林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例

储安婷, 宁卓, 杨红强

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 225-233.

PDF(1501 KB)
PDF(1501 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 225-233. DOI: 10.12302/j.issn.1000-2006.202107035
研究论文

林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例

作者信息 +

Effects of forest carbon sequestration on optimal rotation of plantations: a case study of Chinese fir and larch

Author information +
文章历史 +

摘要

【目的】在我国禁伐天然林的背景下,人工林的碳汇功能因为减缓气候变化方面的重要作用而备受关注。分析林业碳汇对我国人工林最优轮伐期的影响,为人工林碳汇经营的管理决策提供理论基础。【方法】以我国南方林区的杉木人工林和北方林区的落叶松人工林为研究对象,基于修正的Faustmann-Hartman模型,借助林木的生长模型和林业碳汇供给的计算模型,计算并比较不同经营目标下人工林的最优轮伐期和林地期望值。【结果】①无论树种和立地条件,将碳汇收益纳入经营目标都会增加林地期望值;②在碳价为35元/t、利率为5%时,将碳汇收益纳入林地经营目标,最优轮伐期有小于1 a的延长;只考虑碳汇收益时,人工林的碳汇收益随轮伐期的延长而增大;③碳价格在0~125元/t范围内变动时,杉木最优轮伐期有2~3 a的变动,落叶松最优轮伐期基本没有变化,最大林地期望值的变动均不明显。【结论】开展人工林的碳汇经营有利于林地投资。现有的经营强度和碳价格下,由于碳价格远远低于木材价格,将碳汇收益纳入林地经营目标时,林地经营者考虑的最优轮伐期不会有很大变化;只考虑碳汇收益时,以不砍伐森林的收益最大。碳价格在较低水平变动时,对人工林最优轮伐期的影响不显著。

Abstract

【Objective】In the context of China’s natural forest logging ban, the carbon sequestration function of planted forests plays an important role in mitigating climate change. This study therefore aimed to analyze the impact of forestry carbon sequestration on the optimal rotation age of plantations in China and to provide a theoretical basis for management strategies of carbon sequestration in plantations.【Method】Taking the Cunninghamia lanceolata (Chinese fir) plantation in the southern forest area and the (Larix spp.) (larch) plantation in the northern forest area as examples, the revised Faustmann-Hartman model was used as the theoretical basis. The forest growth model and formula of forestry carbon sequestration supply were used to calculate the optimal rotation age and expected values, before comparing the differences.【Result】(1) Regardless of the tree species and site conditions, inclusion of carbon sequestration income into the management target increased the expected value of forestland. (2) When the carbon price was 35 yuan/t with an interest rate of 5%, the carbon sequestration income was included in the forest land management target, with the optimal rotation age extended by less than one year. When the only carbon sequestration income was considered, the income of the forest carbon increased alongside the extension of the rotation age. (3) When the carbon price fluctuated within the range of 0-125 yuan/t, the optimal rotation age of Chinese fir changed by 2-3 years, the optimal rotation age of larch remained unchanged, whilst there was no obvious change in the expected maximum forest land value.【Conclusion】(1) Carbon sequestration management of plantations was beneficial for the forest land investment. (2) Under the current management intensity and carbon price, the carbon prices are much lower than wood prices, and hence, when the carbon sequestration income is included in the forestland management target, the management strategy would not change significantly. On considering only the benefits of the carbon sequestration, benefits were greatest when deforestation was not considered. (3) When carbon prices changed at a lower level, the impact on the optimal rotation age was insignificant.

关键词

林业碳汇 / 人工林 / 最优轮伐期 / 森林管理 / Faustmann公式

Key words

forest carbon sequestration / plantation / optimal rotation age / forest managements / Faustmann formula

引用本文

导出引用
储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 225-233 https://doi.org/10.12302/j.issn.1000-2006.202107035
CHU Anting, NING Zhuo, YANG Hongqiang. Effects of forest carbon sequestration on optimal rotation of plantations: a case study of Chinese fir and larch[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 225-233 https://doi.org/10.12302/j.issn.1000-2006.202107035
中图分类号: S757   

