南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5): 177-184.doi: 10.12302/j.issn.1000-2006.202108018
收稿日期:
2021-08-29
修回日期:
2022-01-29
出版日期:
2022-09-30
发布日期:
2022-10-19
通讯作者:
周正虎
基金资助:
ZHAO Kaige(), ZHOU Zhenghu(), JIN Ying, WANG Chuankuan
Received:
2021-08-29
Revised:
2022-01-29
Online:
2022-09-30
Published:
2022-10-19
Contact:
ZHOU Zhenghu
摘要:
【目的】氮(N)沉降速率的持续增加影响着森林生态系统的物质循环。本研究旨在探讨长期N添加对两种人工林土壤微生物生物量和胞外酶活性的影响。【方法】基于黑龙江帽儿山森林生态系统国家野外科学观测研究站落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林的长期(16年)N添加[N添加速率为10 g/(m2·a)]试验,测定对照和N添加处理样地土壤的碳(C)、N、磷(P)各组分含量、微生物生物量以及C、N、P循环相关的胞外酶活性。【结果】长期N添加显著增加了两种人工林无机N含量,但降低了两种人工林微生物生物量C、N含量。N添加抑制了水曲柳人工林β-葡萄糖苷酶、过氧化物酶和酚氧化酶活性,但对落叶松人工林的这些C分解酶活性的抑制作用不显著。回归分析进一步发现微生物生物量、β-葡萄糖苷酶、过氧化物酶和酚氧化酶均随着土壤pH的降低而显著降低。几丁质酶活性在落叶松人工林中对N添加呈现负响应,却在水曲柳人工林中对N添加呈现正响应。然而,N添加均未显著改变两种人工林的磷酸酶活性、总有机C,以及酸水解法划分的C组分、全N、全P和有效P含量。【结论】长期N添加主要通过土壤酸化途径改变落叶松和水曲柳人工林土壤微生物生物量和酶活性,而N添加对胞外酶活性的影响因树种而异,这可能与两个树种的不同凋落物质量和菌根类型有关。N添加对土壤微生物和C分解酶活性的抑制作用并没有显著增加土壤C含量和改变C组分,其内在机制需要未来从土壤有机C的形成和稳定性方面进行揭示。
中图分类号:
赵凯歌,周正虎,金鹰,等. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184.
ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(5): 177-184.DOI: 10.12302/j.issn.1000-2006.202108018.
表1
水曲柳和落叶松人工林土壤C、N、P组分对比"
树种 tree species | 含量content | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
总有机碳/ (g·kg-1) TOC | 溶解性 有机碳/ (mg·kg-1) DOC | 活性 碳库Ⅰ/ (g·kg-1) LPⅠ-C | 活性 碳库Ⅱ/ (g·kg-1) LPⅡ-C | 惰性碳库/ (g·kg-1) RP-C | 全氮/ (g·kg-1) TN | 溶解性 有机氮/ (mg·kg-1) DON | 无机氮/ (mg·kg-1) IN | 全磷/ (g·kg-1) TP | 有效磷/ (mg·kg-1) AP | |
水曲柳ash | 97.2±3.7 a | 127.9±7.2 a | 14.7±1.3 a | 30.3±2.0 a | 52.3±2.1 a | 8.4±0.2 a | 124.9±7.2 a | 63.6±7.9 a | 1.2±0.1 a | 8.8±0.9 a |
落叶松larch | 90.6±3.8 a | 152.2±38.4 a | 19.2±1.2 b | 24.3±1.4 a | 47.1±2.0 b | 8.5±0.3 a | 105.5±8.5 a | 39.4±4.9 a | 1.5±0.3 a | 19.7±3.9 a |
表2
水曲柳和落叶松人工林土壤微生物生物量及相关酶活性对比"
树种 tree species | 含量/(mg·kg-1) content | 酶活性/(μg·g-1·h-1) activity | |||||
---|---|---|---|---|---|---|---|
微生物 生物量碳 MBC | 微生物 生物量氮 MBN | β-1,4-葡萄糖 苷酶 β-1,4- glucosidase | 几丁质酶 N-acetyl-β- glucosaminidase | 酸性磷 酸酶 acid phosphatase | 酚氧化酶 phenol oxidase | 过氧化物酶 peroxidase | |
水曲柳ash | 666.4±76.1 a | 95.5±9.67 a | 643.8±37.2 a | 223.3±24.4 a | 1 040.0±35.8 a | 17.6±1.0 a | 87.2±7.7a |
落叶松larch | 611.6±51.8 a | 107.4±9.20 a | 465.2±34.1 b | 204.8±5.7 a | 1 029.7±14.3 a | 14.2±2.2 a | 74.8±6.8 a |
图1
氮添加对水曲柳和落叶松人工林土壤碳、氮、磷组分的影响 TOC.土壤总有机碳 soil total organic carbon;MBC.微生物生物量碳 microbial biomass carbon;LPI-C.活性碳库Ⅰ labile carbon pool I;LPⅡ-C.活性碳库Ⅱ labile carbon pool Ⅱ;RP-C.惰性碳库 recalcitrant carbon pool;DOC.溶解性有机碳 dissolved organic carbon;TN.土壤全氮 soil total nitrogen;DON.溶解性有机氮 dissolved organic nitrogen;MBN.土壤微生物生物量氮 microbial biomass nitrogen;IN.土壤无机氮 inorganic nitrogen;TP.土壤全磷 soil total phosphorus;AP.土壤有效磷 available phosphorus。"
[1] | 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218. |
LÜ C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems[J]. Chin J Plant Ecol, 2007, 31(2): 205-218. DOI:10.17521/cjpe.2007.0025. | |
[2] | 周晓兵, 张元明. 干旱半干旱区氮沉降生态效应研究进展[J]. 生态学报, 2009, 29(7): 3835-3845. |
ZHOU X B, ZHANG Y M. Review on the ecological effects of N deposition in arid and semi-arid areas[J]. Acta Ecol Sin, 2009, 29(7): 3835-3845. DOI:10.3321/j.issn:1000-0933.2009.07.046. | |
