±0.48 a (5.54%) | 2.62±0.35 a (4.35%) | 8.55±1.05 a (14.18%) | 34.34±4.19 a (56.91%) | 7.75±1.05 a (12.48%) | 3.73±0.52 a (6.19%) | 60.34±7.64 a | |
HIT | 2.98±0.39 a (5.53%) | 2.40±0.31 a (4.45%) | 7.72±0.83 a (14.34%) | 31.04±3.29 a (57.65%) | 6.94±0.83 a (12.88%) | 2.77±0.98 a (5.14%) | 53.84±5.84 a | |
2017年间伐后 after thinning in 2017 (2017年11月) | LIT | 2.53±0.22 a (5.72%) | 1.94±0.15 a (4.40%) | 6.22±0.45 a (14.09%) | 24.89±1.75 a (56.41%) | 5.75±0.46 a (13.04%) | 2.80±0.23 a (6.34%) | 44.12±3.26 a |
MIT | 2.16±0.34 b (5.86%) | 1.66±0.26 b (4.49%) | 5.28±0.81 b (14.30%) | 21.13±3.25 b (57.20%) | 4.32±1.17 b (11.68%) | 2.39±0.37 b (6.47%) | 36.93±5.82 b | |
HIT | 1.53±0.29 c (5.88%) | 1.05±0.23 c (4.03%) | 3.67±0.62 c (14.09%) | 14.66±2.46 c (56.31%) | 3.44±0.62 c (13.22%) | 1.68±0.31 c (6.46%) | 26.04±4.47 c | |
2018年11月 | LIT | 3.03±0.24 a (5.93%) | 2.28±0.17 a (4.45%) | 7.16±0.47 a (14.00%) | 28.56±1.86 a (55.87%) | 6.77±0.49 a (13.25%) | 3.32±0.26 a (6.50%) | 51.11±3.48 a |
MIT | 2.63±0.42 b (5.99%) | 1.96±0.31 b (4.47%) | 6.13±0.95 b (13.97%) | 24.46±3.77 b (55.71%) | 5.84±0.91 b (13.30%) | 2.87±0.45 b (6.55%) | 43.89±6.80 b | |
HIT | 1.92±0.35 c (6.11%) | 1.41±0.24 c (4.50%) | 4.36±0.72 c (13.91%) | 17.39±2.84 c (55.42%) | 4.21±0.74 c (13.42%) | 2.08±0.37 c (6.64%) | 31.37±5.26 c | |
2019年11月 | LIT | 3.57±0.27 a (6.12%) | 2.63±0.18 a (4.51%) | 8.12±0.50 a (13.91%) | 32.32±1.97 a (55.38%) | 7.84±0.54 a (13.43%) | 3.88±0.28 a (6.65%) | 58.37±3.72 a |
MIT | 3.15±0.50 b (6.20%) | 2.3±0.36 b (4.53%) | 7.04±1.08 b (13.87%) | 27.99±4.30 b (55.17%) | 6.86±1.07 b (13.51%) | 3.41±0.54 b (6.71%) | 50.74±7.83 b | |
HIT | 2.37±0.42 c (6.36%) | 1.70±0.28 c (4.57%) | 5.14±0.82 c (13.80%) | 20.40±3.23 c (54.78%) | 5.09±0.85 c (13.66%) | 2.54±0.44 c (6.83%) | 37.25±6.03c | |
2020年11月 | LIT | 4.17±0.29 a (6.31%) | 3.01±0.19 a (4.55%) | 9.15±0.54 a (13.83%) | 36.33±2.11 a (54.91%) | 9.00±0.58 a (13.61%) | 4.50±0.30 a (6.79%) | 66.16±4.01a |
MIT | 3.78±0.60 a (6.43%) | 2.70±0.42 a (4.59%) | 8.09±1.25a b (13.77%) | 32.09±4.96a b (54.60%) | 8.07±1.26 a (13.72%) | 4.05±0.64 a (6.89%) | 58.78±9.12a | |
HIT | 3.02±0.59 b (6.08%) | 2.02±0.46 b (4.07%) | 6.96±1.49 b (14.00%) | 27.74±5.97 b (55.79%) | 6.68±1.34 b (13.43%) | 3.3±0.65 b (6.63%) | 49.71±10.30b |
表5
Carbon contents of understory vegetation and litter in Chinese fir plantations with different thinning treatments单位:g/kg"
