
温州市森林生态系统碳储量研究
Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China
【目的】对浙江省温州市森林生态系统碳储量进行研究,摸清区域森林碳储量现状,为区域碳汇功能的评价提供基础数据。【方法】基于温州市2018年森林资源年度监测的马尾松林、其他松林、杉木林、柳杉林、柏木林、硬阔林、针叶混交林、阔叶混交林、针阔混交林、毛竹林等10种主要类型的森林资源监测数据,以及30个调查样地的实测数据,用平均生物量转换因子法计算不同森林类型的碳储量和碳密度,同时采用Pearson相关分析法对不同森林生态系统各组分之间有机碳储量进行相关性分析。【结果】2018年,温州市森林生态系统碳储量为81.70 Tg, 其中乔木层18.46 Tg,灌草层1.55 Tg,凋落物层1.02 Tg和土壤层60.67 Tg,分别占生态系统碳储量的22.60%、1.89%、1.25%和74.26%。温州市的森林生态系统碳密度为123.81 t/hm2,其中乔木层27.98 t/hm2,灌草层2.34 t/hm2,凋落物层1.54 t/hm2和土壤层91.95 t/hm2,土壤有机碳库为植被有机碳库的2.88倍。乔木层和土壤层有机碳储量是温州市森林生态系统的主要碳库,占全部森林生态系统有机碳储量的96.86%。乔木层碳密度最大的是柏木林,达到46.06 t/hm2;阔叶混交林碳密度最低,为20.50 t/hm2;土壤层中,碳密度最大的为柳杉林,达到136.97 t/hm2;最小的为其他松木林,为49.38 t/hm2。不同林分生态系统碳密度有一定差异,其中柳杉林碳密度最大(185.42 t/hm2),最低的是马尾松林(83.34 t/hm2)。各组分碳储量相关性分析表明,乔木层与凋落物层碳储量呈显著正相关关系(P<0.05),土壤层碳储量与森林生态系统碳储量呈极显著相关关系 (P<0.01),说明土壤层对整个生态系统碳储量的贡献最大。其他各组分之间相关关系均达不到显著水平。【结论】温州市森林生态系统碳密度略高于浙江省平均水平,但是低于全国平均水平,因此可以通过合理的森林经营管理措施提高森林碳密度。
【Objective】The carbon storage of a forest ecosystem in Wenzhou City, Zhejiang Province was studied to understand the current situation of forest ecosystem carbon storage and provide data for the evaluation of the regional carbon sink function.【Method】Based on monitoring data from the 10 main forest resource types in Pinus massoniana forest, other pine forest, Cunninghamia lanceolata forest, Cryptomeria japonica var. sinensis forest, Cupressus funebris forest, hardwood forest, mixed coniferous forest, mixed broadleaved forest, mixed coniferous and broadleaved forest, and Phyllostachys edulis forest in Wenzhou City in 2018, as well as the data measured from 30 survey sample plots, the carbon storage and carbon density were calculated for different forest types by using the average biomass conversion factor method. The Pearson correlation analysis method was used to analyze the correlation of organic carbon storage among the different forest ecosystem components.【Result】The carbon storage of the forest ecosystem in Wenzhou City was 81.70 Tg, including 18.46 Tg in the tree layer, 1.55 Tg in the shrub and grass layer, 1.02 Tg in the litter layer, and 60.67 Tg in the soil layer, accounting for 22.60%, 1.89%, 1.25%, and 74.26% of the carbon storage of the ecosystem, respectively. The carbon density of the forest ecosystem in Wenzhou was 123.81 t/hm2, including 27.98 t/hm2 in the tree layer, 2.34 t/hm2 in the shrub and grass layer, 1.54 t/hm2 in the litter layer, and 91.95 t/hm2 in the soil layer. The soil organic carbon pool was 2.88 times that of the vegetation organic carbon pool. The organic carbon storage of the tree layer and the soil layer represented the main carbon pool of the forest ecosystem, accounting for 96.86% of the total organic carbon storage. In the arbor layer, the highest carbon density was recorded in the cypress forest (46.06 t/hm2) and the lowest carbon density was in the broadleaved mixed forest (20.50 t/hm2). In the soil layer, the highest carbon density was the Cryptomeria japonica var. sinensis forest (136.97 t/hm2) and the lowest was the other pine forests (49.38 t/hm2). There were some differences in the carbon density of the stand ecosystem for different species. The Cryptomeria japonica var. sinensis forest had the highest carbon density (185.42 t/hm2) and the Pinus massoniana forest had the lowest carbon density (83.34 t/hm2). There was a significant correlation between the carbon storage of the tree layer and the litter layer (P < 0.05). There was a highly significant correlation between the carbon storage of the soil layer and the carbon storage of the forest ecosystem (P < 0.01). This indicated that the soil layer contributed the most to the carbon storage of the entire ecosystem. The correlation between other components did not reach a significant level.【Conclusion】The carbon density of the forest ecosystem in Wenzhou was slightly higher than the average level in Zhejiang Province, but was lower than the average level of China. Therefore, improving the forest carbon density through sustainable forest management will be the focus of carbon sequestration forestry in the future in Wenzhou.