参考文献

[1]
IPCC. Climate change 2014: mitigation of climate change[M]. Cambridge: Cambridge University Press, 2014.
[2]
邓旭, 谢俊, 滕飞. 何谓 “碳中和”?[J]. 气候变化研究进展, 2021, 17(1):107-113.
DENG X, XIE J, TENG F. What is carbon neutrality?[J]. Clim Change Res, 2021, 17(1):107-113.DOI: 10.12006/j.issn.1673-1719.2020.261.
[3]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
[4]
李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7):7-12.
LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Sci Silvae Sin, 2011, 47(7):7-12.DOI: 10.11707/j.1001-7488.20110702.
[5]
陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8.
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI: 10.3969/j.issn.1000-2006.201801035.
[6]
VAN KOOTEN G C, BINKLEY C S, DELCOURT G. Effect of carbon Taxes and subsidies on optimal forest rotation age and supply of carbon services[J]. Am J Agric Econ, 1995, 77(2):365-374.DOI: 10.2307/1243546.
[7]
CREEDY J, WURZBACHER A D. The economic value of a forested catchment with timber,water and carbon sequestration benefits[J]. Ecol Econ, 2001, 38(1):71-83.DOI: 10.1016/S0921-8009(01)00148-3.
[8]
DWIVEDI P, ALAVALAPATI J R R, SUSAETA A, et al. Impact of carbon value on the profitability of slash pine plantations in the southern United States:an integrated life cycle and Faustmann analysis[J]. Can J For Res, 2009, 39(5):990-1000.DOI: 10.1139/x09-023.
[9]
DWIVEDI P, BAILIS R, STAINBACK A, et al. Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South[J]. Ecol Econ, 2012, 78:63-69.DOI: 10.1016/j.ecolecon.2012.03.014.
[10]
THOMPSON M P, ADAMS D, SESSIONS J. Radiative forcing and the optimal rotation age[J]. Ecol Econ, 2009, 68(10):2713-2720.DOI: 10.1016/j.ecolecon.2009.05.009.
[11]
HOEL M, HOLTSMARK B, HOLTSMARK K. Faustmann and the climate[J]. J For Econ, 2014, 20(2):192-210.DOI: 10.1016/j.jfe.2014.04.003.
[12]
NGHIEM N. Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam[J]. For Policy Econ, 2014, 38:56-64.DOI: 10.1016/j.forpol.2013.04.001.
[13]
SUSAETA A, CHANG S J, CARTER D R, et al. Economics of carbon sequestration under fluctuating economic environment,forest management and technological changes:an application to forest stands in the southern United States[J]. J For Econ, 2014, 20(1):47-64.DOI: 10.1016/j.jfe.2013.08.001.
[14]
WEST T A P, WILSON C, VRACHIOLI M, et al. Carbon payments for extended rotations in forest plantations:conflicting insights from a theoretical model[J]. Ecol Econ, 2019, 163:70-76.DOI: 10.1016/j.ecolecon.2019.05.010.
[15]
TASSONE V C, WESSELER J, NESCI F S. Diverging incentives for afforestation from carbon sequestration:an economic analysis of the EU afforestation program in the south of Italy[J]. For Policy Econ, 2004, 6(6):567-578.DOI: 10.1016/S1389-9341(03)00006-6.
[16]
THORSEN B J, STRANGE N, HELLES F, et al. Reply to the comment by Thorsen et al. on dverging incentives for afforestation from carbon sequestration:an economic analysis of the EU afforestation program in the south of Italy[J]. For Policy Econ, 2006, 9(2):107-108.DOI: 10.1016/j.forpol.2005.06.005.
