南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 103-113.doi: 10.12302/j.issn.1000-2006.202108034
收稿日期:
2021-08-19
修回日期:
2021-11-29
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 耿兴敏(作者简介:
王露露(基金资助:
WANG Lulu(), GENG Xingmin(), HUAN Zhiqun, XU Shida, ZHAO Hui
Received:
2021-08-19
Revised:
2021-11-29
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】研究乙烯受体抑制剂1-MCP预处理对杜鹃花耐热性及高温胁迫下光合系统的影响,揭示乙烯对杜鹃花耐热性的调控机制。【方法】以两个耐热性不同的杜鹃花属 (Rhododendron) 品种[‘胭脂蜜’(‘Yanzhi Mi’)和‘红月’(‘Hong Yue’)]为试验材料,分析1-MCP预处理对高温胁迫下杜鹃花幼苗热害指数、光合色素含量、光合气体交换参数以及叶绿素荧光参数等的影响,利用‘红月’转录组数据,分析1-MCP及高温胁迫对光合通路相关基因的转录调控。【结果】高温胁迫下两个杜鹃花品种叶片的净光合速率(Pn)、光合色素含量、最大荧光产量(Fm)、PSⅡ最大光化学效率(Fv/Fo)和潜在的光化学活性(Fv/Fm)下降,初始荧光产量(Fo)上升,但与‘红月’相比,‘胭脂蜜’中这些指标的变化幅度较小;适宜浓度的1-MCP预处理减缓了高温胁迫下杜鹃叶片光合色素含量的下降,使高温胁迫下杜鹃花叶片保持较高的光化学效率,缓解光合机构受到的高温伤害,降低光抑制程度。光合机构比活性参数变化显示,高温胁迫下两个杜鹃花品种叶片单位反应中心吸收的光能[ABS(吸收通量)/RC(反应中心),记为EABS/RC]都显著增加,单位反应中心捕获的用于电子传递的能量(EETo/RC)降低;单位面积光能的吸收、捕获和电子传递的量子产额显著降低,PSⅡ电子传递受阻;适宜浓度的1-MCP预处理减缓了两个杜鹃花品种在高温胁迫下单位面积电子传递的量子产额[受光面积,EETo/SSm]、单位面积吸收的光能(EABS/CSm)、单位面积捕获的光能(ETRo/CSm)的下降,通过增加单位反应中心电子传递,减轻电子传递链过度还原,以缓解PSⅡ反应中心电子传递受阻程度。‘红月’转录组数据分析结果显示,高温胁迫下光合通路相关基因,除psbA外,其余30个DEGs都下调表达,而1-MCP预处理在一定程度上缓解了部分与光合通路相关基因转录水平的下降,但变化趋势并不显著。【结论】高温胁迫抑制杜鹃花叶片的光合效率,耐热杜鹃花品种可以较好地维持高温胁迫下光合系统的稳定。适宜浓度的1-MCP预处理能有效提高杜鹃花叶片的光合能力,缓解杜鹃花热胁迫症状。
中图分类号:
王露露,耿兴敏,宦智群,等. 1-MCP预处理对杜鹃花高温胁迫下光合特性及相关基因表达的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 103-113.
WANG Lulu, GENG Xingmin, HUAN Zhiqun, XU Shida, ZHAO Hui. Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 103-113.DOI: 10.12302/j.issn.1000-2006.202108034.
表1
不同浓度1-MCP预处理对高温胁迫下两个杜鹃花品种热害指数的影响"
处理 treatment | ‘胭脂蜜’ ‘Yanzhi Mi’ | ‘红月’ ‘Hong Yue’ |
---|---|---|
CK | 0.00 ± 0.00 Ac | 2.222 ± 0.56 Ad |
HS | 39.639 ±1.33 Ba | 55.333 ± 2.67 Ab |
0.25 μL/L 1-MCP + HS | — | 25.417 ± 2.96 c |
0.50 μL/L 1-MCP + HS | 41.778 ± 1.84 Ba | 56.778 ± 0.78 Ab |
1.00 μL/L 1-MCP + HS | 21.25 ± 2.32 Bb | 76.889 ± 6.93 Aa |
5.00 μL/L 1-MCP + HS | 46.444 ± 12.23 Bb | 82.556 ± 3.96 Aa |
图2
1-MCP预处理对高温胁迫下两个杜鹃花品种叶片光合色素含量的影响 CK对照control;HS.高温胁迫 heat stress;1-MCP+HS. 1-MCP熏蒸处理后进行高温胁迫 heat stress after 1-MCP application。不同小写字母表示同一品种不同处理间差异显著(P<0.05);不同大写字母表示两个不同品种间差异显著(P<0.05)。下同。Different lowercase letters indicate the significant differences among different treatments in the same cultivar (P<0.05); Different uppercase letters indicate the significant difference between the two Rhododendron cultivars (P<0.05)。 The same below."
