尾叶桉不同无性系组培生根相关基因的表达分析

廖焕琴, 杨会肖, 徐放, 潘文, 张卫华, 陈新宇, 朱报著, 徐斌, 王裕霞, 杨晓慧

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 114-122.

PDF(5957 KB)
PDF(5957 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 114-122. DOI: 10.12302/j.issn.1000-2006.202108006
研究论文

尾叶桉不同无性系组培生根相关基因的表达分析

作者信息 +

Expression analysis of rooting-related genes between different clones of Eucalyptus urophylla in tissue culture

Author information +
文章历史 +

摘要

【目的】研究尾叶桉(Eucalyptus urophylla)不同无性系在相同培养基上不同时期基因的差异表达情况,为解析尾叶桉不同无性系间生根差异、挖掘不同尾叶桉无性系生根响应相关基因功能提供依据。【方法】以在同一生根培养基上生根启动差异较大、继代次数相同的尾叶桉无性系各1个,根据生根启动快的无性系基部形态差异,分别取0、1、4和6 d尾叶桉无性系基部2 mm材料进行转录组测序分析,运用基因差异表达分析、Cluster聚类分析、基因本体分析(GO分析)和KEGG分析,获得导致尾叶桉不同无性系生根差异的差异表达基因。【结果】共获得20 287个差异表达基因(DEGs),显著聚类在4个子聚类中。其中,表达模式呈上升趋势的DEGs在生根启动快的无性系中,其数量远远高于在生根启动慢的无性系,而在1与0 d时表达量变化不显著的基因在生根启动慢的无性系中其数量远高于在生根启动快的无性系中。GO分析显示,转移至IBA培养基上后,子聚类17的DEGs在生根启动快的无性系中显著富集到细胞周期相关路径中,而在生根启动慢的无性系中显著富集到抗逆相关路径中。KEGG分析显示,生根启动慢的无性系中的DEGs富集到更多的生物路径中,核糖体相关基因仅显著富集在生根启动快的无性系中,而糖酵解/糖异生、次生代谢产物的生物合成和氧化磷酸化相关基因均显著富集在生根启动慢的无性系中。共有202个DEGs显著富集在植物激素信号转导路径中,且生长素信号转导路径中的生长素响应基因家族(AUX/IAA),细胞分裂素信号转导路径中的 CRE1及赤霉素信号转导路径中的转录因子在两个无性系中的表达量呈显著差异。【结论】尾叶桉生根启动慢的和启动快的无性系在转移至生根培养基上之前及之后3个时期的基因表达变化均不同,具有相同表达模式的DEGs在生根启动慢的无性系和生根启动快的无性系中的功能不同。生长素、赤霉素、细胞分裂素信号转导路径中的重要基因表达模式与尾叶桉生根快慢具有较强的相关性。

Abstract

【Objective】This study was designed to examine differences in gene expression between Eucalyptus urophylla clones cultivated on the same medium and at different growth periods in order to provide genetic information for the analyses of differences in root development.【Method】 We used two E. urophylla clones grown in the same rooting medium with contrasting differences in rooting initiation but with the same generation of subcultures. We performed transcriptome sequencing analysis using 2 mm length stem tissue from the base of each clone on 0, 1, 4 and 6 d when apparent morphological differences occurred in clone base following fast rooting initiation. We further identified the differentially expressed genes (DEGs) that caused rooting differences between clones using gene differential expression analysis, cluster analysis, GO analysis and KEGG analysis.【Result】A total of 20 287 DEGs were obtained, which were significantly grouped into four subclusters. Among them, the number of DEGs with an increasing expression pattern in fast rooting initiation clone was much higher than that in slow rooting initiation clone, and the number of DEGs with less expression change between 1 and 0 d in slow rooting initiation clone were much higher than those in fast rooting initiation clone. After being transferred to IBA medium, the GO analysis showed that DEGs of subcluster 17 were significantly enriched in cell cycle-related pathways in the fast rooting initiation clone, while significantly enriched in the stress resistance-related pathways in the slow rooting initiation clone. The KEGG analysis showed that DEGs in the slow rooting initiation clone were enriched in more biological pathways, while DEGs involved in ribosome were only significantly enriched in the fast rooting initiation clone. DEGs involved in glycolysis, gluconeogenesis, secondary metabolites biosynthesis and oxidative phosphorylation were significantly enriched in the slow rooting initiation clone. A total of 202 DEGs were significantly enriched in the plant hormone signal transduction pathway. There were significant differences between the two clones on the expression levels of DEGs encoding AUX/IAA in the auxin signal transduction pathway, DEGs encoding CRE1 in the cytokinin signal transduction pathway and transcription factor in the gibberellin signal transduction pathway.【Conclusion】The two clones of E. urophylla differ in gene expression during root development after they were transferred to the rooting medium. Expression of the same DEGs varies between the slow rooting initiation clone and the fast rooting initiation clone, resulting in functional variations between the clones including the production of auxin, gibberellin and cytokinin.

