[1] |
濮毅涵, 徐丹丹, 王浩斌. 基于数码相片的林冠郁闭度提取方法研究[J]. 林业资源管理, 2020(6): 153-160.
|
|
PU Y H, XU D D, WANG H B. An approach on estimating canopy closure via digital images[J]. For Resour Manag, 2020(6): 153-160. DOI: 10.13466/j.cnki.lyzygl.2020.06.024.
doi: 10.13466/j.cnki.lyzygl.2020.06.024
|
[2] |
CHEN G S, LOU T T, JING W P, et al. Sparkpr: an efficient parallel inversion of forest canopy closure[J]. IEEE Access, 2019, 7:135949-135956. DOI: 10.1109/ACCESS.2019.2941966.
doi: 10.1109/ACCESS.2019.2941966
|
[3] |
FERHAT K, OSMAN T. Onset of canopy closure for black pine, Turkish red pine and Scots pine forests[J]. J For Sci, 2018, 64(5): 224-229. DOI: 10.17221/153/2017-JFS.
doi: 10.17221/153/2017-JFS
|
[4] |
FIALA A C S, GARMAN S L, GRAY A N. Comparison of five canopy cover estimation techniques in the western Oregon Cascades[J]. For Ecol Manag, 2006, 232(1/2/3): 188-197. DOI: 10.1016/j.foreco.2006.05.069.
doi: 10.1016/j.foreco.2006.05.069
|
[5] |
OKIN G S, CLARKE K D, LEWIS M M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data[J]. Remote Sens Environ, 2013, 130: 266-279. DOI: 10.1016/j.rse.2012.11.021.
doi: 10.1016/j.rse.2012.11.021
|
[6] |
KORHONEN L, KORHONEN K T, RAUTIAINEN M, et al. Estimation of forest canopy cover: a comparison of field measurement techniques[J]. Silva Fenn, 2006, 40(4): 577-588. DOI: 10.14214/sf.315.
doi: 10.14214/sf.315
|
[7] |
PALETTO A, TOSI V. Forest canopy cover and canopy closure: comparison of assessment techniques[J]. Eur J Forest Res, 2009, 128(3): 265-272. DOI: 10.1007/s10342-009-0262-x.
doi: 10.1007/s10342-009-0262-x
|
[8] |
O’BRIEN R A. Comparison of overstory canopy cover estimates on forest survey plots[J]. Usda for Serv Int Res Pap, 1989, 1989(417): 1-5.
|
[9] |
LI J R, MAO X G. Comparison of canopy closure estimation of plantations using parametric, semi-parametric, and non-parametric models based on GF-1 remote sensing images[J]. Forests, 2020, 11(5): 597. DOI: 10.3390/f11050597.
doi: 10.3390/f11050597
|
[10] |
AHMED O S, FRANKLIN S E, WULDER M A, et al. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm[J]. ISPRS J Photogram Remote Sens, 2015, 101: 89-101. DOI: 10.1016/j.isprsjprs.2014.11.007.
doi: 10.1016/j.isprsjprs.2014.11.007
|
[11] |
MARVIN D C, ASNER G P, SCHNITZER S A. Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy[J]. Remote Sens Environ, 2016, 176: 98-106. DOI: 10.1016/j.rse.2015.12.028.
doi: 10.1016/j.rse.2015.12.028
|
[12] |
GUNLU A, BASKENT E Z. Estimating crown closure of forest stands using landsat tm data: a case study from Turkey[J]. Environ Eng Manag J, 2015, 14(1): 183-193. DOI: 10.30638/eemj.2015.019.
doi: 10.30638/eemj.2015.019
|
[13] |
TONG S Q, ZHANG J Q, HA S, et al. Dynamics of fractional vegetation coverage and its relationship with climate and human activities in Inner Mongolia, China[J]. Remote Sens, 2016, 8(9): 776. DOI: 10.3390/rs8090776.
doi: 10.3390/rs8090776
|
[14] |
XIAO Q, TAO J P, XIAO Y, et al. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data[J]. Environ Monit Assess, 2017, 189(10): 493. DOI: 10.1007/s10661-017-6210-1.
doi: 10.1007/s10661-017-6210-1
pmid: 28884302
|
[15] |
TANG L, HE M Z, LI X R. Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology[J]. Remote Sens, 2020, 12(11): 1742. DOI: 10.3390/rs12111742.
doi: 10.3390/rs12111742
|
[16] |
FENG L L, JIA Z Q, LI Q X, et al. Spatiotemporal change of sparse vegetation coverage in northern China[J]. J Indian Soc Remote Sens, 2019, 47(2): 359-366. DOI: 10.1007/s12524-018-0912-x.