表2
1-MCP预处理对高温胁迫下杜鹃花叶片光能吸收、捕获和传递的影响"
品种 cultivar | 处理 treatment | EABS/RC | ETRo/RC | EETo/RC | EABS/CSm | ETRo/CSm | EETo/CSm |
---|---|---|---|---|---|---|---|
‘胭脂蜜’ ‘Yanzhi Mi’ | CK | 2.77±0.02 Ab | 2.29±0.02 Aa | 0.89±0.02 Aa | 2 945.33±35.20 Aa | 2 439.00±4.36 Aa | 946.67±3.28 Aa |
HS | 6.80±0.26 Aa | 2.27±0.10 Aa | 0.59±0.18 Ab | 1 488.67±13.05 Ac | 885.67±15.21 Ac | 283.67±5.55 Ac | |
1-MCP+HS | 2.97±0.28 Ab | 2.35±0.17 Aa | 0.86±0.03 Aa | 2 556.00±27.09 Bb | 2 046.33±14.50 Bb | 772.33±3.48 Bb | |
‘红月’ ‘HongYue’ | CK | 2.69±0.06 Ab | 2.22±0.04 Ab | 0.84±0.02 Aa | 2 847.33±14.33 Ab | 2 337.33±29.16 Aa | 885.33±24.23 Ab |
HS | 6.08±0.36 Aa | 2.54±0.05 Aa | 0.54±0.03 Ab | 1 458.67±11.35 Ac | 635.33±12.14 Ab | 132.00±3.51 Ac | |
1-MCP+HS | 2.40±0.06 Ab | 1.92±0.04 Bc | 0.83±0.06 Aa | 2 971.00±26.96 Aa | 2 384.00±38.37 Aa | 1 031.00±8.25 Aa |
[1] | 耿玉英. 中国杜鹃花属植物[M]. 上海: 上海科学技术出版社, 2014. |
GENG Y Y. The genus rhododendron of China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2014. | |
[2] | GU K, GENG X M, YUE Y, et al. Contribution of keeping more stable anatomical structure under high temperature to heat resistance of Rhododendron seedlings[J]. J Fac Agric Kyushu Univ, 2016, 61(2):273-279.DOI: 10.5109/1685882. |
[3] | 周媛, 童俊, 徐冬云, 等. 高温胁迫下不同杜鹃品种PSⅡ活性变化及其耐热性比较[J]. 中国农学通报, 2015, 31(31):150-159. |
ZHOU Y, TONG J, XU D Y, et al. PSⅡ activity changes and heat-tolerance comparison of different Rhododendron cultivars under high temperature stress[J]. Chin Agric Sci Bull, 2015, 31(31):150-159. | |
[4] | RANNEY T G, BLAZICH F A, WARREN S L. Heat tolerance of selected species and populations of rhododendron[J]. J Am Soc Hortic Sci, 1995, 120(3):423-428. |
[5] | GENG X, YANG Q Y, YUE Y, et al. Effects of high temperature on photosynthesis,membrane lipid peroxidation and osmotic adjustment in four Rhododendron species[J]. J Fac Agric Kyushu Univ, 2019, 64(1):33-38. |
[6] | YAN Z N, MA T, GUO S X, et al. Leaf anatomy,photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress[J]. Sci Hortic, 2021, 280:109933.DOI: 10.1016/j.scienta.2021.109933. |
[7] | 李小玲, 华智锐, 张丹婷. 5-氨基乙酰丙酸(ALA)对秦岭高山杜鹃耐热性的诱导效应[J]. 江苏农业科学, 2017, 45(20):176-179. |
LI X L, HUA Z R, ZHANG D T. Induction effect of 5-aminolevulinic acid (ALA) on heat tolerance of Rhododendron in Qinling Mountains[J]. Jiangsu Agric Sci, 2017, 45(20):176-179.DOI: 10.15889/j.issn.1002-1302.2017.20.043. | |
[8] | DINER B A, BAUTISTA J A, NIXON P J, et al. Coordination of proton and electron transfer from the redox-active tyrosine,YZ of Photosystem Ⅱ and examination of the electrostatic influence of oxidized tyrosine,YD·(H+)[J]. Phys Chem Chem Phys, 2004, 6(20):4844-4850.DOI: 10.1039/B407423H. |
[9] | WANG J, CHEN Z W, CHEN H, et al. Effect of hydrogen peroxide on Microcystic aeruginosa:role of cytochromes P450[J]. Sci Total Environ, 2018, 626:211-218.DOI: 10.1016/j.scitotenv.2018.01.067. |