间伐处理 thinning | 灌木层碳含量 shrub layer carbon content | 草本层碳含量 herb layercarbon content | 凋落物层碳含量 litter mass carbon content | |||
---|---|---|---|---|---|---|
枝branch | 叶leaf | 根root | 地上aboveground | 地下underground | ||
LIT | 383.17±27.99 b | 397.76±25.98 b | 372.84±25.15 b | 397.30±22.57 b | 430.93±27.42 b | 458.64±23.48 a |
MIT | 436.12±27.13 ab | 453.68±23.10 a | 442.32±18.71 a | 469.93±27.82 a | 487.71±18.80 a | 455.21±21.01 a |
HIT | 458.80±17.71 a | 430.76±21.05 a | 418.39±26.85 ab | 463.22±13.00 a | 410.19±19.14 b | 440.91±24.32 a |
表6
不同间伐强度杉木人工林林下灌木层、草本层、地表凋落物碳储量 单位:kg/hm2"
间伐处理 thinning | 灌木层碳储量 shrub layer carbon storage | 草本层碳储量 herb layer carbon storage | 凋落物层碳储量 litter mass carbon storage | |||||
---|---|---|---|---|---|---|---|---|
枝 branch | 叶 leaf | 根 root | 合计 total | 地上 above ground | 地下 underground | 合计 total | ||
LIT | 19.38±8.86 b (39.30%) | 12.09±3.87 b (24.52%) | 17.84±7.59 b (36.18%) | 49.31± 18.60 a | 19.28±5.74 b (79.37%) | 5.01±2.47 a (20.87%) | 24.29± 6.32 b | 7 508.70±500.69 a |
MIT | 78.84±15.72 a (40.49%) | 52.86±15.00 a (27.15%) | 63.01±19.40 a (32.36%) | 194.71± 37.26 b | 32.62±7.25 b (83.19%) | 6.59±3.55 ab (16.81%) | 39.21± 7.11 b | 4 662.44±528.61 a |
HIT | 101.97±12.99 a (44.66%) | 57.40±17.20 a (25.14%) | 68.96±22.70 a (30.20%) | 228.34± 74.79 b | 73.58±16.67 a (89.92%) | 8.25±2.14 a (10.81%) | 81.83± 46.26 a | 4 442.81±344.85 a |
表7
不同间伐强度杉木人工林生态系统碳储量 单位:t/hm2"
间伐处理 thinning | 乔木层 tree layer | 灌木层 shrub layer | 草本层 herb layer | 凋落物层 litter mass | 土壤层 soil layer | 合计 total |
---|---|---|---|---|---|---|
LIT | 66.16±4.01 a (38.06%) | 0.05±0.02 b (0.03%) | 0.02±0.00 b (0.01%) | 7.51±5.00 a (4.32%) | 100.02±19.25 a (57.53%) | 173.85±22.99 a |
MIT | 58.77±9.12 a (36.13%) | 0.19±0.04 a (0.12%) | 0.04±0.01 b (0.02%) | 4.66±5.29 b (2.89%) | 98.99±11.62 a (61.44%) | 161.12±14.07 a |
HIT | 49.71±10.30 b (40.84%) | 0.23±0.05 a (0.19%) | 0.82±0.05 a (0.67%) | 4.44±3.44 a (3.65%) | 67.30±8.95 b (55.29%) | 121.73±15.42 b |
[1] | 陈雅如, 赵金成. 碳达峰、碳中和目标下全球气候治理新格局与林草发展机遇[J]. 世界林业研究, 34(6):1-5. |
CHEN Y R, ZHAO J C. New pattern of global climate governance and opportunities for forest and grassland development under the target of carbon emission peaked and carbon neutral[J]. World For Res, 2021, 34(5):1-6. DOI: 10.13348/j.cnki.sjlyyj.2021.0065.
