南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2): 234-242.doi: 10.12302/j.issn.1000-2006.202107016
收稿日期:
2021-07-11
修回日期:
2022-03-22
出版日期:
2023-03-30
发布日期:
2023-03-28
通讯作者:
* 贾国栋(基金资助:
LIN Wenqi1(), JIA Guodong1,2,*()
Received:
2021-07-11
Revised:
2022-03-22
Online:
2023-03-30
Published:
2023-03-28
摘要:
大气-土壤-植被连续体(soil-plant-atmosphere continuum,SPAC)系统水分转化过程是生态水文学重要的研究内容。稳定同位素作为天然的示踪剂能有效示踪、整合和指示SPAC系统中的水分输入、输出以及转化过程。笔者在简述稳定同位素应用原理的基础上,以垂直方向上SPAC系统水分运移的视角,阐释基于稳定同位素技术的土壤-根系界面水分运移、植物传输水分中存在的分馏和植物冠层-大气界面水分交换的研究进展,探讨了SPAC系统水分转化研究中稳定同位素技术在分馏机制、时间分辨率与空间异质性方面的局限性。认为未来基于稳定同位素的SPAC水分转化研究还需着重在以下3个方面进行:①借助广泛应用于其他领域的便携式同位素分析仪对各种同位素水池同位素组成进行原位观测;②结合多种同位素分析水体同位素组成来分析土壤-根系界面水分运移过程,进一步确定树木水分来源,提高识别和划分的准确性,并以此完善稳定同位素应用模型;③利用同位素标记盆栽实验精准控制叶片吸水的水源,高分辨率地解析叶片吸水的发生位置以及时间;④结合控制性同位素标记实验并利用离心技术提取木质部导管中的汁液水,对比分析各水池同位素偏差,以深入开展同位素分馏机制的研究。
中图分类号:
林雯淇,贾国栋. 基于稳定同位素的SPAC系统水分转化研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 234-242.
LIN Wenqi, JIA Guodong. Research progresses on stable isotopes of water transformation in SPAC system[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 234-242.DOI: 10.12302/j.issn.1000-2006.202107016.
[1] | DAWSON T E, HAHM W J, CRUTCHFIELD-PETERS K. Digging deeper:what the critical zone perspective adds to the study of plant ecophysiology[J]. New Phytol, 2020, 226(3):666-671.DOI:10.1111/nph.16410. |
[2] | PAN Y X, WANG X P, MA X Z, et al. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China[J]. CATENA, 2020, 189:104499.DOI:10.1016/j.catena.2020.104499. |
[3] | BARBETA A, BURLETT R, MARTÍN-GÓMEZ P, et al. Evidence for distinct isotopic compositions of sap and tissue water in tree stems:consequences for plant water source identification[J]. New Phytol, 2022, 233(3):1121-1132.DOI:10.1111/nph.17857. |
[4] | BRUM M, VADEBONCOEUR M A, IVANOV V, et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest[J]. J Ecol, 2019, 107(1):318-333.DOI:10.1111/1365-2745.13022. |
[5] | 贾国栋. 基于稳定氢氧同位素技术的植被-土壤系统水分运动机制研究[D]. 北京: 北京林业大学, 2013. |
JIA G D. Water movement mechanism of plant-soil system using stable hydrogen and oxygen isotope technology[D]. Beijing: Beijing Forestry University, 2013. | |
[6] | 李雨芊, 孟玉川, 宋泓苇, 等. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征[J]. 应用生态学报, 2021, 32(6):1928-1934. |
LI Y Q, MENG Y C, SONG H W, et al. Distribution of hydrogen and oxygen stable isotope of water in soil-plant-atmosphere continuum (SPAC) system of a typical forest area[J]. Chin J Appl Ecol, 2021, 32(6):1928-1934.DOI:10.13287/j.1001-9332.202106.020. | |
[7] | ROTHFUSS Y, JAVAUX M. Reviews and syntheses:isotopic approaches to quantify root water uptake:a review and comparison of methods[J]. Biogeosciences, 2017, 14(8):2199-2224.DOI:10.5194/bg-14-2199-2017. |
[8] | ZHU W R, LI W H, SHI P L, et al. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains,northern China[J]. Sustainability, 2021, 13(2):807.DOI:10.3390/su13020807. |
[9] | 吴友杰. 基于稳定同位素的覆膜灌溉农田SPAC水分传输机制与模拟[D]. 北京: 中国农业大学, 2017. |
WU Y J. Water transfer mechanism and simulation of SPAC in irrigated and film-mulching farmland based on stable isotope[D]. Beijing: China Agricultural University, 2017. | |
[10] | MUÑOZ-VILLERS L E, GERIS J, ALVARADO-BARRIENTOS M S, et al. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem[J]. Hydrol Earth Syst Sci, 2020, 24(4):1649-1668.DOI:10.5194/hess-24-1649-2020. |