[10] | 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5):415-422. |
LI Z X, LI X, FAN L C, et al. Effect of heat stress on the photosynthesis system of tea leaves[J]. J Tea Sci, 2015, 35(5):415-422.DOI: 10.13305/j.cnki.jts.2015.05.002. | |
[11] | LI Y T, XU W W, REN B Z, et al. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem Ⅱ[J]. J Agron Crop Sci, 2020, 206(5):548-564.DOI: 10.1111/jac.12401. |
[12] | SRIVASTAVA A, GUISSÉ B, GREPPIN H, et al. Regulation of antenna structure and electron transport in Photosystem Ⅱ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP[J]. Biochim Biophys Acta (BBA) Bioenerg, 1997, 1320(1):95-106.DOI: 10.1016/S0005-2728(97)00017-0. |
[13] | AGRAWAL D, JAJOO A. Investigating primary sites of damage in photosystem Ⅱ in response to high temperature[J]. Ind J Plant Physiol, 2015, 20(4):304-309.DOI: 10.1007/s40502-015-0176-1. |
[14] | 李鹏民, 高辉远, STRASSER R. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6):559-566. |
LI P M, GAO H Y, STRASSER R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Acta Photophysiol Sin, 2005, 31(6):559-566. | |
[15] | 张乐华, 孙宝腾, 周广, 等. 高温胁迫下五种杜鹃花属植物的生理变化及其耐热性比较[J]. 广西植物, 2011, 31(5):651-658. |
ZHANG L H, SUN B T, ZHOU G, et al. Physiological changes and heat tolerance comparison of five Rhododendron species under high-temperature stress[J]. Guihaia, 2011, 31(5):651-658.DOI: 10.3969/j.issn.1000-3142.2011.05.016. | |
[16] | 耿兴敏, 刘攀, 李泽丰, 等. 过氧化氢预处理提高杜鹃的耐热性研究[J]. 安徽农业大学学报, 2019, 46(1):167-172. |
GENG X M, LIU P, LI Z F, et al. Improving heat tolerance of Rhododendron by H2O2 pretreatment[J]. J Anhui Agric Univ, 2019, 46(1):167-172.DOI: 10.13610/j.cnki.1672-352x.20190314.007. | |
[17] | 耿兴敏, 肖丽燕, 赵晖, 等. H2O2预处理及高温胁迫下杜鹃叶片活性氧及抗氧化酶亚细胞定位分析[J]. 西北植物学报, 2019, 39(5):791-800. |
GENG X M, XIAO L Y, ZHAO H, et al. Sub-cellular localization of ROS-scavenging system in Rhododendron leaves under heat stress and H2O2 pretreatment[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5):791-800.DOI: 10.7606/j.issn.1000-4025.2019.05.0791. | |
[18] | HAYS D B, DO J H, MASON R E, et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar[J]. Plant Sci, 2007, 172(6):1113-1123.DOI: 10.1016/j.plantsci.2007.03.004. |
[19] | ZHAO M G, LIU W J, XIA X Z, et al. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene[J]. Physiol Plant, 2014, 152(1):115-129.DOI: 10.1111/ppl.12161. |
[20] | OZGA J A, KAUR H, SAVADA R P, et al. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species[J]. J Exp Bot, 2017, 68(8):1885-1894.DOI: 10.1093/jxb/erw464. |
[21] | 赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10):1-10. |
ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress[J]. Biotechnol Bull, 2016, 32(10):1-10.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.10.001. | |
