基于MODIS的云南省2001—2020年林火发生时空特征分析

张文文, 王劲, 王秋华, 张曦妍, 曹恒茂, 龙腾腾

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 73-79.

PDF(2732 KB)
PDF(2732 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 73-79. DOI: 10.12302/j.issn.1000-2006.202107001
专题报道:林草计算机应用研究专题(执行主编 李凤日)

基于MODIS的云南省2001—2020年林火发生时空特征分析

作者信息 +

Analyses on spatial and temporal characteristics of forest fires in Yunnan Province based on MODIS from 2001 to 2020

Author information +
文章历史 +

摘要

【目的】 研究森林火灾发生的时空特征,掌握云南省林火发生的时空分异特征,定量分析林火发生规律,识别林火高发区和易发区,以进行森林火险分布科学区划。【方法】 基于云南省2001—2020年中分辨率成像光谱仪(MODIS)火灾位置/热异常产品数据(MCD14DL),利用火位置信息中所具有的关联性与异质性等,采用统计分析、中心点分析、标准差椭圆法、Ripley’s K 函数、核密度等方法,分析云南省林火发生的时空分布特征。【结果】 ①云南省2001—2020年间林火发生的年际波动较大,2010年出现火点高峰值;季节变化显著,林火主要集中在冬、春两季,春季火点最多且在3月出现高峰值。②林火发生具有显著的区域性特征,林火高发区主要分布在云南省西南部,其次是东南和西北部,东北部林火发生数最少。普洱市是林火发生的中位数中心,其西北部森林火点分布密度最高,核密度值约为0.43;其次是西双版纳州中西部区域,核密度值约为0.34;再者是大理州西北部和文山州东北部区域,这两处核密度值均约为0.26,这4个区域为云南省森林火点分布的热点区。③20年间,林火空间分布的方向性明显,云南省森林火点的总体重心位置正逐步由普洱一带向大理—楚雄—玉溪—红河州一带偏移。④云南省林火的整体空间分布类型为凝聚模式,但聚集程度不高且在逐渐分散。【结论】 2001—2020年云南省林火发生不是完全随机分布的,而是呈现一定的时空分布规律。该特征规律有助于强化区域火情管理,增强重点防火区域的防火建设与宣传,科学安排防火工作,降低林火发生率,实现森林可持续发展。

Abstract

【Objective】 Studying the temporal and spatial characteristics of forest fires in Yunnan Province, help quantify the occurrence of forest fires, identify areas of high incidence and finally carry out risk zoning scientifically. 【Method】Based on data from Yunnan Province between 2001 and 2020 (the MODIS fire location/thermal anomaly product, MCD14DL), we studied the correlation and heterogeneity of fire locations to analyze spatial and temporal distribution by statistical analysis, center point, standard deviational ellipse, Ripley’s K function, kernel density and other methods. 【Result】(1)We observed large annual fluctuations of forest fires between 2001 and 2020, peaking in 2010. Forest fires in Yunnan Province concentrated in winter and particularly spring, with fire spots peaking in March. (2)The occurrence of forest fires varied greatly between the regions, with the highest incidence in the southwest of Yunnan Province, followed by the southeast and northwest. The northeast had the smallest number of forest fires. The median centre was Pu’er, while the northwest of Pu’er had the highest kernel density(0.43) followed by the central and western regions of Xishuang banna Prefecture, with a kernel density of 0.34, and the northwest of Dali Prefecture and northeast of Wenshan Prefecture, with a nuclear density of 0.26; these four regions were hotspots for forest fires. (3)In the past 20 years, the spatial distribution of forest fires in Yunnan Province has displayed obvious directionality; the center of gravity has gradually shifted from Pu’er to Dali-Chuxiong-Yuxi-Honghezhou. (4)The spatial distribution of forest fires in Yunnan Province fits an aggregation model (but not to a high degree) and is gradually dispersed.【Conclusion】Forest fires in Yunnan Province between 2001 and 2020 were not randomly distributed, but followed a spatial-temporal distribution law. This law can be applied to inform a regional fire management, strengthen the construction and publicity for the fire prevention in priority regions, scientifically organize fire prevention work, reduce the incidence of forest fires and realize the sustainable development of forests.