[3] | 李延茂, 胡江春, 汪思龙, 等. 森林生态系统中土壤微生物的作用与应用[J]. 应用生态学报, 2004, 15(10): 1943-1946. |
LI Y M, HU J C, WANG S L, et al. Function and application of soil microorganisms in forest ecosystem[J]. Chin J Appl Ecol, 2004, 15(10): 1943-1946. DOI:10.13287/j.1001-9332.2004.0402. | |
[4] | SUN S, XING F, ZHAO H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen grassland in northeastern China[J]. J Soil Sci Plant Nutr, 2014, 14(3): 565-580. DOI:10.4067/s0718-95162014005000045. |
[5] | LIU J, WU N, WANG H, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter[J]. Ecology, 2016, 97(7): 1796-1806. DOI:10.1890/15-1683.1. |
[6] | SUN S Q, WU Y H, ZHANG J, et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283-292. DOI:10.1016/j.geoderma.2019.07.023. |
[7] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
ZHOU Z H, WANG C K. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry[J]. Chin J Plant Ecol, 2016, 40(6): 620-630. DOI:10.17521/cjpe.2015.0449. | |
[8] | SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecol Lett, 2008, 11(11): 1252-1264. DOI:10.1111/j.1461-0248.2008.01245.x. |
[9] | SINSABAUGH R L, HILL B H, FOLLSTAD S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. DOI:10.1038/nature08632. |
[10] | ZHOU Z H, WANG C K, ZHENG M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biol Biochem, 2017, 115: 433-441. DOI:10.1016/j.soilbio.2017.09.015. |
[11] | VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. For Ecol Manag, 2008, 255(1): 35-48. DOI:10.1016/j.foreco.2007.08.015. |
[12] | BRZOSTEK E R, DRAGONI D, BROWN Z A, et al. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. New Phytol, 2015, 206(4): 1274-1282. DOI:10.1111/nph.13303. |
[13] | LIN G, MCCORMACK M L, MA C, et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytol, 2017, 213(3): 1440-1451. DOI:10.1111/nph.14206. |
[14] | 贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 13-22. |
HE M Y, DONG L H, LI F R. Tree crown length prediction models for Larix olgensis and Fraxinus mandshurica in mixed plantations with different mixing methods[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 13-22. DOI:10.12302/j.issn.1000-2006.202005043. | |
[15] | 盛后财, 姚月锋, 蔡体久, 等. 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 143-150. |
SHENG H C, YAO Y F, CAI T J, et al. Effects of phenoseason on transfer of potassium and sodium ions in the process of rainfall redistribution in larch (Larix gmelinii) plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 143-150. DOI:10.12302/j.issn.1000-2006.202102012. | |
[16] | 王薪琪, 王传宽. 东北5种温带人工林表层土壤碳氮含量的分异[J]. 应用生态学报, 2019, 30(6): 1911-1918. |
WANG X Q, WANG C K. Variations in topsoil carbon and nitrogen contents of five temperate plantations in northeast China[J]. Chin J Appl Ecol, 2019, 30(6): 1911-1918. DOI:10.13287/j.1001-9332.201906.003. | |
[17] | COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?[J]. Glob Change Biol, 2013, 19(4): 988-995. DOI:10.1111/gcb.12113. |
[18] | JIN Y, WANG C K, ZHOU Z H, et al. Contrasting responses of hydraulic traits between leaf and branch to 16-year nitrogen addition in a larch plantation[J]. For Ecol Manag, 2020, 475: 118461. DOI:10.1016/j.foreco.2020.118461. |