[11] | 梁杰. 红树林叶和冠层的水同位素分馏机制及其应用研究[D]. 北京: 清华大学, 2019. |
LIANG J. Studies on water isotopic fractionations in leaf-canopy of mangrove forests and their applications[D]. Beijing: Tsinghua University, 2019. | |
[12] | HAHM W J, REMPE D M, DRALLE D N, et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season[J]. Water Resour Res, 2020, 56(11): e2020WR027419.DOI:10.1029/2020WR027419. |
[13] | ELLER C B, LIMA A L, OLIVEIRA R S. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species,Drimys brasiliensis (Winteraceae)[J]. New Phytol, 2013, 199(1):151-162.DOI:10.1111/nph.12248. |
[14] | ZHANG B B, XU Q, GAO D Q, et al. Altered water uptake patterns of Populus deltoides in mixed riparian forest stands[J]. Sci Total Environ, 2020, 706:135956.DOI:10.1016/j.scitotenv.2019.135956. |
[15] | WANG P Y, LIU W J, ZHANG J L, et al. Seasonal and spatial variations of water use among riparian vegetation in tropical monsoon region of SW China[J]. Ecohydrology, 2019, 12(4): e2085.DOI:10.1002/eco.2085. |
[16] | MA Y, SONG X F. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments[J]. Sci Total Environ, 2016, 550:471-483.DOI:10.1016/j.scitotenv.2016.01.148. |
[17] | 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7):16-23. |
LIU Z Q, YU X X, JIA G D, et al. Response to precipitation in water sources for Platycladus orientalis in Beijing mountain area[J]. Sci Silvae Sin, 2018, 54(7):16-23. | |
[18] | MEINZER F C, ANDRADE J L, GOLDSTEIN G, et al. Partitioning of soil water among canopy trees in a seasonally dry tropical forest[J]. Oecologia, 1999, 121(3):293-301.DOI:10.1007/s004420050931. |
[19] | WANG J, FU B J, LU N, et al. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau[J]. Sci Total Environ, 2017, 609:27-37.DOI:10.1016/j.scitotenv.2017.07.133. |
[20] | MUÑOZ-VILLERS L E, HOLWERDA F, ALVARADO-BARRIENTOS M S, et al. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees[J]. Oecologia, 2018, 188(1):303-317.DOI:10.1007/s00442-018-4209-0. |
[21] | GAINES K P, STANLEY J W, MEINZER F C, et al. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania[J]. Tree Physiol, 2015, 36(4):444-458.DOI:10.1093/treephys/tpv113. |
[22] | BAZIHIZINA N, VENEKLAAS E J, BARRETT-LENNARD E G, et al. Hydraulic redistribution:limitations for plants in saline soils[J]. Plant Cell Environ, 2017, 40(10):2437-2446.DOI:10.1111/pce.13020. |
[23] | RICHARDS J H, CALDWELL M M. Hydraulic lift:substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia, 1987, 73(4):486-489.DOI:10.1007/BF00379405. |
[24] | BURGESS S S O, ADAMS M A, TURNER N C, et al. The redistribution of soil water by tree root systems[J]. Oecologia, 1998, 115(3):306-311.DOI:10.1007/s004420050521. |
[25] | BROOKS J R, MEINZER F C, COULOMBE R, et al. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests[J]. Tree Physiol, 2002, 22(15/16):1107-1117.DOI:10.1093/treephys/22.15-16.1107. |
[26] | BARRON-GAFFORD G A, KNOWLES J F, SANCHEZ-CAÑETE E P, et al. Hydraulic redistribution buffers climate variability and regulates grass-tree interactions in a semiarid riparian savanna[J]. Ecohydrology, 2021, 14(3):1-13.DOI:10.1002/eco.2271. |
[27] | LUO X Y, LIANG X, LIN J S. Plant transpiration and groundwater dynamics in water-limited climates:impacts of hydraulic redistribution[J]. Water Resour Res, 2016, 52(6):4416-4437.DOI:10.1002/2015WR017316. |