doi: 10.13348/j.cnki.sjlyyj.2021.0065 |
|
[2] |
JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4):253-268.DOI: 10.1016/j.geoderma.2006.09.003.
doi: 10.1016/j.geoderma.2006.09.003 |
[3] |
VALENTINI R, MATTEUCCI G, DOLMAN A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404(6780):861-865.DOI: 10.1038/35009084.
doi: 10.1038/35009084 |
[4] |
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[5] |
LI S Y, LI S G, HUANG M. Effects of thinning intensity on carbon stocks and changes in larch forests in China northeast forest region[J]. J Resour Ecol, 2017, 8(5):538-544.DOI: 10.5814/j.issn.1674-764x.2017.05.011.
doi: 10.5814/j.issn.1674-764x.2017.05.011 |
[6] |
SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Sci Soc Am J, 2002, 66(6):1981-1987.DOI: 10.2136/sssaj2002.1981.
doi: 10.2136/sssaj2002.1981 |
[7] |
LI D, NIU S, LUO Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:a meta-analysis[J]. New Phytol, 2012, 195(1):172-181.DOI: 10.1111/j.1469-8137.2012.04150.x.
doi: 10.1111/j.1469-8137.2012.04150.x. |
[8] |
HU Z H, HE Z M, HUANG Z Q, et al. Effects of harvest residue management on soil carbon and nitrogen processes in a Chinese fir plantation[J]. For Ecol Manag, 2014, 326:163-170.DOI: 10.1016/j.foreco.2014.04.023.
doi: 10.1016/j.foreco.2014.04.023 |
[9] |
THÜRIG E, KAUFMANN E. Increasing carbon sinks through forest management:a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps[J]. Eur J For Res, 2010, 129(4):563-572.DOI: 10.1007/s10342-010-0354-7.
doi: 10.1007/s10342-010-0354-7 |
[10] | 王祖华, 刘红梅, 王晓杰, 等. 经营措施对森林生态系统碳储量影响的研究进展[J]. 西北农林科技大学学报(自然科学版), 2011, 39(1):83-88. |
WANG Z H, LIU H M, WANG X J, et al. Progress of management on carbon storage of forest ecosystems[J]. J Northwest A F Univ (Nat Sci Ed),2011, 39(1):83-88.DOI: 10.13207/j.cnki.jnwafu.2011.01.030.
doi: 10.13207/j.cnki.jnwafu.2011.01.030 |
|
[11] | 高云昌, 张文辉, 何景峰, 等. 黄龙山油松人工林间伐效果的综合评价[J]. 应用生态学报, 2013, 24(5):1313-1319. |
GAO Y C, ZHANG W H, HE J F, et al. Effects of thinning intensity on Pinus tabulaeformis plantation in Huanglong Mountain,Northwest China:a comprehensive evaluation[J]. Chin J Appl Ecol, 2013, 24(5):1313-1319.DOI: 10.13287/j.1001-9332.2013.0293.
doi: 10.13287/j.1001-9332.2013.0293 |
|
[12] |
MALMSHEIMER R W, BOWYER J L, FRIED J S, et al. Managing forests because carbon matters: integrating energy, products, and land management policy[J]. J Forest, 2011, 109(7S): S7-S50. DOI: 10.1139/X11-123.
doi: 10.1139/X11-123 |
[13] | 刘慧, 董希斌, 曲杭峰, 等. 抚育间伐对小兴安岭天然针阔混交林碳储量的影响[J]. 东北林业大学学报, 2021, 49(2):31-35. |
LIU H, DONG X B, QU H F, et al. Effects of tending and thinning on partial above-ground carbon storage of natural coniferous and broad-leaved mixed forest in Xiaoxing’an Mountains[J]. J Northeast For Univ, 2021, 49(2):31-35.DOI: 10.13759/j.cnki.dlxb.2021.02.006.
doi: 10.13759/j.cnki.dlxb.2021.02.006 |
|
[14] |
TAKI H, INOUE T, TANAKA H, et al. Responses of community structure,diversity,and abundance of understory plants and insect assemblages to thinning in plantations[J]. For Ecol Manag, 2010, 259(3):607-613.DOI: 10.1016/j.foreco.2009.11.019.