关键词

MODIS火产品 / 火点 / 林火发生 / 时空特征 / 云南省

Key words

moderate-resolution imaging spectroradiometer(MODIS) fire products / fire point / forest fire occurrence / spatial-temporal pattern / Yunnan Province

引用本文

导出引用
张文文, 王劲, 王秋华, . 基于MODIS的云南省2001—2020年林火发生时空特征分析[J]. 南京林业大学学报(自然科学版). 2023, 47(5): 73-79 https://doi.org/10.12302/j.issn.1000-2006.202107001
ZHANG Wenwen, WANG Jin, WANG Qiuhua, et al. Analyses on spatial and temporal characteristics of forest fires in Yunnan Province based on MODIS from 2001 to 2020[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(5): 73-79 https://doi.org/10.12302/j.issn.1000-2006.202107001
中图分类号: S762   

参考文献

[1]
OLIVEIRA S, PEREIRA J M C, SAN-MIGUEL-AYANZ J, et al. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression[J]. Appl Geogr, 2014, 51:143-157. DOI: 10.1016/j.apgeog.2014.04.002.
[2]
JOLLY W M, COCHRANE M A, FREEBORN P H, et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nat Commun, 2015, 6:7537. DOI: 10.1038/ncomms8537.
Jolly, W. Matt; Freeborn, Patrick H. US Forest Serv, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59803 USA. Cochrane, Mark A.; Freeborn, Patrick H. S Dakota State Univ, GSCE, Brookings, SD 57007 USA. Holden, Zachary A. US Forest Serv Reg 1, Missoula, MT 59802 USA. Brown, Timothy J. Western Reg Climate Ctr, DRI, Reno, NV 89512 USA. Williamson, Grant J.; Bowman, David M. J. S. Univ Tasmania, Sch Biol Sci, Hobart, Tas 7001, Australia.
[3]
田晓瑞, 赵凤君, 舒立福, 等. 西南林区卫星监测热点及森林火险天气指数分析[J]. 林业科学研究, 2010, 23(4):523-529.
TIAN X R, ZHAO F J, SHU L F, et al. Hotspots from satellite monitoring and forest fire weather index analysis for southwest China[J]. For Res, 2010, 23(4):523-529.DOI:10.3969/j.issn.1001-7313.2020.02.019.
[4]
魏书精, 罗斯生, 罗碧珍, 等. 气候变化背景下森林火灾发生规律研究[J]. 林业与环境科学, 2020, 36(2):133-143.
WEI S J, LUO S S, LUO B Z, et al. Occurrence regularity of forest fire under the background of climate change[J]. For Environ Sci, 2020, 36(2):133-143.DOI: 10.3969/j.issn.1006-4427.2020.02.019.
[5]
VAN L P, LINDQUIST E, SATHYAPALA S, et al. Global forest area disturbance from fire, insect pests, diseases and severe weather events[J]. For Eco Manag, 2015, 352(9):78-88. DOI: 10.1016/j.foreco.2015.06.010.
[6]
COSTAFREDA-AUMEDES S, COMAS C, VEGA-GARCIA C. Human-caused fire occurrence modelling in perspective: a review[J]. Int J Wildland Fire, 2017, 26(12):983. DOI: 10.1071/wf17026.
The increasing global concern about wildfires, mostly caused by people, has triggered the development of human-caused fire occurrence models in many countries. The premise is that better knowledge of the underlying factors is critical for many fire management purposes, such as operational decision-making in suppression and strategic prevention planning, or guidance on forest and land-use policies. However, the explanatory and predictive capacity of fire occurrence models is not yet widely applied to the management of forests, fires or emergencies. In this article, we analyse the developments in the field of human-caused fire occurrence modelling with the aim of identifying the most appropriate variables and methods for applications in forest and fire management and civil protection. We stratify our worldwide analysis by temporal dimension (short-term and long-term) and by model output (numeric or binary), and discuss management applications. An attempt to perform a meta-analysis based on published models proved limited because of non-equivalence of the metrics and units of the estimators and outcomes across studies, the diversity of models and the lack of information in published works.