关键词

尾叶桉 / 组织培养 / 生根 / 转录组测序 / KEGG分析

Key words

Eucalyptus urophylla / tissue culture / rooting / transcriptome sequencing analysis / KEGG analysis

引用本文

导出引用
廖焕琴, 杨会肖, 徐放, . 尾叶桉不同无性系组培生根相关基因的表达分析[J]. 南京林业大学学报(自然科学版). 2023, 47(4): 114-122 https://doi.org/10.12302/j.issn.1000-2006.202108006
LIAO Huanqin, YANG Huixiao, XU Fang, et al. Expression analysis of rooting-related genes between different clones of Eucalyptus urophylla in tissue culture[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 114-122 https://doi.org/10.12302/j.issn.1000-2006.202108006
中图分类号: S718.46   

参考文献

[1]
STEFFENS B, RASMUSSEN A. The physiology of adventitious roots[J]. Plant Physiol, 2016, 170(2):603-617. DOI: 10.1104/pp.15.01360.
[2]
靳景春, 胡勐鸿, 张宋智, 等. 欧洲云杉扦插生根特性的研究[J]. 西北林学院学报, 2009, 24(5):70-73,105.
JIN J C, HU M H, ZHANG S Z, et al. Rooting capability of twigs of Picea abies[J]. J Northwest For Univ, 2009, 24(5):70-73,105.
[3]
欧阳芳群, 付国赞, 王军辉, 等. 欧洲云杉扦插生根进程中内源激素和多酚类物质变化[J]. 林业科学, 2015, 51(3):155-162.
OUYANG F Q, FU G Z, WANG J H, et al. Qualitative analysis of endogenesis hormone and polyphenol during rooting of cuttings in Norway spruce (Picea abies)[J]. Sci Silvae Sin, 2015, 51(3):155-162.DOI: 10.11707/j.1001-7488.20150320.
[4]
王书胜, 单文, 张乐华, 等. 基质和IBA浓度对云锦杜鹃扦插生根的影响[J]. 林业科学, 2015, 51(9):165-172.
WANG S S, SHAN W, ZHANG L H, et al. Effects of media and IBA concentrations on rooting of Rhododendron fortunei for cutting propagation[J]. Sci Silvae Sin, 2015, 51(9):165-172.DOI: 10.11707/j.1001-7488.20150921.
[5]
韩超, 徐晓立. 3种桉树组培苗不定根发生发育过程的解剖学观察[J]. 西北植物学报, 2016, 36(8):1594-1599.
HAN C, XU X L. Research of anatomy observation on adventitious rooting genesis and development of three rooting culture seedlings of Eucalyptus[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(8):1594-1599.DOI: 10.7606/j.issn.1000-4025.2016.08.1594.
[6]
王荣. 苹果砧木茎源根系发生中次生代谢、内源激素和转录组差异分析[D]. 泰安: 山东农业大学, 2016.
WANG R. Secondary metabolism,endogenous hormone and transcriptome analysis of apple stock cutting root system[D]. Tai'an: Shandong Agricultural University, 2016.
[7]
杜常健, 孙佳成, 陈炜, 等. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9):41-49.
DU C J, SUN J C, CHEN W, et al. Comparison of physiological and anatomical characteristics between seedlings and graftings derived from old Platycladus orientalis[J]. Sci Silvae Sin, 2019, 55(9):41-49.DOI: 10.11707/j.1001-7488.20190905.
[8]
王胤, 姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析[J]. 林业科学, 2020, 56(8):38-46.
WANG Y, YAO R L. Rooting capacity of Pinus massoniana and the correlations endohormones levels during subcultur[J]. Sci Silvae Sin, 2020, 56(8):38-46.DOI: 10.11707/j.1001-7488.20200805.
[9]
WANG Z Q, HUA J F, YIN Y L, et al. An integrated transcriptome and proteome analysis reveals putative regulators of adventitious root formation in Taxodium ‘Zhongshanshan’[J]. Int J Mol Sci, 2019, 20(5):1225.DOI: 10.3390/ijms20051225.
[10]
