基于4-Scale模型的人工林郁闭度遥感估测

何萍, 于颖, 范文义, 杨曦光

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 23-30.

PDF(26232 KB)
PDF(26232 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 23-30. DOI: 10.12302/j.issn.1000-2006.202108045
专题报道Ⅰ:智慧林业之森林参数遥感估测

基于4-Scale模型的人工林郁闭度遥感估测

作者信息 +

Remote sensing estimation of plantation canopy closure based on 4-Scale model

Author information +
文章历史 +

摘要

【目的】 为了寻找受区域影响较小、精度较高且鲁棒性较好的郁闭度遥感估算模型,采用4-Scale几何光学模型估算人工林树冠孔隙率及郁闭度。【方法】 选择内蒙古旺业甸林场和广西高峰林场为实验区,首先对4-Scale模型进行参数敏感性分析,模拟林分在不同敏感性参数下的树冠孔隙率Pvg_c(树冠为刚体时的冠间孔隙率)和Pvg(考虑树冠内部孔隙的孔隙率),建立Pvg_cPvg与敏感性参数的一一对应关系数据库。其次,根据数据库建立Pvg_cPvg与敏感性参数的统计关系模型。然后根据获得的敏感性参数估算Pvg_cPvg,进而估算林分郁闭度。最后,分别采用样线法与鱼眼相机测定法测量的郁闭度检验基于Pvg_cPvg估算的林分郁闭度。【结果】 基于 Pvg_cPvg估算的人工林郁闭度精度分别为88.17%和92.8%。Pvg_c与敏感性参数林木株数和冠半径相关性更高,模型的R2和均方根误差(RMSE)分别为0.814和0.043。Pvg与敏感性参数LAI的相关性更高,模型的R2和RMSE分别为0.795和0.040。【结论】 Pvg_cPvg均可以用来估算人工林郁闭度,虽然Pvg估算郁闭度的精度更高,但是其估算的郁闭度不是林业上定义的郁闭度,林业上定义的郁闭度指树冠为刚体时冠层垂直投影面积比。因此,采用Pvg_c估算人工林郁闭度更加准确。应在获得树木株数与树冠半径的基础上,采用Pvg_c估算人工林郁闭度。

Abstract

【Objective】 Canopy closure is important for forest management planning. To find methods and models for estimating canopy closure that are less affected by the region, with higher accuracy and better robustness, the study adopted a 4-Scale geometric-optical model to estimate the canopy closure of plantations. 【Method】 Wangyedian Forest Farm in Inner Mongolia and Gaofeng Forest Farm in Guangxi Autonomons Region were selected as the study areas. First, a parameter sensitivity analysis of the 4-Scale model was performed, and the canopy gap fraction Pvg_c (the gap fraction when the canopy was a rigid body) and Pvg (the gap fraction of the gaps in a crown were considered) under different sensitivity parameters were simulated. Then, a one-to-one correspondence database of Pvg_c, Pvg and the sensitivity parameters was established. Second, statistical relationship models between Pvg_c and Pvg and the sensitivity parameters were established based on the database. Then, Pvg_c and Pvg were estimated based on the sensitivity parameters, and the stand canopy closure was estimated. Finally, the canopy closure measured by the transects and the fish eye camera measurement method were used to test the canopy closure based on Pvg_c and Pvg respectively. 【Result】 The accuracy of plantation canopy closure estimated by Pvg_c and Pvg was 88.17% and 92.8%, respectively. Pvg_c had a higher correlation with the number of trees and crown radius. The R2 and RMSE values of the model are 0.814 and 0.043, respectively. The correlation between Pvg and LAI was high, and the R2 and RMSE of the model were 0.795 and 0.040, respectively. 【Conclusion】 Both Pvg_c and Pvg can be used to estimate canopy closure in plantations. Although Pvg has higher accuracy in estimating canopy closure, the estimated canopy closure is not the canopy closure defined in forestry. Canopy closure is defined as the ratio of the vertical projection area of the canopy when it is a rigid body. Therefore, the use of Pvg_c to estimate the canopy closure of plantations was more accurate. To obtain the number of trees and radius of the crown, Pvg_c was used to estimate the canopy closure of the plantation.