[22] | 张宏, 陈锐, 黄林周, 等. 陕229干旱复水诱导基因表达及小麦乙烯受体(TaERS)基因特征分析[J]. 农业生物技术学报, 2012, 20(5):497-505. |
ZHANG H, CHEN R, HUANG L Z, et al. Genes expression in response to re-watering after drought stress in shaan 229 and characterization of ethylene receptor genes(TaERS) in wheat[J]. J Agric Biotechnol, 2012, 20(5):497-505.DOI: 10.3969/j.issn.1674-7968.2012.05.005. | |
[23] | 赵晖, 耿兴敏, 王露露, 等. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3):561-570. |
ZHAO H, GENG X M, WANG L L, et al. Research on the effect of ethylene in heat resistance mechanism of Rhododendron[J]. Acta Horticulturae Sinica, 2022, 49(3):561-570. DOI:10.16420/j.issn.0513-353x.2021-0013. | |
[24] | 杨虎清, 杜荣茂, 向庆宁, 等. 1-MCP对植物乙烯反应的抑制和应用[J]. 植物生理学通讯, 2002, 38(6):611-614. |
YANG H Q, DU R M, XIANG Q N, et al. Mechanism of 1-MCP in inhibiting ethylene response in plants and its application[J]. Plant Physiol Commun, 2002, 38(6):611-614.DOI: 10.13592/j.cnki.ppj.2002.06.036. | |
[25] | 张正科. 1-MCP与内源乙烯相互作用对番茄和鳄梨成熟生理的影响研究[D]. 杨凌: 西北农林科技大学, 2011. |
ZHANG Z K. Effect of interaction between 1-MCP and internal ethylene on ripening physiology of tomato and avocado fruit[D]. Yangling: Northwest A & F University, 2011. | |
[26] | 方位宽, 何姗珊, 王冠玉, 等. 干旱胁迫下喷施甲基环丙烯对苗期甘蔗SoMAPK4基因表达的影响[J]. 西南农业学报, 2017, 30(1):40-44. |
FANG W K, HE S S, WANG G Y, et al. Effect of 1-MCP on so SoMAPK4 gene expression under drought stress in sugarcane seedling stage[J]. Southwest China J Agric Sci, 2017, 30(1):40-44.DOI: 10.16213/j.cnki.scjas.2017.1.008. | |
[27] | HUSSAIN S, ZHU C Q, HUANG J, et al. Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming[J]. Plant Growth Regul, 2020, 92(2):219-231.DOI: 10.1007/s10725-020-00632-1. |
[28] | 邓娇燕, 黄斌, 吕立军, 等. 叶面喷施1-MCP缓解辣椒幼苗高温伤害的机理研究[J]. 园艺学报, 2019, 46(5):891-900. |
DENG J Y, HUANG B, LÜ L J, et al. Mechanisms of foliar-spraying 1-MCP to alleviate injury of pepper seedlings caused by high temperature[J]. Acta Hortic Sin, 2019, 46(5):891-900.DOI: 10.16420/j.issn.0513-353x.2018-0858. | |
[29] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
LI H S. Principles and techniques of plant physio-logical biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[30] | FANG L C, TONG J, DONG Y F, et al. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis[J]. PLoS One, 2017, 12(10):e0186376.DOI: 10.1371/journal.pone.0186376. |
[31] | 刘剑锋, 程云清, 陈智文. 乙烯促进与抑制剂对旱后复水玉米生长、保护酶活性及膜脂过氧化的影响[J]. 中国农学通报, 2008, 24(8):225-229. |
LIU J F, CHENG Y Q, CHEN Z W. Effects of ethylene inhibitor and promoter on growth,protective enzyme activities and lipid peroxidation of maize under water stress and rewatering conditions[J]. Chin Agric Sci Bull, 2008, 24(8):225-229. | |