[19] | WANG Z Q, GUO D L, WANG X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant Soil, 2006, 288(1/2): 155-171. DOI:10.1007/s11104-006-9101-8. |
[20] | SUN Y, GU J C, ZHUANG H F, et al. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China[J]. Eco Res, 2010, 25(2): 295-302. DOI:10.1007/s11284-009-0654-x. |
[21] | ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2): 109-141. DOI:10.1016/S0016-7061(01)00143-4. |
[22] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem, 1987, 19(6): 703-707. DOI:10.1016/0038-0717(87)90052-6. |
[23] | MARTENS D A, JOHANSON J B, FRANKENBERGER W T JR. Production and persistence of soil enzymes with repeated addition of organic residues[J]. Soil Sci, 1992, 153(1): 53-61. DOI:10.1097/00010694-199201000-00008. |
[24] | KNOPS J M H, BRADLEY K L, WEDIN D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling[J]. Ecol Lett, 2002, 5(3): 454-466. DOI:10.1046/j.1461-0248.2002.00332.x. |
[25] | HUANG Z Q, CLINTON P W, DAVIS M R. Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations[J]. Soil Bio Biochem, 2011, 43(2): 404-412. DOI:10.1016/j.soilbio.2010.11.008. |
[26] | XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Glob Ecol Biogeogr, 2013, 22(6): 737-749. DOI:10.1111/geb.12029. |
[27] | TRESEDER K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies[J]. Ecol Lett, 2008, 11(10): 1111-1120. DOI:10.1111/j.1461-0248.2008.01230.x. |
[28] | JIA S X, WANG Z Q, LI X P, et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Plant Soil, 2010, 333(1/2): 325-336. DOI:10.1007/s11104-010-0348-8. |
[29] | TIAN D, JIANG L, MA S, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. Sci Total Environ, 2017, 607/608: 1367-1375. DOI:10.1016/j.scitotenv.2017.06.057. |
[30] | JIAN S Y, LI J W, CHEN J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biol Biochem, 2016, 101: 32-43. DOI:10.1016/j.soilbio.2016.07.003. |
[31] | SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil BiolBiochem, 2010, 42(3): 391-404. DOI:10.1016/j.soilbio.2009.10.014. |
[32] | READ D J, PEREZ-MORENO J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?[J]. New Phytol, 2003, 157(3): 475-492. DOI:10.1046/j.1469-8137.2003.00704.x. |
[33] | XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biol Biochem, 2018, 123: 21-32. DOI:10.1016/j.soilbio.2018.05.001. |
[34] | CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes:a meta-analysis[J]. Agric Ecosyst and Environ, 2018, 252: 126-131. DOI:10.1016/j.agee.2017.09.032. |
[35] | WEAND M P, ARTHUR M A, LOVETT G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biol Biochem, 2010, 42(12): 2161-2173. DOI:10.1016/j.soilbio.2010.08.012. |
[36] | ALLISON S D, CZIMCZIK C I, TRESEDER K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Glob Change Biol, 2008, 14(5): 1156-1168. DOI:10.1111/j.1365-2486.2008.01549.x. |
[37] | 曹子铖, 程淑兰, 方华军, 等. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 2020, 57(4):963-974. |
CAO Z C, CHENG S L, FANG H J, et al. Responses of soil organic carbon dynamics and microbial community structure to organic nitrogen fertilization in the temperate needle-broadleaved mixed forest[J]. Acta Pedologica Sinica, 2020, 57(4):963-974. DOI:10.11766/trxb201908130350. | |