[7]
PODUR J, MARTELL D L, CSILLAG F. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998[J]. Ecol Model, 2003, 164(1):1-20. DOI: 10.1016/S0304-3800(02)00386-1.
[8]
KEANE R E, DRURY S A, KARAU E C, et al. A method for mapping fire hazard and risk across multiple scales and its application in fire management[J]. Ecol Model, 2010, 221(1):2-18. DOI: 10.1016/j.ecolmodel.2008.10.022.
[9]
PARISIEN M A, PARKS S A, MILLER C, et al. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape[J]. Ecosystems, 2011, 14(7):1141-1155. DOI: 10.1007/s10021-011-9474-2.
[10]
张运林, 郭妍, 胡海清. 2001-2017年西南地区森林火灾数据特征分析[J]. 西北林学院学报, 2021, 36(1):179-186.
ZHANG Y L, GUO Y, HU H Q. Characteristics of forest fire data in southwest China during 2001-2017[J]. J Northwest For Univ, 2021, 36(1):179-186.DOI: 10.3969/j.issn.1001-7461.2021.01.26.
[11]
张富精. 云南省普洱市林火发生规律及森林火险等级研究[D]. 北京: 北京林业大学, 2018.
ZHANG F J. Study on forest fire occurrence law and forest fire risk grade in Pu’er City,Yunnan Province[D]. Beijing: Beijing Forestry University, 2018.
[12]
白海峰, 刘晓东, 牛树奎, 等. 基于贝叶斯模型平均法的森林火灾预测模型构建研究——以云南省大理州为例[J]. 北京林业大学学报, 2021, 43(5):44-52.
BAI H F, LIU X D, NIU S K, et al. Construction of forest fire prediction model based on Bayesian model averaging method:taking Dali Prefecture,Yunnan Province of southwestern China as an example[J]. J Beijing For Univ, 2021, 43(5):44-52.DOI:10.12171/j.1000-1522.20200173.
[13]
陈波. 基于MODIS数据的云南省森林火灾时空分布及火险区划研究[D]. 北京: 北京林业大学, 2018.
CHEN B. Study on temporal and spatial distribution and fire risk zoning of forest fires in Yunnan Province based on MODIS data[D]. Beijing: Beijing Forestry University, 2018.
[14]
田野, 牛树奎, 陈锋, 等. 丽江地区森林火灾的时空分布规律[J]. 西北林学院学报, 2018, 33(5):142-148.
TIAN Y, NIU S K, CHEN F, et al. Temporal and spatial distribution of forest fire in Lijiang area[J]. J Northwest For Univ, 2018, 33(5):142-148.DOI: 10.3969/j.issn.1001-7461.2018.05.22.
[15]
何雨芩, 徐虹, 程晋昕. 云南省林火时空分布特征分析[J]. 中南林业科技大学学报, 2017, 37(5):36-41.
HE Y Q, XU H, CHENG J X. Analysis of temporal and spatial distribution of forest fire in Yunnan Province[J]. Central South Univ For Technol, 2017, 37(5):36-41.DOI: 10.14067/j.cnki.1673-923x.2017.05.007.
[16]
顾先丽, 吴志伟, 张宇婧, 等. 基于MODIS数据的2001—2015年江西省林火时空特征分析[J]. 广东农业科学, 2018, 45(6):129-134,173.
GU X L, WU Z W, ZHANG Y J, et al. Analysis on temporal and spatial characteristics of forest fires in Jiangxi Province based on MODIS Data from 2001 to 2015[J]. Guangdong Agric Sci, 2018, 45(6):129-134,173.DOI: 10.16768/j.issn.1004-874X.2018.06.021.
[17]
QIN X L, YAN H, ZHAN Z H, et al. Characterising vegetative biomass burning in China using MODIS data[J]. Int J Wildland Fire, 2014, 23(1):69-77. DOI: 10.1071/wf12163.
\n\nFor Chinese fire cases, it was established that the active fire data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km2 spatial resolution and their subsequent analysis are more accurate and spatially precise than those obtained from the statistical fire data collected by the State Forestry Administration (SFA) of P. R. China. Most (37.5%) of the biomass burning detections from 2000 to 2011 were found in croplands, followed by broadleaf forests (21.2%). Three high-density fire regions were found during the 12-year study period: (1) Heilongjiang Province, where many large forest fires occurred in April–May and September–October; (2) Yunnan Province, where many small forest fires occurred in December–May and (3) Guangdong Province and Guangxi Autonomous Regions, where most fires occurred in croplands in November–March. The largest percentage (10.72%) of the total active fire points was in Heilongjiang Province during 2000–2011, followed by Yunnan Province (10.14%), with several fires taking place in February, April and June.\n