[17]
PARAJULI R, CHANG S J. Carbon sequestration and uneven-aged management of loblolly pine stands in the southern USA:a joint optimization approach[J]. For Policy Econ, 2012, 22:65-71.DOI: 10.1016/j.forpol.2012.05.003.
[18]
YANG J, MCKENNEY D W, WEERSINK A. Should climate change make us think more about the economics of forest management?[J]. For Chron, 2015, 91(1):23-31.DOI: 10.5558/tfc2015-007.
[19]
BLATTERT C, LEMM R, THEES O, et al. Management of ecosystem services in mountain forests:review of indicators and value functions for model based multi-criteria decision analysis[J]. Ecol Indic, 2017, 79:391-409.DOI: 10.1016/j.ecolind.2017.04.025.
[20]
ASSMUTH A, TAHVONEN O. Optimal carbon storage in even-and uneven-aged forestry[J]. For Policy Econ, 2018, 87:93-100.DOI: 10.1016/j.forpol.2017.09.004.
[21]
PINGOUD K, EKHOLM T, SIEVÄNEN R, et al. Trade-offs between forest carbon stocks and harvests in a steady state:a multi-criteria analysis[J]. J Environ Manage, 2018, 210:96-103.DOI: 10.1016/j.jenvman.2017.12.076.
[22]
LOISEL P. Under the risk of destructive event,are there differences between timber income based and carbon sequestration based silviculture?[J]. For Policy Econ, 2020, 120:102269.DOI: 10.1016/j.forpol.2020.102269.
[23]
张楠, 宁卓, 杨红强. 弗斯曼模型及其广义改进:基于林地期望值评估方法学演进[J]. 林业经济, 2020, 42(10):3-15.
ZHANG N, NING Z, YANG H Q. Faustmann model and its generalization:methodology evolution based on evaluation of forestland expectation value[J]. For Econ, 2020, 42(10):3-15.DOI: 10.13843/j.cnki.lyjj.20201202.002.
[24]
简盖元, 冯亮明, 刘伟平. 基于碳汇价值的森林最优轮伐期分析[J]. 林业经济问题, 2011, 31(1):70-75.
JIAN G Y, FENG L M, LIU W P. Analysis of forest optimal rotation which base on the value of carbon sequestration[J]. Issues For Econ, 2011, 31(1):70-75.DOI: 10.16832/j.cnki.1005-9709.2011.01.016.
[25]
朱臻, 沈月琴, 徐志刚, 等. 森林经营主体的碳汇供给潜力差异及影响因素研究[J]. 自然资源学报, 2014, 29(12):2013-2022.
ZHU Z, SHEN Y Q, XU Z G, et al. Research on the carbon supply potential capacity difference and its impact factors of forest management subjects[J]. J Nat Resour, 2014, 29(12):2013-2022.DOI: 10.11849/zrzyxb.2014.12.003.
[26]
周伟, 高岚. 森林碳汇收益的实证分析:以广东省杉木林为例[J]. 科技管理研究, 2015, 35(2):219-223.
ZHOU W, GAO L. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: taking fir forest in Guangdong as an example[J]. Sci Technol Manag Res, 2015, 35(2):219-223.DOI: 10.3969/j.issn.1000-7695.2015.02.043.
[27]
朱玮强, 顾蕾. 碳汇目标下森林经营决策:以江西省杉木林为例[J]. 林业资源管理, 2017(3):41-45,55.
ZHU W Q, GU L. Decision making of forest management under carbon sink: a case study of Chinese fir forest in Jiangxi[J]. For Resour Manag, 2017(3):41-45, 55.DOI: 10.13466/j.cnki.lyzygl.2017.03.009.
[28]
黄宰胜, 陈钦. 基于造林成本法的林业碳汇成本收益影响因素分析[J]. 资源科学, 2016, 38(3):485-492.
HUANG Z S, CHEN Q. Influencing factors analysis of forestry carbon sequestration cost-benefit based on afforestation cost methods[J]. Resour Sci, 2016, 38(3):485-492.DOI: 10.18402/resci.2016.03.11.
[29]
贺晓波, 王冬梅, 曾诗鸿. 附碳汇收益的林业投资项目价值评估:基于实物期权定价理论[J]. 中国管理科学, 2017, 25(3):39-48.
