基于EST-SSR标记鉴定猴耳环自由授粉的全同胞子代

李丹丹, 翁启杰, 甘四明, 周长品, 黄世能, 李梅

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 95-101.

PDF(1821 KB)
PDF(1821 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 95-101. DOI: 10.12302/j.issn.1000-2006.202107029
研究论文

基于EST-SSR标记鉴定猴耳环自由授粉的全同胞子代

作者信息 +

Identification of full-sib seedlings from an open-pollinated family of Archidendron clypearia based on EST-SSR markers

Author information +
文章历史 +

摘要

【目的】猴耳环是重要的药用树种,具有较好的工业应用价值。利用EST-SSR标记对猴耳环自然群体1株母树的自由授粉子代进行父本鉴定,从而确定全同胞子代,为基于全同胞家系的后续研究提供材料基础。【方法】以自然群体中母树ELS31自由授粉产生的1 489株子代及该群体内挂果的38株候选父本为材料,利用15个EST-SSR标记检测子代多样性和标记多态性,基于最大似然法鉴定各子代的父本,母本父本均相同的子代即构成全同胞家系,并估算群体内花粉传播距离,检验各父本对应的全同胞家系的多样性,通过卡方检验判断标记是否合乎预期的孟德尔分离比。【结果】15个EST-SSR标记的引物(对)共扩增出89个等位片段。子代群体期望杂合度(He)为0.525,表明群体多样性为中等水平;基于自然群体18株无亲缘关系的单株估算的标记平均多态性信息量(PIC)为0.736,表明标记多态性高。在1 489株自由授粉的子代中,确定了857株子代(57.6%)的34株父本。子代数最多的10个父本产生的子代数为26~184株,其他24个父本仅共产生子代139株。未发现自交子代,表明猴耳环是异交物种,自交的可能性极低。对子代数量20株以上的10个父本对应的全同胞家系观测杂合度(Ho)为0.502~0.693,He为0.417~0.544,各家系均是Ho大于He,表明存在一定程度的杂合子过剩。花粉传播的范围为10.0~559.1 m,平均119.2 m,但主要传播距离在150 m以内。716株子代(83.5%)的父本(10株)与母树距离在150 m以内。距离最远的父本ELS01 (559.1 m)和ELS02 (552.2 m)分别仅产生了9和12株子代。15个标记在子代20株以上的部分或全部全同胞家系中均有不同程度的偏分离,平均每家系的偏分离标记数为8.6个;偏分离最严重的是标记ARCeSSR141,在父本ELS30的全同胞家系中卡方(χ2)值为164.55。【结论】基于15个EST-SSR标记鉴定了猴耳环自然群体1株母本的1 489株自由授粉子代的父本,获得了子代20株以上的10个父本的全同胞家系。这为后续遗传测定、遗传图谱构建和数量性状位点定位等研究提供了材料基础。

Abstract

【Objective】 Archidendron clypearia is an important medicinal tree species which occurs widely in tropical Asian regions and has valuable resources for industrial applications. This study aimed to identify paternal parents in an open-pollinated family in a natural forest of A. clypearia, based on the expressed sequence tag derived simple sequence repeats (EST-SSR) markers, to determine which are full-sib seedlings, and therefore provide full-sib families for subsequent studies. 【Method】 The maternal parent ELS31 and 38 fruited candidate paternal parents from a natural population, together with 1 489 open-pollinated seedlings of ELS31, were studied using 15 EST-SSR markers. Seedling diversity and marker polymorphism were estimated. Paternal parents of the seedlings were identified using the method of logarithm of odds, and full-sibs originating from the same maternal and paternal parents were identified. The pollen dispersal range was determined from the distance between the maternal and paternal parents. The diversity of father-derived full-sib families was also examined. A Chi-square test was carried out for the markers to determine whether to follow the Mendelian expectation of segregation ratios. 【Result】 Primer pairs of the 15 EST-SSR markers amplified a total of 89 alleles across the seedling population. The expected heterozygosity (He) was 0.525 for the seedling population, indicating the moderate genetic diversity. The polymorphism information content (PIC) estimated with 18 unrelated trees from the natural forest was averaged at 0.736 over the 15 EST-SSRs, suggesting a high level of marker polymorphism. Of the 1 489 open-pollinated sibs, 857 (57.6%) originated from 34 definite paternal parents, with the top ten paternal parents each contributing to 26-184 sib seedlings and other 24 paternal parents contributing to 139 sib seedlings. Selfed sibs were not found, indicating that A. clypearia is an outcrossing species with an extremely low chance of selfing. For the top ten full-sib families, Ho ranged from 0.502 to 0.693, and He ranged from 0.417 to 0.544. Higher Ho estimates in these families indicate a certain magnitude of heterozygote excess. The pollen dispersal distance ranged from 10.0 to 559.1 m, with a mean of 119.2 m and the most effective range being within 150 m. A subset of 716 seedlings (83.5%) were generated from the 10 paternal parents within the range of 150 m from the maternal parent. The most distant paternal parents ELS01 (559.1 m) and ELS02 (552.2 m) contributed to 9 and 12 seedlings, respectively. The 15 EST-SSRs distorted more or less from the Mendelian expectation in segregation among part or all of the top ten full-sib families. The mean number of the distorted loci was 8.6 in the top ten full-sib families. The most distorted locus was ARCeSSR141 in the ELS30 fathered family, with a χ2 value of 164.55.【Conclusion】 Paternal parents were identified for an open-pollinated family (1 489 seedlings) of A. clypearia using EST-SSR markers, resulting in 10 full-sib families with each comprising more than 20 seedlings. The full-sib families identified here will provide a useful plant material for further studies such as genetic testing, genetic map construction and quantitative trait locus detection.