[28] | YODER C K, NOWAK R S. Hydraulic lift among native plant species in the Mojave Desert[J]. Plant Soil, 1999, 215(1):93-102.DOI:10.1023/A:1004729232466. |
[29] | ESPELETA J F, WEST J B, DONOVAN L A. Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community[J]. Oecologia, 2004, 138(3):341-349.DOI:10.1007/s00442-003-1460-8. |
[30] | TÖCHTERLE P, YANG F L, REHSCHUH S, et al. Hydraulic water redistribution by silver fir (Abies alba Mill.) occurring under severe soil drought[J]. Forests, 2020, 11(2):162.DOI:10.3390/f11020162. |
[31] | WANG Y Y, JIA B H, XIE Z H. Impacts of hydraulic redistribution on eco-hydrological cycles:a case study over the Amazon Basin[J]. Sci China Earth Sci, 2018, 61(9):1330-1340.DOI:10.1007/s11430-017-9219-5. |
[32] | YU K L, D’ODORICO P. Hydraulic lift as a determinant of tree-grass coexistence on savannas[J]. New Phytol, 2015, 207(4):1038-1051.DOI:10.1111/nph.13431. |
[33] | YU T F, FENG Q, SI J H, et al. Evidences and magnitude of nighttime transpiration derived from Populus euphratica in the extreme arid region of China[J]. J Plant Biol, 2016, 59(6):648-657.DOI:10.1007/s12374-015-0536-4. |
[34] | ARMAS C, PADILLA F M, PUGNAIRE F I, et al. Hydraulic lift and tolerance to salinity of semiarid species:consequences for species interactions[J]. Oecologia, 2010, 162(1):11-21.DOI:10.1007/s00442-009-1447-1. |
[35] | OLIVEIRA R S, DAWSON T E, BURGESS S S O, et al. Hydraulic redistribution in three Amazonian trees[J]. Oecologia, 2005, 145(3):354-363.DOI:10.1007/s00442-005-0108-2. |
[36] | NADEZHDINA N, CERMÁK J, GASPÁREK J, et al. Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland[J]. Tree Physiol, 2006, 26(10):1277-1288.DOI:10.1093/treephys/26.10.1277. |
[37] | WARREN J M, MEINZER F C, BROOKS J R, et al. Hydraulic redistribution of soil water in two old-growth coniferous forests:quantifying patterns and controls[J]. New Phytol, 2007, 173(4):753-765.DOI:10.1111/j.1469-8137.2006.01963.x. |
[38] | SARDANS J, PEÑUELAS J. Hydraulic redistribution by plants and nutrient stoichiometry:shifts under global change[J]. Ecohydrology, 2014, 7(1):1-20.DOI:10.1002/eco.1459. |
[39] | PRIYADARSHINI K V R, PRINS H H T, DE BIE S, et al. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J]. Ecohydrology, 2016, 9(2):218-228.DOI:10.1002/eco.1624. |
[40] | PRIETO I, ARMAS C, PUGNAIRE F I. Water release through plant roots:new insights into its consequences at the plant and ecosystem level[J]. New Phytol, 2012, 193(4):830-841.DOI:10.1111/j.1469-8137.2011.04039.x. |
[41] | NEUMANN R B, CARDON Z G. The magnitude of hydraulic redistribution by plant roots:a review and synthesis of empirical and modeling studies[J]. New Phytol, 2012, 194(2):337-352.DOI:10.1111/j.1469-8137.2012.04088.x. |
[42] | LEE E, KUMAR P, BARRON-GAFFORD G A, et al. Impact of hydraulic redistribution on multi species vegetation water use in a semiarid savanna ecosystem:an experimental and modeling synthesis[J]. Water Resour Res, 2018, 54(6):4009-4027.DOI:10.1029/2017WR021006. |
[43] | BARRON-GAFFORD G A, SANCHEZ-CAÑETE E P, MINOR R L, et al. Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna[J]. New Phytol, 2017, 215(4):1451-1461.DOI:10.1111/nph.14693. |