[18]
LANGNER A, SIEGERT F. Spatiotemporal fire occurrence in Borneo over a period of 10 years[J]. Glob Change Biol, 2009, 15(1):48-62. DOI: 10.1111/j.1365-2486.2008.01828.x.
[19]
曾爱聪, 郭新彬, 郑文霞, 等. 基于MODIS卫星火点数据的浙江省林火时空动态变化特征[J]. 北京林业大学学报, 2020, 42(11):39-46.
ZENG A C, GUO X B, ZHENG W X, et al. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of Eastern China based on MODIS satellite hot spot data[J]. J Beijing For Univ, 2020, 42(11):39-46.
[20]
马文苑, 冯仲科, 成竺欣, 等. 山西省林火驱动因子及分布格局研究[J]. 中南林业科技大学学报, 2020, 40(9):57-69.
MA W Y, FENG Z K, CHENG Z X, et al. Study on driving factors and distribution pattern of forest fires in Shanxi Province[J]. J Central South Univ For Technol, 2020, 40(9):57-69.DOI: 10.14067/j.cnki.1673-923x.2020.09.007.
[21]
姜汉侨. 云南植被分布的特点及其地带规律性[J]. 云南植物研究, 1980(1):22-32.
JIANG H Q. Characteristics of vegetation distribution and zonal regularity in Yunnan[J]. Botani Res Yunnan, 1980(1):22-32.
[22]
王秋华, 李晓娜, 叶彪, 等. 华山松纯林地表可燃物的潜在燃烧火行为研究[J]. 林业工程学报, 2019, 4(6):151-157.
WANG Q H, LI X N, YE B, et al. Study on potential combustion behavior of surface combustibles in pure forest of Huashan pine[J]. J For Engin, 2019, 4(6):151-157. DOI:10.13360/j.issn.2096-1359.2019.06.021.
[23]
龙腾腾, 殷继艳, 欧朝蓉, 等. 云南省森林火灾风险综合评价及空间格局研究[J]. 中国安全科学学报, 2021, 31(9):167-173.
摘要
为有效揭示森林火灾风险的空间异质性和关联性,给林火防控资源配置和区域联动提供科学参考,综合考虑自然因素和人为因素,利用熵权法和综合指数法评估云南省森林火灾风险,继而利用空间自相关模型,分析森林火灾风险的空间格局。研究结果表明:云南省西部森林火灾风险高于东部地区,绝大部分地区处于较高风险和高风险等级,尤其是滇西北、滇西和滇中地区;火灾风险趋势线有2条,1条从云南省的西北部沿着中部延伸到东北部,呈现出两端高中间低的态势,另1条呈现南北低,中间高的态势;火灾风险在空间上呈现出空间集聚特征,但显著程度一般,森林火灾风险的局部相关性较弱。
LONG T T, YIN J Y, OU Z R, et al. Comprehensive assessment and spatial pattern of forest fire risk in Yunnan Province[J]. China Safety Sci J, 2021, 31(9):167-173. DOI:10.16265/j.cnki.issn1003-3033.2021.09.023.
[24]
周瑞伍, 彭明春, 张一平. 云南主要森林植被碳储量及固碳潜力模拟研究[J]. 云南大学学报(自然科学版), 2017, 39(6):1089-1103.
ZHOU R W, PENG M C, ZHANG Y P. The simulation research of carbon storage and sequestration potential of main forest vegetation in Yunnan Province[J]. J Yunnan Univ (Nat Sci Ed), 2017, 39(6):1089-1103.DOI: 10.7540/j.ynu.20160767.
[25]
POLAJER B, BREZOVNIK R, RITONJA J. Evaluation of load frequency control performance based on standard deviational ellipses[J]. Power Systems, IEEE Trans Power Syst, 2017, 32(3):2296-2304. DOI: 10.1109/TPWRS.2016.2605152.
[26]
ANDERSON T K. Kernel density estimation and K-means clustering to profile road accident hotspots[J]. Accid Anal Prev, 2009, 41(3):359-364. DOI: 10.1016/j.aap.2008.12.014.
Identifying road accident hotspots is a key role in determining effective strategies for the reduction of high density areas of accidents. This paper presents (1) a methodology using Geographical Information Systems (GIS) and Kernel Density Estimation to study the spatial patterns of injury related road accidents in London, UK and (2) a clustering methodology using environmental data and results from the first section in order to create a classification of road accident hotspots. The use of this methodology will be illustrated using the London area in the UK. Road accident data collected by the Metropolitan Police from 1999 to 2003 was used. A kernel density estimation map was created and subsequently disaggregated by cell density to create a basic spatial unit of an accident hotspot. Appended environmental data was then added to the hotspot cells and using K-means clustering, an outcome of similar hotspots was deciphered. Five groups and 15 clusters were created based on collision and attribute data. These clusters are discussed and evaluated according to their robustness and potential uses in road safety campaigning.