NEGISHI N, OISHI M, KAWAOKA A. Chemical screening for promotion of adventitious root formation in Eucalyptus globulus[J]. BMC Proc, 2011, 5(suppl 7):P139.DOI: 10.1186/1753-6561-5-s7-p139.
[11]
ABARCA D, PIZARRO A, HERNÁNDEZ I, et al. The GRAS gene family in pine:transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots[J]. BMC Plant Biol, 2014, 14:354.DOI: 10.1186/s12870-014-0354-8.
[12]
LEGUÉ V, RIGAL A, BHALERAO R P. Adventitious root formation in tree species:involvement of transcription factors[J]. Physiol Plant, 2014, 151(2):192-198.DOI: 10.1111/ppl.12197.
[13]
罗建中. 多效唑矮化桉树无性系的效果研究[J]. 广东林业科技, 2000, 16(4):6-9.
LUO J Z. A study on the dwarfing effect of paclobutrazor on eucalypt clones[J]. For Sci Technol, 2000, 16(4):6-9.
[14]
BAI T H, DONG Z D, ZHENG X B, et al. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock[J]. Front Plant Sci, 2020, 11:574881.DOI: 10.3389/fpls.2020.574881.
[15]
DE KLERK G J, ARNHOLDT-SCHMITT B, LIEBEREI R, et al. Regeneration of roots,shoots and embryos:physiological,biochemical and molecular aspects[J]. Biol Plant, 1997, 39(1):53-66.DOI: 10.1023/A:1000304922507.
[16]
RIGAL A, YORDANOV Y S, PERRONE I, et al. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar[J]. Plant Physiol, 2012, 160(4):1996-2006.DOI: 10.1104/pp.112.204453.
[17]
DA COSTA C T, DE ALMEIDA M R, RUEDELL C M, et al. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings[J]. Front Plant Sci, 2013, 4:133.DOI: 10.3389/fpls.2013.00133.
[18]
BELLINI C, PACURAR D I, PERRONE I. Adventitious roots and lateral roots:similarities and differences[J]. Annu Rev Plant Biol, 2014, 65(1):639-66.DOI: 10.1146/annurev-arplant-050213-035645.
[19]
LI A M, LAKSHMANAN P, HE W Z, et al. Transcriptome profiling provides molecular insights into auxin-induced adventitious root formation in sugarcane (Saccharum spp.interspecific hybrids) microshoots[J]. Plants (Basel), 2020, 9(8):931.DOI: 10.3390/plants9080931.
[20]
POP T I, PAMFIL D, BELLINI C. Auxin control in the formation of adventitious roots[J]. Not Bot Horti Agrobot Cluj Napoca, 2011, 39(1):307-316.DOI: 10.15835/nbha3916101.
[21]
ZAMAN M, KUREPIN L V, CATTO W, et al. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.)[J]. J Sci Food Agric, 2016, 96(3):715-726.DOI: 10.1002/jsfa.7238.
[22]
YANG Y D, HAMMES U Z, TAYLOR C G, et al. High-affinity auxin transport by the AUX1 influx carrier protein[J]. Curr Biol, 2006, 16(11):1123-1127. DOI: 10.1016/j.cub.2006.04.029.
[23]
DE ALMEIDA M R, DE BASTIANI D, GAETA M L, et al. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus[J]. Plant Sci, 2015, 239:155-165.DOI: 10.1016/j.plantsci.2015.07.022.
[24]
LAPLAZE L, BENKOVA E, CASIMIRO I, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J]. Plant Cell, 2008, 19(12):3889-3900.DOI: 10.1105/tpc.107.055863.
[25]
RAMÍREZ-CARVAJAL G A, MORSE A M, DERVINIS C, et al. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus[J]. Plant Physiol, 2009, 150(2):759-771.DOI: 10.1104/pp.109.137505.

基金

广东省林业科技创新项目(2016KJCX002)
广东省林业科技创新项目(2019KJCX003)

编辑: 吴祝华
PDF(5957 KB)

Accesses

Citation

Detail

段落导航
相关文章

/