[32] | JEGADEESAN S, BEERY A, ALTAHAN L, et al. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions[J]. Plant Reprod, 2018, 31(4):367-383.DOI: 10.1007/s00497-018-0339-0. |
[33] | KAWAKAMI E M, OOSTERHUIS D M, SNIDER J L. Physiological effects of 1-methylcyclopropene on well-watered and water-stressed cotton plants[J]. J Plant Growth Regul, 2010, 29(3):280-288.DOI: 10.1007/s00344-009-9134-3. |
[34] | 解静, 罗自生. 1-甲基环丙烯对番茄冷害的影响[J]. 园艺学报, 2011, 38(2):281-287. |
XIE J, LUO Z S. Effect of 1-methylcyclopropene on chilling injury of tomato fruit[J]. Acta Hortic Sin, 2011, 38(2):281-287.DOI: 10.16420/j.issn.0513-353x.2011.02.012. | |
[35] | WANG L, CAO H L, CHEN C S, et al. Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. J Proteom, 2016, 130:160-169.DOI: 10.1016/j.jprot.2015.08.019. |
[36] | POLÍVKA T, FRANK H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Acc Chem Res, 2010, 43(8):1125-1134.DOI: 10.1021/ar100030m. |
[37] | 黄小晶, 许泽华, 牛锐敏, 等. 叶片黄化对‘赤霞珠’葡萄光合及叶绿素荧光特性的影响[J]. 经济林研究, 2020, 38(3):190-199. |
HUANG X J, XU Z H, NIU R M, et al. Effect of etiolation on photosynthesis and chlorophyll fluorescence of ‘Cabernet Sauvignon’ grapes[J]. Non Wood For Res, 2020, 38(3):190-199.DOI: 10.14067/j.cnki.1003-8981.2020.03.022. | |
[38] | 何铁光, 董文斌, 王爱勤, 等. 高温胁迫下辣椒生理生化响应机理初步探讨[J]. 西南农业学报, 2013, 26(2):541-544. |
HE T G, DONG W B, WANG A Q, et al. Studies on physiological and biochemical response mechanism to high temperature stress in pepper seedlings with different heat tolerance[J]. Southwest China J Agric Sci, 2013, 26(2):541-544.DOI: 10.16213/j.cnki.scjas.2013.02.076. | |
[39] | 常仁杰. 高温胁迫下两种叶色四季秋海棠的生理生化响应研究[D]. 杭州: 浙江农林大学, 2013. |
CHANG R J. Study on physiological and biochemical responses of two kinds of Begonia semperflorens in leaf color under high temperature stress[D]. Hangzhou: Zhejiang A & F University, 2013. | |
[40] | 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4):444-448. |
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chin Bull Bot, 1999, 34(4):444-448.DOI: 10.3969/j.issn.1674-3466.1999.04.021. | |
[41] | KRÜGER G H J, TSIMILLI-MICHAEL M, STRASSER R J. Light stress provokes plastic and elastic modifications in structure and function of photosystem Ⅱ in camellia leaves[J]. Physiol Plant, 1997, 101(2):265-277.DOI: 10.1111/j.1399-3054.1997.tb00996.x. |
[42] | BERRY J, BJORKMAN O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 31:491-543. |
[43] | 孙永江, 杜远鹏, 翟衡. 高温胁迫下不同光强对‘赤霞珠’葡萄PSⅡ活性及恢复的影响[J]. 植物生理学报, 2014, 50(8):1209-1215. |
SUN Y J, DU Y P, ZHAI H. Effects of different light intensity on PSⅡ activity and recovery of Vitis vinifera cv.Cabernet Sauvignon leaves under high temperature stress[J]. Plant Physiol J, 2014, 50(8):1209-1215.DOI: 10.13592/j.cnki.ppj.2014.0133. | |
[44] | 刘超, 袁野, 盖树鹏, 等. 强光高温交叉胁迫对牡丹叶片PSⅡ和PSⅠ之间能量传递的影响[J]. 园艺学报, 2014, 41(2):311-318. |