doi: 10.1007/s12524-018-0912-x
|
[17] |
JACQUEMOUD S. Inversion of the PROSPECT+SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study[J]. Remote Sens Environ, 1993, 44(2/3): 281-292. DOI: 10.1016/0034-4257(93)90022-P.
doi: 10.1016/0034-4257(93)90022-P
|
[18] |
谷成燕, 杜华强, 周国模, 等. 基于PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J]. 应用生态学报, 2013, 24(8): 2248-2256.
|
|
GU C Y, DU H Q, ZHOU G M, et al. Retrieval of leaf area index of Moso bamboo forest with Landsat Thematic Mapper image based on PROSAIL canopy radiative transfer model[J]. Chin J Appl Ecol, 2013, 24(8): 2248-2256. DOI: 10.13287/j.1001-9332.2013.0383.
doi: 10.13287/j.1001-9332.2013.0383
|
[19] |
GU C Y, DU H Q, MAO F J, et al. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance[J]. Int J Remote Sens, 2016, 37(21/22): 5270-5286. DOI: 10.1080/01431161.2016.1239287.
doi: 10.1080/01431161.2016.1239287
|
[20] |
LI X, STRAHLER A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Trans Geosci Remote Sens, 1992, 30(2): 276-292. DOI: 10.1109/36.134078.
doi: 10.1109/36.134078
|
[21] |
ZENG Y, SCHAEPMAN M E, WU B F, et al. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China[J]. Remote Sens Environ, 2008, 112(12): 4261-4271. DOI: 10.1016/j.rse.2008.07.007.
doi: 10.1016/j.rse.2008.07.007
|
[22] |
CHEN J M, CIHLAR J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index[J]. Appl Opt, 1995, 34(27): 6211-6222. DOI: 10.1364/AO.34.006211.
doi: 10.1364/AO.34.006211
|
[23] |
CHEN J M, LEBLANC S G. A four-scale bidirectional reflectance model based on canopy architecture[J]. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1316-1337. DOI: 10.1109/36.628798.
doi: 10.1109/36.628798
|
[24] |
VERSTRAETE M M, PINTY B, MYNENI R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing[J]. Remote Sens Environ, 1996, 58(2): 201-214. DOI: 10.1016/S0034-4257(96)00069-7.
doi: 10.1016/S0034-4257(96)00069-7
|
[25] |
CHEN J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Trans Geosci Remote Sens, 1996, 34(6):1353-1368. DOI: 10.1109/36.544559.
doi: 10.1109/36.544559
|
[26] |
孙振峰, 张晓丽, 李霓雯. 机载与星载高分遥感影像单木树冠分割方法和适宜性对比[J]. 北京林业大学学报, 2019, 41(11): 66-75.
|
|
SUN Z F, ZHANG X L, LI N W. Comparison of individual tree crown extraction method and suitability of airborne and spaceborne high-resolution remote sensing images[J]. J Beijing For Univ, 2019, 41(11): 66-75. DOI: 10.13332/j.1000-1522.20180446.
doi: 10.13332/j.1000-1522.20180446
|
[27] |
PU R L, GONG P, YU Q. Comparative analysis of EO-1 Ali and Hyperion, and Landsat ETM+ Data for mapping forest crown closure and leaf area index[J]. Sensors (Basel), 2008, 8(6): 3744-3766. DOI: 10.3390/s8063744.
doi: 10.3390/s8063744
|
[28] |
PU R L, GONG P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sens Environ, 2004, 91(2): 212-224. DOI: 10.1016/j.rse.2004.03.006.
doi: 10.1016/j.rse.2004.03.006
|
[29] |
刘婧怡, 汤旭光, 常守志, 等. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014, 29(1): 18-25.
|
|
LIU J Y, TANG X G, CHANG S Z, et al. Application of remote sensing to inverse the forest leaf area index and regional estimation[J]. Remote Sens Technol Appl, 2014, 29(1): 18-25. DOI: 10.11873/j.issn.1004-0323.2014.1.0018.
doi: 10.11873/j.issn.1004-0323.2014.1.0018
|
[30] |
ZHAO J, LI J, LIU Q H, et al. Estimating fractional vegetation cover from leaf area index and clumping index based on the gap probability theory[J]. Int J Appl Earth Obs Geoinformation, 2020, 90: 102-112. DOI: 10.1016/j.jag.2020.102112.
doi: 10.1016/j.jag.2020.102112
|
[31] |
XIAO Z Q, WANG T T, LIANG S L, et al. Estimating the fractional vegetation cover from GLASS leaf area index product[J]. Remote Sens, 2016, 8(4): 337. DOI: 10.3390/rs8040337.
doi: 10.3390/rs8040337
|