[44] | HOWARD A R, VAN IERSEL M W, RICHARDS J H, et al. Night-time transpiration can decrease hydraulic redistribution[J]. Plant Cell Environ, 2009, 32(8):1060-1070.DOI:10.1111/j.1365-3040.2009.01988.x. |
[45] | SCOTT R L, CABLE W L, HULTINE K R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna[J]. Water Resour Res, 2008, 44(2):W02440.DOI:10.1029/2007WR006149. |
[46] | 苏华, 刘伟, 李永庚. 水分再分配对土壤-植物系统养分循环的生态意义[J]. 植物生态学报, 2014, 38(9):1019-1028. |
SU H, LIU W, LI Y G. Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system[J]. Chin J Plant Ecol, 2014, 38(9):1019-1028.DOI:10.3724/SP.J.1258.2014.00096. | |
[47] | SUN L, YANG L, CHEN L D, et al. Hydraulic redistribution and its contribution to water retention during short-term drought in the summer rainy season in a humid area[J]. J Hydrol, 2018, 566:377-385.DOI:10.1016/j.jhydrol.2018.09.032. |
[48] | HAFNER B D, TOMASELLA M, HÄBERLE K H, et al. Hydraulic redistribution under moderate drought among English oak,European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment[J]. Tree Physiol, 2017, 37(7):950-960.DOI:10.1093/treephys/tpx050. |
[49] | MAGH R K, GRÜN M, KNOTHE V E, et al. Silver-fir (Abies alba Mill.) neighbors improve water relations of European beech (Fagus sylvatica L.),but do not affect N nutrition[J]. Trees, 2018, 32(1):337-348.DOI:10.1007/s00468-017-1557-z. |
[50] | MULER A L, VAN ETTEN E J B, STOCK W D, et al. Can hydraulically redistributed water assist surrounding seedlings during summer drought?[J]. Oecologia, 2018, 187(3):625-641.DOI:10.1007/s00442-018-4158-7. |
[51] | KITZBERGER T, STEINAKER D F, VEBLEN T T. Effects of climatic variability on facilitation of tree establishment in northern Patagonia[J]. Ecology,2000, 81(7):1914-1924.DOI:10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2. |
[52] | HAFNER B D, HESSE B D, GRAMS T E E. Friendly neighbours:hydraulic redistribution accounts for one quarter of water used by neighbouring drought stressed tree saplings[J]. Plant Cell Environ, 2021, 44(4):1243-1256.DOI:10.1111/pce.13852. |
[53] | ANDERUD Z T, RICHARDS J H. Hydraulic redistribution may stimulate decomposition[J]. Biogeochemistry, 2009, 95(2/3):323-333.DOI:10.1007/s10533-009-9339-3. |
[54] | QUIJANO J C, KUMAR P. Numerical simulations of hydraulic redistribution across climates:the role of the root hydraulic conductivities[J]. Water Resour Res, 2015, 51(10):8529-8550.DOI:10.1002/2014WR016509. |
[55] | VALENZUELA-ESTRADA L R, RICHARDS J H, DIAZ A, et al. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L.under severe drought conditions[J]. J Exp Bot, 2009, 60(4):1241-1247.DOI:10.1093/jxb/ern367. |
[56] | 于静洁, 李亚飞. 稳定氢氧同位素定量植物水分来源的不确定性解析[J]. 生态学报, 2018, 38(22):7942-7949. |
YU J J, LI Y F. Uncertainties in the usage of stable hydrogen and oxygen isotopes for the quantification of plant water sources[J]. Chin J Plant Ecol, 2018, 38(22):7942-7949.DOI:10.5846/stxb201802080345. | |
[57] | BEVEN K, GERMANN P. Macropores and water flow in soils[J]. Water Resour Res, 1982, 18(5):1311-1325.DOI:10.1029/WR018i005p01311. |
[58] | BRINKMANN N, SEEGER S, WEILER M, et al. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest[J]. New Phytol, 2018, 219(4):1300-1313.DOI:10.1111/nph.15255. |
[59] | ALLEN S T, KIRCHNER J W, BRAUN S, et al. Seasonal origins of soil water used by trees[J]. Hydrol Earth Syst Sci, 2019, 23(2):1199-1210.DOI:10.5194/hess-23-1199-2019. |