[27]
ROADS J, FUJIOKA F, CHEN S, et al. Seasonal fire danger forecasts for the USA[J]. International Journal of Wildland Fire, 2005, 14(1):1-18. DOI: 10.1071/wf03052.
\n\nThe Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (NFDRS), which include the ignition component (IC), energy release component (ER), burning index (BI), spread component (SC), and the Keetch–Byram drought index (KB). The Fosberg fire weather index, which is a simplified form of the BI, has been previously used not only for the USA but also for other global regions and is thus included for comparison. As will be shown, all of these indices can be predicted well at weekly times scales and there is even skill out to seasonal time scales over many US West locations. The most persistent indices (BI and ER) tend to have the greatest seasonal forecast skill. The NFDRS indices also have a weak relation to observed fire characteristics such as fire counts and acres burned, especially when the validation fire danger indices are used.\n
[28]
赵凤君, 王明玉, 舒立福, 等. 气候变化对林火动态的影响研究进展[J]. 气候变化研究进展, 2009, 5(1):50-55.
ZHAO F J, WANG M Y, SHU L F, et al. Progress in studies on influences of climate change on forest fire regime[J]. Adv Clim Change Res, 2009, 5(1):50-55. DOI: 10.3969/j.issn.1673-1719.2009.01.010.
[29]
LENG X X, LIU X G, GAO Y L, et al. Drought assessment of southwestern China based on HadGEM2-ES model under representative concentration pathway 4.5 scenario[J]. Natural Hazards, 2020, 102(1):307-334. DOI: 10.1007/s11069-020-03928-7.
[30]
任金鑫, 肖慧娟, 张超, 等. 持续干旱对森林火灾的影响研究综述[J]. 内蒙古林业调查设计, 2013, 36(5):135-138.
REN J X, XIAO H J, ZHANG C, et al. Reviewing on effects of continuous drought on forest fire[J]. Inn Mong For Investig Des, 2013, 36(5):135-138.DOI: 10.3969/j.issn.1006-6993.2013.05.060.
[31]
何诚, 舒立福, 刘超, 等. 南方人工林地阴燃火温度变化特征研究[J]. 林业工程学报, 2020, 5(2):151-157.
HE C, SHU L F, LIU C, et al. Research on variation of temperature of underground fire in south China plantation[J]. J Fore Eng, 2020, 5(2):151-157.DOI:10.13360/ j.issn.2096-1359.201907001.
[32]
王秋华, 李伟, 刘世远, 等. 滇中昆明地区森林火灾的火环境研究[J]. 江西农业大学学报, 2015, 37(1):108-113.
WANG Q H, LI W, LIU S Y, et al. A study on the fire environment of forest fire in Kunming area[J]. Acta Agric Univ Jiangxiensi, 2015, 37(1):108-113. DOI: 10.3969/j.issn.1000-2286.2015.01.018.
[33]
田晓瑞, 舒立福, 赵凤君, 等. 未来情景下西南地区森林火险变化[J]. 林业科学, 2012, 48(1):121-125+192-193.
TIAN X R, SHU L F, ZHAO F J, et al. Forest fire danger changes for southwest China under future scenarios[J]. Sci Silvae Sin, 2012, 48(1):121-125+192-193. DOI: 10.3321/j.issn:1000-3037.2007.02.012.
[34]
王金亮, 高雁. 云南省近20年植被动态变化遥感时序分析[J]. 云南地理环境研究, 2010, 22(6):1-7.
WANG J L, GAO Y. Rs-based analysis on vegetation temporal changes in 1982 - 2002 of Yunnan Province[J]. Yunnan Geogr Environ Res, 2010, 22(6):1-7.DOI: 10.3969/j.issn.1001-7852.2010.06.001.
[35]
刘晓娜, 封志明, 姜鲁光, 等. 西双版纳土地利用/土地覆被变化时空格局分析[J]. 资源科学, 2014, 36(2):233-244.
LIU X N, FENG Z M, JIANG L G, et al. Spatial-temporal pattern analysis of land use and land cover change in Xishuangbanna[J]. Resour Sci, 2014, 36(2):233-244.

基金

国家自然科学基金项目(31960318)
国家自然科学基金项目(32160376)
国家自然科学基金项目(31660320)
云南省农业联合面上项目(2018FG001-055)
云南省教育厅科学研究项目(2020Y0382)

编辑: 孟苗婧 郑琰燚
PDF(2732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/