LIU C, YUAN Y, GAI S P, et al. Effects of strong light coupled with high temperature treatment on energy transfer between PSⅡ and PSⅠ in tree peony leaves[J]. Acta Hortic Sin, 2014, 41(2):311-318.DOI: 10.16420/j.issn.0513-353x.2014.02.006. | |
[45] | 姚正菊, 叶济宇, 米华玲. 高温胁迫对烟草叶绿体NADPH脱氢酶复合体活性的促进[J]. 植物生理与分子生物学学报, 2003, 29(5):395-400. |
YAO Z J, YE J Y, MI H L. Stimulation of activity of chloroplast NADPH dehydrogenase complex by elevated temperature in tobacco[J]. J Plant Physiol Mol Biol, 2003, 29(5):395-400.DOI: 10.3321/j.issn:1671-3877.2003.05.006. | |
[46] | 薛瑞丽. 高温胁迫对小麦叶绿体D1蛋白周转的影响及黄体酮的调节作用[D]. 郑州: 河南农业大学, 2017. |
XUE R L. The turnover of D1 protein and the regulation effects of exogenous progesterone in wheat(Triticum aestivum L.) leaves under high temperature stress[D]. Zhengzhou: Henan Agricultural University, 2017. | |
[47] | 尹赜鹏, 鹿嘉智, 高振华, 等. 番茄幼苗叶片光合作用、PSⅡ电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(5):1-11. |
YIN Z P, LU J Z, GAO Z H, et al. Effects of photosynthetic,PSⅡ electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings[J]. North Hortic, 2019(5):1-11.DOI: 10.11937/bfyy.20183026. |
[1] | 李慧, 郝德君, 徐天, 代鲁鲁. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224. |
[2] | 石文广, 李靖, 张玉红, 雷静品, 罗志斌. 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 61-70. |
[3] | 李晓锐, 周樊, 冯刚, 郑小琴, 李永荣, 彭方仁. 砧木对薄壳山核桃嫁接苗光合及荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 84-90. |
[4] | 段娜, 汪季, 郝玉光, 高君亮, 陈晓娜, 多普增. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 32-38. |
[5] | 张银荣, 兰再平, 秘洪雷, 彭晶晶, 马鑫, 秦杏宇. 滴灌施肥条件下氮磷钾对‘龙脑香樟’幼苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 39-45. |
[6] | 徐清, 闭鸿雁, 崔光帅, 郭晓荣, 周睿, 苏文华, 欧阳志勤, 张光飞. 珍稀濒危植物毛果木莲幼苗光合特性及对遮阴处理的响应[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 46-52. |
[7] | 华建峰,韩路弯,王芝权,施钦,殷云龙. 完全淹水解除后‘中山杉407’生长及光合特性的恢复[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 191-196. |
[8] | 黄良帅,韩海荣,牛树奎,程小琴,周文嵩. 华北落叶松冠层光合生理特性的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 193-197. |
[9] | 匡鹤凌,汪贵斌,曹福亮. 氮素对喜树光合作用、营养元素和 喜树碱含量的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 15-20. |
[10] | 王曙光,林树燕,丁雨龙. 云南箭竹叶片对长期高温环境的适应性生理变化[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 87-90. |
[11] | 李桂娥,吴小芹. 水拉恩氏菌JZ-GX1及其诱变菌株对马尾松苗的促生效应[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 83-87. |
[12] | 孙秋玲,张春英,戴思兰. 氮源对杜鹃花菌根真菌氮吸收及硝酸还原酶活性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(01): 175-178. |
[13] | 刘春风,张往祥,孙垒,阮俊阳,王涛,曹福亮. 高温对观赏海棠生长和光合作用的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(04): 17-22. |
[14] | 梁军生,张玉荣,周小玲. 杨小舟蛾取食对杨树叶片光合生理特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(01): 84-88. |
[15] | 吴统贵,曾广泉,肖杨根,姚婕,虞木奎*,成向荣,王臣. 湿地松林下6树种光合日变化及其与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 135-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||