[60] | EHLERINGER J R, PHILLIPS S L, SCHUSTER W S F, et al. Differential utilization of summer rains by desert plants[J]. Oecologia, 1991, 88(3):430-434.DOI:10.1007/BF00317589. |
[61] | REMPE D M, DIETRICH W E. Direct observations of rock moisture,a hidden component of the hydrologic cycle[J]. Proc Natl Acad Sci USA, 2018, 115(11):2664-2669.DOI:10.1073/pnas.1800141115. |
[62] | GÓMEZ-NAVARRO C, PATAKI D E, BOWEN G J, et al. Spatiotemporal variability in water sources of urban soils and trees in the semiarid,irrigated Salt Lake Valley[J]. Ecohydrology, 2019, 12(8): e2154.DOI:10.1002/eco.2154. |
[63] | DAWSON T E. Hydraulic lift and water use by plants:implications for water balance,performance and plant-plant interactions[J]. Oecologia, 1993, 95(4):565-574.DOI:10.1007/BF00317442. |
[64] | GAINES K P, MEINZER F C, DUFFY C J, et al. Rapid tree water transport and residence times in a Pennsylvania catchment[J]. Ecohydrology, 2016, 9(8):1554-1565.DOI:10.1002/eco.1747. |
[65] | 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013. |
LIN G H. Stable isotope ecology[M]. Beijing: Higher Education Press, 2013. | |
[66] | ELLSWORTH P Z, WILLIAMS D G. Hydrogen isotope fractionation during water uptake by woody xerophytes[J]. Plant Soil, 2007, 291(1/2):93-107.DOI:10.1007/s11104-006-9177-1. |
[67] | POCA M, COOMANS O, URCELAY C, et al. Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas[J]. Plant Soil, 2019, 441(1/2):485-497.DOI:10.1007/s11104-019-04139-1. |
[68] | LIN G H, DA S L STERNBERG L. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants[M]// Stable Isotopes and Plant Carbon-water Relations.Amsterdam:Elsevier, 1993:497-510.DOI:10.1016/b978-0-08-091801-3.50041-6. |
[69] | GERIS J, TETZLAFF D, MCDONNELL J J, et al. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments[J]. Sci Total Environ, 2017, 595:486-493.DOI:10.1016/j.scitotenv.2017.03.275. |
[70] | BARBETA A, JONES S P, CLAVÉ L, et al. Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest[J]. Hydrol Earth Syst Sci, 2019, 23(4):2129-2146.DOI:10.5194/hess-23-2129-2019. |
[71] | DE DEURWAERDER H, HERVÉ-FERNÁNDEZ P, STAHL C, et al. Liana and tree below-ground water competition-vidence for water resource partitioning during the dry season[J]. Tree Physiol, 2018, 38(7):1071-1083.DOI:10.1093/treephys/tpy002. |
[72] | BARBETA A, GIMENO T E, CLAVÉ L, et al. An explanation for the isotopic offset between soil and stem water in a temperate tree species[J]. New Phytol, 2020, 227(3):766-779.DOI:10.1111/nph.16564. |
[73] | CHEN G, AUERSWALD K, SCHNYDER H. 2H and 18O depletion of water close to organic surfaces[J]. Biogeosciences, 2016, 13(10):3175-3186.DOI:10.5194/bg-13-3175-2016. |
[74] | MAMONOV A B, COALSON R D, ZEIDEL M L, et al. Water and deuterium oxide permeability through aquaporin 1:MD predictions and experimental verification[J]. J Gen Physiol, 2007, 130(1):111-116.DOI:10.1085/jgp.200709810. |
[75] | CERNUSAK L A, UBIERNA N, JENKINS M W, et al. Unsaturation of vapour pressure inside leaves of two conifer species[J]. Sci Rep, 2018, 8(1):7667.DOI:10.1038/s41598-018-25838-2. |
[76] | BERRY Z C, EMERY N C, GOTSCH S G, et al. Foliar water uptake:processes,pathways,and integration into plant water budgets[J]. Plant Cell Environ, 2019, 42(2):410-423.DOI:10.1111/pce.13439. |