carbon storage / carbon density / forest ecosystem / Wenzhou City / Zhejiang Province
[1] |
FAO. Global forest resources assessment 2015: how have the world's forests changing?[M]. Rome:FAO, 2015.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740.
|
[7] |
周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5):518-522.
|
[8] |
|
[9] |
刘恩. 南亚热带典型人工林碳储量研究[D]. 北京: 中国林业科学研究院, 2012.
|
[10] |
曾伟生. 云南省森林生物量与生产力研究[J]. 中南林业调查规划, 2005, 24(4):1-3,13.
|
[11] |
何敏增. 岩溶区苏木人工林生长特性和生态化学计量特征[D]. 南宁: 广西大学, 2019.
|
[12] |
王效科, 冯宗炜, 欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究[J]. 应用生态学报, 2001(1):13-16.
|
[13] |
李克让, 王绍强, 曹明奎. 中国植被和土壤碳贮量[J]. 中国科学(地球科学), 2003, 33(1):72-80.
|
[14] |
李银, 陈国科, 林敦梅, 等. 浙江省森林生态系统碳储量及其分布特征[J]. 植物生态学报, 2016, 40(4):354-363.
|
[15] |
戴巍. 浙江省森林生态系统碳密度及储量空间变异特征研究[D]. 杭州: 浙江农林大学, 2018.
|
[16] |
张煜星, 王雪军, 蒲莹, 等. 1949-2018年中国森林资源碳储量变化研究[J]. 北京林业大学学报, 2021, 43(5):1-14.
|
[17] |
戎建涛, 郜爱玲, 刘晓双, 等. 浙南主要乔木树种碳含量研究[J]. 西北林学院学报, 2018, 33(5):258-262.
|
[18] |
粟娟, 周璋, 李意德. 广州市森林生态系统碳储量格局分析[J]. 中国城市林业, 2016, 14(4):15-21.
|
[19] |
谭一凡, 彭友贵, 史正军, 等. 深圳市森林碳储量及其动态变化[J]. 西南林业大学学报, 2013, 33(4):17-24.
|
[20] |
陈光平. 台风引发温州市斜坡地质灾害的发育分布及影响因素研究[D]. 成都: 成都理工大学, 2011.
|
[21] |
丁炳扬, 金川. 温州植物志[M]. 北京: 中国林业出版社, 2017
|
[22] |
程彩芳, 李正才, 周君刚, 等. 树种组成对北亚热带11年生常绿阔叶人工林碳储量的影响[J]. 西北植物学报, 2015, 35(5):1037-1043.
|
[23] |
彭少麟, 刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 2002, 22(9):1534-1544.
|
[24] |
刘光崧, 蒋能慧, 张连第, 等. 土壤理化分析与剖面描述.[M]. 北京: 中国标准出版社, 1996.
|
[25] |
许慧,
|
[26] |
陶吉兴, 谢秉楼, 季碧勇, 等. 浙江省森林生态系统五大碳库碳汇功能及结构特征[J]. 杭州师范大学学报(自然科学版), 2021, 20(4):398-405.
|
[27] |
王新闯, 齐光, 于大炮, 等. 吉林省森林生态系统的碳储量、碳密度及其分布[J]. 应用生态学报, 2011, 22(8):2013-2020.
|
[28] |
崔高阳, 陈云明, 曹扬, 等. 陕西省森林生态系统碳储量分布格局分析[J]. 植物生态学报, 2015, 39(4):333-342.
|
[29] |
吴国训, 唐学君, 阮宏华, 等. 基于森林资源清查的江西省森林碳储量及固碳潜力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 105-110.
|
温州市自然资源和规划局潘李志,浙江省亚热带作物研究所陈庆辉、缪三弟、刘星等同志参加外业调查工作。
/
〈 |
|
〉 |