关键词

4-Scale模型 / 郁闭度 / 鱼眼相机 / 样线法 / 叶面积指数

Key words

4-Scale model / canopy closure / fisheye camera / transects / leaf area index (LAI)

引用本文

导出引用
何萍, 于颖, 范文义, . 基于4-Scale模型的人工林郁闭度遥感估测[J]. 南京林业大学学报(自然科学版). 2023, 47(1): 23-30 https://doi.org/10.12302/j.issn.1000-2006.202108045
HE Ping, YU Ying, FAN Wenyi, et al. Remote sensing estimation of plantation canopy closure based on 4-Scale model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 23-30 https://doi.org/10.12302/j.issn.1000-2006.202108045
中图分类号: S771.8   

参考文献

[1]
濮毅涵, 徐丹丹, 王浩斌. 基于数码相片的林冠郁闭度提取方法研究[J]. 林业资源管理, 2020(6): 153-160.
PU Y H, XU D D, WANG H B. An approach on estimating canopy closure via digital images[J]. For Resour Manag, 2020(6): 153-160. DOI: 10.13466/j.cnki.lyzygl.2020.06.024.
[2]
CHEN G S, LOU T T, JING W P, et al. Sparkpr: an efficient parallel inversion of forest canopy closure[J]. IEEE Access, 2019, 7:135949-135956. DOI: 10.1109/ACCESS.2019.2941966.
Forest canopy closure is an important parameter to study forest ecosystem and understand the status of forest resources. With the development of remote sensing big data, the amount of remote sensing data has increased sharply, which makes the existing serial processing of remote sensing data face severe challenges.In order to satisfy the requirements of efficient remote sensing data processing, Spark open source framework is applied to the parallel processing of remote sensing images, and a parallel forest canopy density inversion algorithm based on Spark is proposed. We call this algorithm Sparkpr. Based on the GF-1 remote sensing images and 80 actual measured sample points obtained by Maoershan Laoshan Experimental Forest Farm of Northeast Forestry University in 2016. In this paper, a multi-element linear regression algorithm is used to carry out parallel inversion of the forest canopy density in the Laoshan Experimental Forest Farm of the Maoershan. The comparison experiment between single machine mode and spark standalone and spark on yarn mode is carried out. The experimental results show that the serial and parallel inversion results of forest depression density based on the model are consistent, and the parallel inversion results are accurate and credible. With the increase of computing nodes, the efficiency of parallel inversion is also improving.
[3]
FERHAT K, OSMAN T. Onset of canopy closure for black pine, Turkish red pine and Scots pine forests[J]. J For Sci, 2018, 64(5): 224-229. DOI: 10.17221/153/2017-JFS.
[4]
FIALA A C S, GARMAN S L, GRAY A N. Comparison of five canopy cover estimation techniques in the western Oregon Cascades[J]. For Ecol Manag, 2006, 232(1/2/3): 188-197. DOI: 10.1016/j.foreco.2006.05.069.
[5]
OKIN G S, CLARKE K D, LEWIS M M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data[J]. Remote Sens Environ, 2013, 130: 266-279. DOI: 10.1016/j.rse.2012.11.021.
[6]
KORHONEN L, KORHONEN K T, RAUTIAINEN M, et al. Estimation of forest canopy cover: a comparison of field measurement techniques[J]. Silva Fenn, 2006, 40(4): 577-588. DOI: 10.14214/sf.315.
[7]
PALETTO A, TOSI V. Forest canopy cover and canopy closure: comparison of assessment techniques[J]. Eur J Forest Res, 2009, 128(3): 265-272. DOI: 10.1007/s10342-009-0262-x.
[8]
O’BRIEN R A. Comparison of overstory canopy cover estimates on forest survey plots[J]. Usda for Serv Int Res Pap, 1989, 1989(417): 1-5.
[9]