关键词

猴耳环 / EST-SSR标记 / 全同胞家系 / 子代多样性 / 父本分析

Key words

Archidendron clypearia / EST-SSR marker / full-sib family / diversity of sibs / paternity analysis

引用本文

导出引用
李丹丹, 翁启杰, 甘四明, . 基于EST-SSR标记鉴定猴耳环自由授粉的全同胞子代[J]. 南京林业大学学报(自然科学版). 2022, 46(4): 95-101 https://doi.org/10.12302/j.issn.1000-2006.202107029
LI Dandan, WENG Qijie, GAN Siming, et al. Identification of full-sib seedlings from an open-pollinated family of Archidendron clypearia based on EST-SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 95-101 https://doi.org/10.12302/j.issn.1000-2006.202107029
中图分类号: S722   

参考文献

[1]
WU D L, NIELSEN I C. Tribe Ingeae[M]// XU L, CHEN D, ZHU X, et al. Fabaceae (Leguminosae), Flora of China. Vol. 10. Beijing: Science Press, 2010: 60-71.
[2]
刘莉莹, 康洁, 陈若芸. 猴耳环属植物化学成分和药理作用研究进展[J]. 中草药, 2013, 44(18):2623-2629.
LIU L Y, KANG J, CHEN R Y. Research progress in chemical constituents and pharmacological activities of plants in Pithecellobium Mart[J]. Acupunct Res, 2013, 44(18):2623-2629.DOI:10.7501/j.issn.0253-2670.2013.18.026.
[3]
彭亮, 李诒光, 陈杰, 等. 我国猴耳环属植物药理作用及临床应用研究进展[J]. 江西中医药大学学报, 2015, 27(6):117-120.
PENG L, LI Y G, CHEN J, et al. The research progress of pharmacological action and clinical application about the Pithecellobium (Mart.) genus in China[J]. J Jiangxi Univ Tradit Chin Med, 2015, 27(6):117-120.
[4]
李梅, 黄世能, 陈祖旭, 等. 药用乔木树种猴耳环研究现状及开发利用前景[J]. 林业科学, 2018, 54(4):142-154.
LI M, HUANG S N, CHEN Z X, et al. The research status and utilization prospect of medicinal tree species of Archidendron clypearia[J]. Sci Silvae Sin, 2018, 54(4):142-154.DOI:10.11707/j.1001-7488.20180417.
[5]
WANG Y X, HAN F Y, DUAN Z K, et al. Phenolics from Archidendron clypearia (Jack) I.C.Nielsen protect SH-SY5Y cells against H2O2-induced oxidative stress[J]. Phytochemistry, 2020, 176:112414.DOI:10.1016/j.phytochem.2020.112414.
[6]
马星宇, 李梅, 金文云, 等. 猴耳环天然更新特性[J]. 植物研究, 2017, 37(5):761-767.
MA X Y, LI M, JIN W Y, et al. Natural regeneration characteristics of Archidendron clypearia[J]. Bull Bot Res, 2017, 37(5):761-767.DOI:10.7525/j.issn.1673-5102.2017.05.017.
[7]
童春发. 林木遗传图谱构建和QTL定位的统计方法[D]. 南京: 南京林业大学, 2003.
TONG C F. Statistical methods for constructing genetic linkage maps and mapping QTLs in forest trees[D]. Nanjing: Nanjing Forestry University, 2003.
[8]
周文才, 侯静, 郭炜, 等. 基于SSR标记的美洲黑杨杂交子代的鉴定[J]. 南京林业大学学报(自然科学版), 2015, 39(3):45-49.
ZHOU W C, HOU J, GUO W, et al. Identification of the true hybrids for Populus deltoides by using SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(3):45-49.DOI:10.3969/j.issn.1000-2006.2015.03.009.
[9]
GRATTAPAGLIA D, RIBEIRO V J, REZENDE G D S P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus[J]. Theor Appl Genet, 2004, 109(1):192-199.DOI:10.1007/s00122-004-1617-9.
[10]
李新军, 黄敏仁, 潘惠新, 等. 林木基因组中的微卫星(SSR)及其应用[J]. 南京林业大学学报, 1999, 23(5):64-69.
LI X J, HUANG M R, PAN H X, et al. Microsatellite markers and appication in the forestry genome[J]. J Nanjing For Univ, 1999, 23(5):64-69.
[11]
JONES A G, SMALL C M, PACZOLT K A, et al. A practical guide to methods of parentage analysis[J]. Mol Ecol Resour, 2010, 10(1):6-30.DOI:10.1111/j.1755-0998.2009.02778.x.
[12]
ASHLEY M V. Plant parentage,pollination,and dispersal: how DNA microsatellites have altered the landscape[J]. Crit Rev Plant Sci, 2010, 29(3):148-161.DOI:10.1080/07352689.2010.481167.
[13]
陈兴彬, 徐海宁, 肖复明, 等. 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3):87-92.
CHEN X B, XU H N, XIAO F M, et al. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3):87-92.DOI:10.12302/j.issn.1000-2006.202005006.