doi: 10.1016/j.foreco.2009.11.019 |
[15] | 梁晶. 间伐对长白山林区典型林分类型土壤碳储量的影响[D]. 哈尔滨: 东北林业大学, 2015. |
LIANG J. The influence of thinning intensity on soil carbon storage in typical forest stands in Changbai Mountain[D]. Harbin: Northeast Forestry University, 2015.DOI: 10.27009/d.cnki.gdblu.2015.000018.
doi: 10.27009/d.cnki.gdblu.2015.000018 |
|
[16] | 郑鸣鸣, 任正标, 王友良, 等. 间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4):369-376. |
ZHENG M M, REN Z B, WANG Y L, et al. Effect of thinning intensity on the growth and structure of a middle-aged Chinese fir forest[J]. J For Environ, 2020, 40(4):369-376.DOI: 10.13324/j.cnki.jfcf.2020.04.005.
doi: 10.13324/j.cnki.jfcf.2020.04.005 |
|
[17] | 李燕, 张建国, 段爱国, 等. 杉木人工林生物量估算模型的选择[J]. 应用生态学报, 2010, 21(12):3036-3046. |
LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chin J Appl Ecol, 2010, 21(12):3036-3046.DOI: 10.13287/j.1001-9332.2010.0430.
doi: 10.13287/j.1001-9332.2010.0430 |
|
[18] | 彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析[J]. 水土保持研究, 2015, 22(5):30-34. |
PENG S L, WANG H T, CHEN C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman Nature Reserve[J]. Res Soil Water Conserv, 2015, 22(5):30-34.DOI: 10.13869/j.cnki.rswc.2015.05.007.
doi: 10.13869/j.cnki.rswc.2015.05.007 |
|
[19] | 殷博, 董鹏飞, 党坤良. 抚育间伐对红桦林生态系统碳密度的影响[J]. 西北林学院学报, 2019, 34(1):105-112. |
YIN B, DONG P F, DANG K L. Effects of thinning on carbon density of Betula albo sinensis ecosystem[J]. J Northwest For Univ, 2019, 34(1):105-112.DOI: 10.3969/j.issn.1001-7461.2019.01.15.
doi: 10.3969/j.issn.1001-7461.2019.01.15 |
|
[20] | 董莉莉, 刘红民, 汪成成, 等. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 2019, 50(5):614-620. |
DONG L L, LIU H M, WANG C C, et al. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. J Shenyang Agric Univ, 2019, 50(5):614-620.DOI: 10.3969/j.issn.1000-1700.2019.05.014.
doi: 10.3969/j.issn.1000-1700.2019.05.014 |
|
[21] | 徐金良, 毛玉明, 成向荣, 等. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 2014, 25(7):1898-1904. |
XU J L, MAO Y M, CHENG X R, et al. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations[J]. Chin J Appl Ecol, 2014, 25(7):1898-1904.DOI: 10.13287/j.1001-9332.2014.0126.
doi: 10.13287/j.1001-9332.2014.0126 |
|
[22] | 武朋辉, 党坤良, 常伟, 等. 抚育间伐对秦岭南坡锐齿栎天然次生林碳密度的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10):75-82. |
WU P H, DANG K L, CHANG W, et al. Effects of forest thinning on carbon density of Quercus aliena var.acuteserrata natural secondary forest on southern slope of Qinling Mountains[J]. J Northwest A F Univ (Nat Sci Ed),2016, 44(10):75-82.DOI: 10.13207/j.cnki.jnwafu.2016.10.011.
doi: 10.13207/j.cnki.jnwafu.2016.10.011 |
|
[23] | 刁娇娇, 肖文娅, 费菲, 等. 间伐对杉木人工林生长及生态系统碳储量的短期影响[J]. 西南林业大学学报, 2017, 37(3):134-139. |
DIAO J J, XIAO W Y, FEI F, et al. Short effect of thinning on the growth and carbon storage of Cunninghamia lanceolata plantation[J]. J Southwest For Univ, 2017, 37(3):134-139.DOI: 10.11929/j.issn.2095-1914.2017.03.021.