HE X B, WANG D M, ZENG S H. Valuation for forestry investment projects with carbon sequestration benefits:based on real option pricing theory[J]. Chin J Manag Sci, 2017, 25(3):39-48.DOI: 10.16381/j.cnki.issn1003-207x.2017.03.005.
[30]
曹先磊. 碳交易机制下造林碳汇项目投资时机与投资期权价值分析[J]. 资源科学, 2020, 42(5):825-839.
CAO X L. Investment timing and option value of afforestation carbon sequestration project under carbon trading mechanism[J]. Resour Sci, 2020, 42(5):825-839.DOI: 10.18402/resci.2020.05.03.
[31]
苏蕾, 潘明月, 陈丽荣. 二叉树期权定价模式评估林业碳汇项目的价值[J]. 林业经济问题, 2020, 40(1):8-13.
SU L, PAN M Y, CHEN L R. Binary tree option pricing model assess the value of forestry carbon sink projects[J]. Issues For Econ, 2020, 40(1):8-13.DOI: 10.16832/j.cnki.1005-9709.2020.01.002.
[32]
DONG L B, LU W, LIU Z G. Determining the optimal rotations of larch plantations when multiple carbon pools and wood products are valued[J]. For Ecol Manag, 2020, 474:118356.DOI: 10.1016/j.foreco.2020.118356.
[33]
赵阳. 落叶松人工林经济成熟龄的研究[J]. 林业勘查设计, 2016(2):54-56.
ZHAO Y. Study on economic maturity of larch plantation[J]. For Investig Des, 2016(2):54-56.
[34]
姚丹阳. 塞罕坝华北落叶松人工林初植密度对生产力的影响研究[J]. 河北林业科技, 2015(1):27-29,36.
YAO D Y. Effect of initial planting density on productivity of Larix principis-rupprechtii plantation in Saihanba[J]. J Hebei For Sci Technol, 2015(1):27-29, 36.DOI: 10.16449/j.cnki.issn1002-3356.2015.01.010.
[35]
王森. 落叶松造林及幼林抚育技术研究[J]. 种子科技, 2021, 39(5):86-87.
WANG S. Study on larch afforestation and young forest tending technology[J]. Seed Sci Technol, 2021, 39(5):86-87.DOI: 10.19904/j.cnki.cn14-1160/s.2021.05.039.
[36]
沈月琴, 王枫, 张耀启, 等. 中国南方杉木森林碳汇供给的经济分析[J]. 林业科学, 2013, 49(9):140-147.
SHEN Y Q, WANG F, ZHANG Y Q, et al. Economic analysis of Chinese fir forest carbon sequestration supply in south China[J]. Sci Silvae Sin, 2013, 49(9):140-147.DOI: 10.11707/j.1001-7488.20130920.
[37]
官波, 施择. 集体森林资源生态产权界定研究[J]. 环境保护, 2016, 44(9):44-46.
GUAN B, SHI Z. Study on the definition of ecological property right of collective forest resources[J]. Environ Prot, 2016, 44(9):44-46.DOI: 10.14026/j.cnki.0253-9705.2016.09.009.
[38]
FAUSTMANN M. Calculation of the value which forest land and immature stands possess for forestry[M]//Economics of Forestry. London:Routledge, 2018:1-40.DOI: 10.4324/9781315182681-2.
[39]
AMACHER G S, OLLIKAINEN M, KOSKELA E. Economics of forest resources[M]. Cambridge Mass: MIT Press, 2009.
[40]
宁可. 农户和国有林场碳汇供给差异及影响因素研究:基于南方集体林区三省杉木调查[D]. 杭州: 浙江农林大学, 2015:1-69.
NING K. A study on the differences and the influence factors in carbon sequestration supply of household and national forest farm:based on the fir investigation of three provinces in southern collective forest region[D]. Hangzhou: Zhejiang A & F University, 2015.
[41]
严风翔. 内蒙古大青山华北落叶松人工林生长模型研究[J]. 内蒙古林业科技, 2013, 39(4):1-4.
YAN F X. Growth model of Larix principis-rupprechtii plantation in Inner Mongolia[J]. J Inn Mong For Sci Technol, 2013, 39(4):1-4.DOI: 10.3969/j.issn.1007-4066.2013.04.001.
[42]
周国模, 郭仁鉴, 韦新良, 等. 浙江省杉木人工林生长模型及主伐年龄的确定[J]. 浙江林学院学报, 2001, 18(3):219-222.