[77] | 张欢. 北京山区侧柏叶片吸水和水分逆向运移过程与机制研究[D]. 北京: 北京林业大学, 2019. |
ZHANG H. Process and mechanism analysis of leaf water absorption and reverse migration of Platycladus orientalis in Beijing mountainous areas[D]. Beijing: Beijing Forestry University, 2019. | |
[78] | STEPPE K, VANDEGEHUCHTE M W, VAN DE WAL B A E, et al. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina[J]. Tree Physiol, 2018, 38(7):979-991.DOI:10.1093/treephys/tpy024. |
[79] | LIMM E B, DAWSON T E. Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem[J]. Am J Bot, 2010, 97(7):1121-1128.DOI:10.3732/ajb.1000081. |
[80] | BOUCHER J F, MUNSON A D, BERNIER P Y. Foliar absorption of dew influences shoot water potential and root growth in Pinus strobus seedlings[J]. Tree Physiol, 1995, 15(12):819-823.DOI:10.1093/treephys/15.12.819. |
[81] | BERRY Z C, WHITE J C, SMITH W K. Foliar uptake,carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest[J]. Tree Physiol, 2014, 34(5):459-470.DOI:10.1093/treephys/tpu032. |
[82] | BRESHEARS D D, MCDOWELL N G, GODDARD K L, et al. Foliar absorption of intercepted rainfall improves woody plant water status most during drought[J]. Ecology, 2008, 89(1):41-47.DOI:10.1890/07-0437.1. |
[83] | DAWSON T E, GOLDSMITH G R. The value of wet leaves[J]. New Phytol, 2018, 219(4):1156-1169.DOI:10.1111/nph.15307. |
[84] | GOLDSMITH G R, MATZKE N J, DAWSON T E. The incidence and implications of clouds for cloud forest plant water relations[J]. Ecol Lett, 2013, 16(3):307-314.DOI:10.1111/ele.12039. |
[85] | MUNNÉ-BOSCH S. Direct foliar absorption of rainfall water and its biological significance in dryland ecosystems[J]. J Arid Environ, 2010, 74(3):417-418.DOI:10.1016/j.jaridenv.2009.09.001. |
[86] | BAGUSKAS S A, STILL C J, FISCHER D T, et al. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest[J]. Oecologia, 2016, 181(1):137-148.DOI:10.1007/s00442-016-3556-y. |
[87] | MALHI Y, GIRARDIN C A J, GOLDSMITH G R, et al. The variation of productivity and its allocation along a tropical elevation gradient:a whole carbon budget perspective[J]. New Phytol, 2017, 214(3):1019-1032.DOI:10.1111/nph.14189. |
[88] | 刘玉冰, 李新荣, 李蒙蒙, 等. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11):1189-1207. |
LIU Y B, LI X R, LI M M, et al. Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semi-arid areas of China[J]. Chin J Plant Ecol, 2016, 40(11):1189-1207.DOI:10.17521/cjpe.2016.0129. | |
[89] | 杨利贞, 冯丽, 杨贵森, 等. 柠条(Caragana korshinskii)、油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)叶片吸水潜力及影响因素[J]. 中国沙漠, 2020, 40(2):214-221. |
YANG L Z, FENG L, YANG G S, et al. Water absorption potential and influencing factors of leaf in Caragana korshinskii,Artemisia ordosica,Hedysarum scoparium in a revegetated area of the Tengger Desert,China[J]. J Desert Res, 2020, 40(2):214-221.DOI:10.7522/j.issn.1000-694X.2019.00111. | |
[90] | PARIYAR S, CHANG S C, ZINSMEISTER D, et al. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest[J]. Oecologia, 2017, 184(3):609-621.DOI:10.1007/s00442-017-3894-4. |
[91] | BURGESS S S O, DAWSON T E. The contribution of fog to the water relations of Sequoia sempervirens (D.Don):foliar uptake and prevention of dehydration[J]. Plant Cell Environ, 2004, 27(8):1023-1034.DOI:10.1111/j.1365-3040.2004.01207.x. |