[14]
CARNEIRO F S, LACERDA A E B, LEMES M R, et al. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L.(Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis[J]. For Ecol Manag, 2011, 262(9):1758-1765.DOI:10.1016/j.foreco.2011.07.023.
[15]
MANOEL R O, ALVES P F, DOURADO C L, et al. Contemporary pollen flow,mating patterns and effective population size inferred from paternity analysis in a small fragmented population of the Neotropical tree Copaifera langsdorffii Desf.(Leguminosae-Caesalpinioideae)[J]. Conserv Genet, 2012, 13(3):613-623.DOI:10.1007/s10592-011-0311-0.
[16]
LI D D, LI M, LI F G, et al. Transcriptome-derived microsatellite markers for population diversity analysis in Archidendron clypearia (Jack) I.C.Nielsen[J]. Mol Biol Rep, 2021, 48(12):8255-8260.DOI:10.1007/s11033-021-06773-4.
[17]
PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel.Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19):2537-2539.DOI:10.1093/bioinformatics/bts460.
[18]
KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16(5):1099-1106.DOI:10.1111/j.1365-294X.2007.03089.x.
[19]
VAN OOIJEN J W. JoinMap® 4: Software for the calculation of genetic linkage maps in experimental populations[M]. Wageningen: Kyazma BV, 2006.
[20]
XIE N, CHEN L N, DONG Y R, et al. Mixed mating system and variable mating patterns in tropical woody bamboos[J]. BMC Plant Biol, 2019, 19(1):418.DOI:10.1186/s12870-019-2024-3.
[21]
刘本立, 李霓, 贾凌云, 等. 黑河上游灌丛建群种中国沙棘自由授粉子代父本分析和花粉流[J]. 植物科学学报, 2019, 37(2):164-170.
LIU B L, LI N, JIA L Y, et al. Paternity analysis and pollen flow for open-pollination progenies of Hippophae rhamnoides ssp.sinensis Rousi,a constructive species of shrub from the upper reaches of Heihe River[J]. Plant Sci J, 2019, 37(2):164-170.DOI:10.11913/PSJ.2095-0837.2019.20164.
[22]
谭小梅, 周志春, 金国庆, 等. 马尾松二代无性系种子园子代父本分析及花粉散布[J]. 植物生态学报, 2011, 35(9):937-945.
TAN X M, ZHOU Z C, JIN G Q, et al. Paternity analysis and pollen dispersal for the second generation clonal seed orchard of Pinus massoniana[J]. Chin J Plant Ecol, 2011, 35(9):937-945.DOI:10.3724/SP.J.1258.2011.00937.
[23]
CHEN X B, SUN X M, DONG L M, et al. Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard: a case study[J]. Sci China Life Sci, 2018, 61(9):1011-1023.DOI:10.1007/s11427-018-9305-7.
[24]
SHAW D V, BROWN A H D. Optimum number of marker loci for estimating outcrossing in plant populations[J]. Theor Appl Genet, 1982, 61(4):321-325.DOI:10.1007/BF00272848.
[25]
MORIYA S, IWANAMI H, OKADA K, et al. A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers[J]. Euphytica, 2011, 177(1):135-150.DOI:10.1007/s10681-010-0295-8.
[26]
WHITEHEAD D R. Wind pollination: some ecological and evolutionary perspectives[M]// REAL L. Pollination biology. Orlando: Academic Press, 1983: 97-108.
[27]
王哲. 植物杂交后代中基因偏分离的产生原因及其进化意义[J]. 遗传, 2016, 38(9):801-810.
WANG Z. Distorted segregation in plant hybrids and its implication for evolution[J]. Hereditas, 2016, 38(9):801-810.DOI:10.16288/j.yczz.16-084.
[28]
CHARLESWORTH B. Driving genes and chromosomes[J]. Nature, 1988, 332(6163):394-395.DOI:10.1038/332394a0.
[29]
HACKETT C A, BROADFOOT L B. Effects of genotyping errors,missing values and segregation distortion in molecular marker data on the construction of linkage maps[J]. Heredity, 2003, 90(1):33-38.DOI:10.1038/sj.hdy.6800173.

基金

中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2018SY019)
广东省林业科技创新项目(2017KJCX004)

编辑: 吴祝华
PDF(1821 KB)

Accesses

Citation

Detail

段落导航
相关文章

/