ZHOU G M, GUO R J, WEI X L, et al. Growth model and cutting age of Chinese fir planted forest in Zhejiang Province[J]. J Zhejiang For Coll, 2001, 18(3):219-222. DOI: 10.3969/j.issn.2095-0756.2001.03.001.
[43]
吴载璋, 吴锡麟. 福建杉木人工林生长模型的研究[J]. 福建林业科技, 2004, 31(4):11-14.
WU Z Z, WU X L. Studies of the growth model of Cunninghamia lanceolata plantation in Fujian[J]. J Fujian For Sci Technol, 2004, 31(4):11-14.DOI: 10.13428/j.cnki.fjlk.2004.04.004.
[44]
陈则生. 杉木人工林经济成熟龄的研究[J]. 华东森林经理, 2004, 18(3):1-5,14.
CHEN Z S. Study on the economic harvesting age for plantation Chinese fir[J]. East China For Manag, 2004, 18(3):1-5,14.DOI: 10.3969/j.issn.1004-7743.2004.03.001.
[45]
刘红梅, 吕世杰, 刘清泉, 等. 华北落叶松林分生长模型模拟与预测研究[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(3):32-36.
LIU H M, LYU S J, LIU Q Q, et al. Study on the forest stand growth model simulation and forecast of Laxix principis-rupprechtii Mayr[J]. J Inn Mong Agric Univ (Nat Sci Ed), 2016, 37(3):32-36.DOI: 10.16853/j.cnki.1009-3575.2016.03.006.
[46]
李兵兵, 原民龙, 贾彦龙, 等. 华北落叶松人工林生长规律研究[J]. 河北农业大学学报, 2012, 35(2):60-64,71.
LI B B, YUAN M L, JIA Y L, et al. Study on the growth patterns of Larix principis-rupprechtii plantation[J]. J Agric Univ Hebei, 2012, 35(2):60-64,71.
[47]
刘芳, 钱栋. 华北落叶松生长分析[J]. 河北林业科技, 2015(2):50-51,60.
LIU F, QIAN D. Growth analysis of Larix principis-rupprechtii[J]. J Hebei For Sci Technol, 2015(2):50-51, 60.DOI: 10.16449/j.cnki.issn1002-3356.2015.02.020.
[48]
王勇, 王鑫梅, 牟洪香, 等. 哑变量在燕山地区华北落叶松人工林生长模型中的应用[J]. 东北林业大学学报, 2014, 42(10):44-49,64.
WANG Y, WANG X M, MOU H X, et al. Application of dummy variable in the growth model of Larix principis-rupprechtii plantations in Yanshan region[J]. J Northeast For Univ, 2014, 42(10):44-49,64.DOI: 10.13759/j.cnki.dlxb.20140721.034.
[49]
田奥. 六盘山半湿润区华北落叶松人工林的多种功能时空变化与优化管理[D]. 北京: 中国林业科学研究院, 2019:62-87.
TIAN A. The spatio-temporal variation and optimal management of the multiple functions of larch plantation in the semi-humid Liupan Mountains of northwest China[D]. Beijing: Chinese Academy of Forestry, 2019:62-87.
[50]
朱向辉, 汪传佳, 王仁东, 等. CDM-ARP杉木林碳汇监测方法学研究[J]. 浙江林学院学报, 2008, 25(3):336-341.
ZHU X H, WANG C J, WANG R D, et al. Study on the methodology for monitoring Chinese fir carbon sink of CDM-afforestation and reforestation (AR) project[J]. J Zhejiang For Coll, 2008, 25(3):336-341.DOI: 10.3969/j.issn.2095-0756.2008.03.014.
[51]
马钦彦, 陈遐林, 王娟, 等. 华北主要森林类型建群种的含碳率分析[J]. 北京林业大学学报, 2002, 24(5):100-104.
MA Q Y, CHEN X L, WANG J, et al. Carbon content rate in constructive species of main forest types in northern China[J]. J Beijing For Univ, 2002, 24(5):100-104.DOI: 10.3321/j.issn:1000-1522.2002.05.019.
[52]
黄小男. 六盘山华北落叶松人工林生物量对立地条件和林分结构的响应与模拟[D]. 北京: 北京林业大学, 2020:17-24.
HUANG X N. The response and simulation of the biomass of Larix principis-rupprechtii plantation in Liupan Mountains to site condition and stand structure[D]. Beijing: Beijing Forestry University, 2020:17-24.

基金

国家自然科学基金面上项目(72073064)
国家自然科学基金青年科学基金项目(71703069)
江苏省“333高层次人才培养工程”项目(BRA2018070)

编辑: 郑琰燚
PDF(1501 KB)

Accesses

Citation

Detail

段落导航
相关文章

/