[38] | XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Glob Change Biol, 2021, 27(6): 1170-1180. DOI:10.1111/gcb.15489. |
[39] | XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol, 2008, 179(2): 428-439. DOI:10.1111/j.1469-8137.2008.02488.x. |
[40] | XIA M, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytol, 2015, 208(3): 715-726. DOI:10.1111/nph.13494. |
[41] | XIA M, TALHELM A F, PREGITZER K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition[J]. Ecosystems, 2018, 21(1): 1-14. DOI:10.1007/s10021-017-0130-3. |
[42] | FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide[J]. J Ecol, 2013, 101(4): 943-952. DOI:10.1111/1365-2745.12092. |
[43] | 涂利华, 胡庭兴, 张健, 等. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011, 35(2): 125-136. |
TU L H, HU T X, ZHANG J, et al. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, rainy area of west China[J]. Chin J Plant Ecol, 2011, 35(2): 125-136. DOI:10.3724/SP.J.1258.2011.00125. | |
[44] | 林伟, 马红亮, 裴广廷, 等. 氮添加对亚热带森林土壤有机碳氮组分的影响[J]. 环境科学研究, 2016, 29(1): 67-76. |
LIN W, MA H L, PEI G T, et al. Effects of nitrogen addition on soil carbon and nitrogen pools in mid-subtropical forest[J]. Res Environ Sci, 2016, 29(1): 67-76. DOI:10.13198/j.issn.1001-6929.2016.01.09. | |
[45] | LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Glob Change Biol, 2019, 25(11): 3578-3590.DOI:10.1111/gcb.14781. |
[46] | YUE K, FORNARA D A, YANG W, et al. Effects of three global change drivers on terrestrial C∶N∶P stoichiometry: a global synthesis[J]. Glob Change Biol, 2017, 23(6): 2450-2463. DOI:10.1111/gcb.13569. |
[47] | LU M, YANG Y H, LUO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytol, 2011, 189(4): 1040-1050. DOI:10.1111/j.1469-8137.2010.03563.x. |
[48] | 肖华翠, 李靖雯, 夏允, 等. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素[J]. 应用生态学报, 2021, 32(1): 16-22. |
XIAO H C, LI J W, XIA Y, et al. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China[J]. Chin J Appl Ecol, 2021, 32(1): 16-22. DOI:10.13287/j.1001-9332.202101.001. | |
[49] | VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecol Appl, 2010, 20(1): 5-15. DOI:10.1890/08-0127.1. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[4] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[5] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[6] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 85-94. |
[7] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[8] | 王宇, 易艳灵, 刘海, 文晓晨, 李天一, 尹海锋, 李贤伟, 范川. 两种采伐方式对马尾松人工林林分空间结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 138-146. |
[9] | 杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格. 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 13-22. |
[10] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[11] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[12] | 沈浩, 姜姜, 周晨, 潘庆全. 江西石城不同起源阔叶林碳储量驱动因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 185-190. |
[13] | 孙宇, 李凤日, 谢龙飞, 董利虎. 基于林分及地形因子的落叶松人工林林分生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 129-136. |
[14] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[15] | 唐依人, 贾炜玮, 王帆, 孙毓蔓, 张颖. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||