doi: 10.11929/j.issn.2095-1914.2017.03.021 |
|
[24] |
SPRING D A, KENNEDY J O S, MAC NALLY R. Optimal management of a forested catchment providing timber and carbon sequestration benefits:climate change effects[J]. Glob Environ Change, 2005, 15(3):281-292.DOI: 10.1016/j.gloenvcha.2005.04.002.
doi: 10.1016/j.gloenvcha.2005.04.002 |
[25] | 游伟斌, 梁芳, 贾忠奎, 等. 抚育间伐对北京山区油松林乔木层碳储量的影响[J]. 北方园艺, 2011(23):203-206. |
YOU W B, LIANG F, JIA Z K, et al. Influence of thinning on the carbon storage of Pinus tabulaeformis arborescent stratum[J]. North Hortic, 2011(23):203-206.DOI: CNKI:SUN:BFYY.0.2011-23-081.
doi: CNKI:SUN:BFYY.0.2011-23-081 |
|
[26] | 成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175-1180. |
CHENG X R, YU M K, GE L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chin J Appl Ecol, 2012, 23(5):1175-1180.DOI: 10.13287/j.1001-9332.2012.0162.
doi: 10.13287/j.1001-9332.2012.0162 |
|
[27] | 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6):1526-1538. |
PENG W H, MU C C, CHANG Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, northeast China[J]. Acta Pedologica Sinica, 2020, 57(6):1526-1538. DOI: 10.11766/trxb201910210076.
doi: 10.11766/trxb201910210076 |
|
[28] |
RUIZ-PEINADO R, BRAVO-OVIEDO A, LÓPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods?[J]. Eur J For Res, 2013, 132(2):253-262.DOI: 10.1007/s10342-012-0672-z.
doi: 10.1007/s10342-012-0672-z |
[29] |
NILSEN P, STRAND L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce [Picea abies (L.) Karst.] stand after 33 years[J]. For Ecol Manag, 2008, 256(3):201-208.DOI: 10.1016/j.foreco.2008.04.001.
doi: 10.1016/j.foreco.2008.04.001 |
[30] |
KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J]. Soil Sci Soc Am J, 2014, 78(2):624-633.DOI: 10.2136/sssaj2013.08.0360.
doi: 10.2136/sssaj2013.08.0360 |
[31] | 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4):1133-1140. |
CHEN X T, XU T L, LI X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chin J Ecol, 2019, 38(4):1133-1140. |
[1] | 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 85-94. |
[4] | 王宇, 易艳灵, 刘海, 文晓晨, 李天一, 尹海锋, 李贤伟, 范川. 两种采伐方式对马尾松人工林林分空间结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 138-146. |
[5] | 杨宇萍, 胡文敏, 贾冠宇, 李果, 李毅. 基于InVEST与ANN-CA模型的环洞庭湖区土地利用碳储量情景模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 175-184. |
[6] | 沈浩, 姜姜, 周晨, 潘庆全. 江西石城不同起源阔叶林碳储量驱动因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 185-190. |
[7] | 戚丽萍, 栾兆擎, 魏勉, 闫丹丹, 李静泰, 么秀颖, 刘垚, 谢思荧, 盛昱凤. 基于土地利用的江苏省各市生态系统服务价值时空变化研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 200-208. |
[8] | 张育诚, 韩念龙, 胡珂, 于淼, 黎兴强. 海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 115-122. |
[9] | 董瀚元, 于颖, 范文义. 星载激光雷达GEDI数据林下地形反演性能验证[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 141-149. |
[10] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[11] | 赵铭臻, 刘静, 邹显花, 郑宏, 范福金, 林开敏, 马祥庆, 李明. 间伐施肥对杉木中龄林生长和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 70-78. |
[12] | 李威, 李吉平, 张银龙, 李萍萍, 韩建刚. 双碳目标背景下湖泊湿地的生态修复技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 157-166. |
[13] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[14] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[15] | 肖君. 福建省天然乔木林碳储量动态变化及增汇策略[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 27-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||