[92] | CASSANA F F, ELLER C B, OLIVEIRA R S, et al. Effects of soil water availability on foliar water uptake of Araucaria angustifolia[J]. Plant Soil, 2016, 399(1/2):147-157.DOI:10.1007/s11104-015-2685-0. |
[93] | EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiol Plant, 2008, 134(1):151-160.DOI:10.1111/j.1399-3054.2008.01135.x. |
[94] | BOANARES D, FERREIRA B G, KOZOVITS A R, et al. Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain[J]. Plant Physiol Biochem, 2018, 122:57-64.DOI:10.1016/j.plaphy.2017.11.005. |
[95] | FERNÁNDEZ V, BAHAMONDE H A, JAVIER PEGUERO-PINA J, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. J Exp Bot, 2017, 68(19):5293-5306.DOI:10.1093/jxb/erx302. |
[96] | 车力木格, 刘新平, 何玉惠, 等. 科尔沁沙地几种常见植物茎叶吸水特征[J]. 中国沙漠, 2018, 38(5):1017-1023. |
CHELMEG, LIU X P, HE Y H, et al. Characteristics on direct foliar rainwater absorption of several common plants in Horqin sandy land[J]. J Desert Res, 2018, 38(5):1017-1023.DOI:10.7522/j.issn.1000-694X.2018.00069. | |
[97] | CAVALLARO A, CARBONELL SILLETA L, PEREYRA D A, et al. Foliar water uptake in arid ecosystems:seasonal variability and ecophysiological consequences[J]. Oecologia, 2020, 193(2):337-348.DOI:10.1007/s00442-020-04673-1. |
[98] | LIMM E B, SIMONIN K A, BOTHMAN A G, et al. Foliar water uptake:a common water acquisition strategy for plants of the redwood forest[J]. Oecologia, 2009, 161(3):449-459.DOI:10.1007/s00442-009-1400-3. |
[99] | VARGAS A I, SCHAFFER B, DA S L STERNBERG L. Plant water uptake from soil through a vapor pathway[J]. Physiol Plant, 2020, 170(3):433-439.DOI:10.1111/ppl.13173. |
[100] | SCHWERBROCK R, LEUSCHNER C. Foliar water uptake,a widespread phenomenon in temperate woodland ferns?[J]. Plant Ecol, 2017, 218(5):555-563.DOI:10.1007/s11258-017-0711-4. |
[101] | LEHMANN M M, GOLDSMITH G R, SCHMID L, et al. The effect of 18O-labelled water vapour on the oxygen isotope ratio of water and assimilates in plants at high humidity[J]. New Phytol, 2018, 217(1):105-116.DOI:10.1111/nph.14788. |
[102] | EMERY N C. Foliar uptake of fog in coastal California shrub species[J]. Oecologia, 2016, 182(3):731-742.DOI:10.1007/s00442-016-3712-4. |
[103] | GOLDSMITH G R, LEHMANN M M, CERNUSAK L A, et al. Inferring foliar water uptake using stable isotopes of water[J]. Oecologia, 2017, 184(4):763-766.DOI:10.1007/s00442-017-3917-1. |
[104] | BARBOUR M M, FARQUHAR G D, BUCKLEY T N. Leaf water stable isotopes and water transport outside the xylem[J]. Plant Cell Environ, 2017, 40(6):914-920.DOI:10.1111/pce.12845. |
[105] | FARQUHAR G D, EHLERINGER J R, HUBICK K T. Carbon isotope discrimination and photosynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40:503-537.DOI:10.1146/annurev.pp.40.060189.002443. |
[106] | PENG G Q, YANG D M, LIANG Z, et al. An improved centrifuge method for determining water extraction curves and vulnerability curves in the long-vessel species Robinia pseudoacacia[J]. J Exp Bot, 2019, 70(18):4865-4876.DOI:10.1093/jxb/erz206. |
[1] | 朱雅娟,齐凯,庞志勇. 夏季高寒沙地乌柳林的水分来源[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 91-97. |
[2] | 刘玉虹1,2,范宁江1,杨海波1,安树青1*,王中生1,吴春3,詹季华3,刘世荣4,成文连5. 高山径流的时空变化及不同水源的贡献率[J]. 南京林业大学学报(自然科学版), 2007, 31(02): 23-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||