[1] |
STEFFENS B, RASMUSSEN A. The physiology of adventitious roots[J]. Plant Physiol, 2016, 170(2):603-617. DOI: 10.1104/pp.15.01360.
|
[2] |
靳景春, 胡勐鸿, 张宋智, 等. 欧洲云杉扦插生根特性的研究[J]. 西北林学院学报, 2009, 24(5):70-73,105.
|
|
JIN J C, HU M H, ZHANG S Z, et al. Rooting capability of twigs of Picea abies[J]. J Northwest For Univ, 2009, 24(5):70-73,105.
|
[3] |
欧阳芳群, 付国赞, 王军辉, 等. 欧洲云杉扦插生根进程中内源激素和多酚类物质变化[J]. 林业科学, 2015, 51(3):155-162.
|
|
OUYANG F Q, FU G Z, WANG J H, et al. Qualitative analysis of endogenesis hormone and polyphenol during rooting of cuttings in Norway spruce (Picea abies)[J]. Sci Silvae Sin, 2015, 51(3):155-162.DOI: 10.11707/j.1001-7488.20150320.
|
[4] |
王书胜, 单文, 张乐华, 等. 基质和IBA浓度对云锦杜鹃扦插生根的影响[J]. 林业科学, 2015, 51(9):165-172.
|
|
WANG S S, SHAN W, ZHANG L H, et al. Effects of media and IBA concentrations on rooting of Rhododendron fortunei for cutting propagation[J]. Sci Silvae Sin, 2015, 51(9):165-172.DOI: 10.11707/j.1001-7488.20150921.
|
[5] |
韩超, 徐晓立. 3种桉树组培苗不定根发生发育过程的解剖学观察[J]. 西北植物学报, 2016, 36(8):1594-1599.
|
|
HAN C, XU X L. Research of anatomy observation on adventitious rooting genesis and development of three rooting culture seedlings of Eucalyptus[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(8):1594-1599.DOI: 10.7606/j.issn.1000-4025.2016.08.1594.
|
[6] |
王荣. 苹果砧木茎源根系发生中次生代谢、内源激素和转录组差异分析[D]. 泰安: 山东农业大学, 2016.
|
|
WANG R. Secondary metabolism,endogenous hormone and transcriptome analysis of apple stock cutting root system[D]. Tai'an: Shandong Agricultural University, 2016.
|
[7] |
杜常健, 孙佳成, 陈炜, 等. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9):41-49.
|
|
DU C J, SUN J C, CHEN W, et al. Comparison of physiological and anatomical characteristics between seedlings and graftings derived from old Platycladus orientalis[J]. Sci Silvae Sin, 2019, 55(9):41-49.DOI: 10.11707/j.1001-7488.20190905.
|
[8] |
王胤, 姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析[J]. 林业科学, 2020, 56(8):38-46.
|
|
WANG Y, YAO R L. Rooting capacity of Pinus massoniana and the correlations endohormones levels during subcultur[J]. Sci Silvae Sin, 2020, 56(8):38-46.DOI: 10.11707/j.1001-7488.20200805.
|
[9] |
WANG Z Q, HUA J F, YIN Y L, et al. An integrated transcriptome and proteome analysis reveals putative regulators of adventitious root formation in Taxodium ‘Zhongshanshan’[J]. Int J Mol Sci, 2019, 20(5):1225.DOI: 10.3390/ijms20051225.
|
[10] |
NEGISHI N, OISHI M, KAWAOKA A. Chemical screening for promotion of adventitious root formation in Eucalyptus globulus[J]. BMC Proc, 2011, 5(suppl 7):P139.DOI: 10.1186/1753-6561-5-s7-p139.
|
[11] |
ABARCA D, PIZARRO A, HERNÁNDEZ I, et al. The GRAS gene family in pine:transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots[J]. BMC Plant Biol, 2014, 14:354.DOI: 10.1186/s12870-014-0354-8.
|
[12] |
LEGUÉ V, RIGAL A, BHALERAO R P. Adventitious root formation in tree species:involvement of transcription factors[J]. Physiol Plant, 2014, 151(2):192-198.DOI: 10.1111/ppl.12197.
|
[13] |
罗建中. 多效唑矮化桉树无性系的效果研究[J]. 广东林业科技, 2000, 16(4):6-9.
|
|
LUO J Z. A study on the dwarfing effect of paclobutrazor on eucalypt clones[J]. For Sci Technol, 2000, 16(4):6-9.
|
[14] |
BAI T H, DONG Z D, ZHENG X B, et al. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock[J]. Front Plant Sci, 2020, 11:574881.DOI: 10.3389/fpls.2020.574881.
|
[15] |
DE KLERK G J, ARNHOLDT-SCHMITT B, LIEBEREI R, et al. Regeneration of roots,shoots and embryos:physiological,biochemical and molecular aspects[J]. Biol Plant, 1997, 39(1):53-66.DOI: 10.1023/A:1000304922507.
|
[16] |
RIGAL A, YORDANOV Y S, PERRONE I, et al. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar[J]. Plant Physiol, 2012, 160(4):1996-2006.DOI: 10.1104/pp.112.204453.
|
[17] |
DA COSTA C T, DE ALMEIDA M R, RUEDELL C M, et al. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings[J]. Front Plant Sci, 2013, 4:133.DOI: 10.3389/fpls.2013.00133.
|
[18] |
BELLINI C, PACURAR D I, PERRONE I. Adventitious roots and lateral roots:similarities and differences[J]. Annu Rev Plant Biol, 2014, 65(1):639-66.DOI: 10.1146/annurev-arplant-050213-035645.
|
[19] |
LI A M, LAKSHMANAN P, HE W Z, et al. Transcriptome profiling provides molecular insights into auxin-induced adventitious root formation in sugarcane (Saccharum spp.interspecific hybrids) microshoots[J]. Plants (Basel), 2020, 9(8):931.DOI: 10.3390/plants9080931.
|
[20] |
POP T I, PAMFIL D, BELLINI C. Auxin control in the formation of adventitious roots[J]. Not Bot Horti Agrobot Cluj Napoca, 2011, 39(1):307-316.DOI: 10.15835/nbha3916101.
|
[21] |
ZAMAN M, KUREPIN L V, CATTO W, et al. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.)[J]. J Sci Food Agric, 2016, 96(3):715-726.DOI: 10.1002/jsfa.7238.
|
[22] |
YANG Y D, HAMMES U Z, TAYLOR C G, et al. High-affinity auxin transport by the AUX1 influx carrier protein[J]. Curr Biol, 2006, 16(11):1123-1127. DOI: 10.1016/j.cub.2006.04.029.
|
[23] |
DE ALMEIDA M R, DE BASTIANI D, GAETA M L, et al. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus[J]. Plant Sci, 2015, 239:155-165.DOI: 10.1016/j.plantsci.2015.07.022.
|
[24] |
LAPLAZE L, BENKOVA E, CASIMIRO I, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J]. Plant Cell, 2008, 19(12):3889-3900.DOI: 10.1105/tpc.107.055863.
|
[25] |
RAMÍREZ-CARVAJAL G A, MORSE A M, DERVINIS C, et al. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus[J]. Plant Physiol, 2009, 150(2):759-771.DOI: 10.1104/pp.109.137505.
|