LI J R, MAO X G. Comparison of canopy closure estimation of plantations using parametric, semi-parametric, and non-parametric models based on GF-1 remote sensing images[J]. Forests, 2020, 11(5): 597. DOI: 10.3390/f11050597.
[10]
AHMED O S, FRANKLIN S E, WULDER M A, et al. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm[J]. ISPRS J Photogram Remote Sens, 2015, 101: 89-101. DOI: 10.1016/j.isprsjprs.2014.11.007.
[11]
MARVIN D C, ASNER G P, SCHNITZER S A. Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy[J]. Remote Sens Environ, 2016, 176: 98-106. DOI: 10.1016/j.rse.2015.12.028.
[12]
GUNLU A, BASKENT E Z. Estimating crown closure of forest stands using landsat tm data: a case study from Turkey[J]. Environ Eng Manag J, 2015, 14(1): 183-193. DOI: 10.30638/eemj.2015.019.
[13]
TONG S Q, ZHANG J Q, HA S, et al. Dynamics of fractional vegetation coverage and its relationship with climate and human activities in Inner Mongolia, China[J]. Remote Sens, 2016, 8(9): 776. DOI: 10.3390/rs8090776.
[14]
XIAO Q, TAO J P, XIAO Y, et al. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data[J]. Environ Monit Assess, 2017, 189(10): 493. DOI: 10.1007/s10661-017-6210-1.
In this study, we applied asymmetric Gaussian function fitting to reconstruct a high-quality MODIS normalized difference vegetation index (NDVI) time series dataset. Following this, we retrieved vegetation cover data from the Chongqing area between 2001 and 2010 using this dataset, applying a dimidiate pixel method. We then used several analytical indices to analyze spatial and temporal changes and trends related to these changes. We determined that a reconstruction of the MODIS NDVI dataset using asymmetric Gaussian fitting in conjunction with a data quality weight coefficient improved data quality and created a foundation for accurate estimations of vegetation cover. We also determined that vegetation cover in the Chongqing area decreased gradually from east to west. During the 10-year study period, vegetation cover in the Chongqing area generally increased, changing from low to high coverage. This increase in vegetation cover was mainly the result of ecological protection policies and improving climate conditions. We also found that changes in vegetation cover were mainly the result of urban construction and afforestation initiatives, but vegetation cover improved overall.
[15]
TANG L, HE M Z, LI X R. Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology[J]. Remote Sens, 2020, 12(11): 1742. DOI: 10.3390/rs12111742.
[16]
FENG L L, JIA Z Q, LI Q X, et al. Spatiotemporal change of sparse vegetation coverage in northern China[J]. J Indian Soc Remote Sens, 2019, 47(2): 359-366. DOI: 10.1007/s12524-018-0912-x.
[17]
JACQUEMOUD S. Inversion of the PROSPECT+SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study[J]. Remote Sens Environ, 1993, 44(2/3): 281-292. DOI: 10.1016/0034-4257(93)90022-P.
[18]
谷成燕, 杜华强, 周国模, 等. 基于PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J]. 应用生态学报, 2013, 24(8): 2248-2256.
摘要
采用PROSAIL辐射传输模型建立毛竹林叶面积指数(LAI)冠层反射率查找表,并结合Landsat TM卫星遥感数据,实现了毛竹林LAI的定量反演.结果表明: PROSAIL模型各输入参数的敏感性由高到低依次为LAI&gt;叶绿素含量(C<sub>ab</sub>)&gt;叶片结构参数(N)&gt;平均叶倾角(ALA)&gt;等效水厚度(C<sub>w</sub>)&gt;干物质含量(C<sub>m</sub>),并以LAI、C<sub>ab</sub>两个主要敏感因子用于构建毛竹林LAI冠层反射率查找表;基于PROSAIL模型的毛竹林LAI遥感反演结果与实测LAI具有很好的一致性,二者相关系数为0.90,均方根误差和相关的均方根误差也较小,分别为0.58和13.0%,但也存在反演LAI平均值高于实际值的问题.
GU C Y, DU H Q, ZHOU G M, et al. Retrieval of leaf area index of Moso bamboo forest with Landsat Thematic Mapper image based on PROSAIL canopy radiative transfer model[J]. Chin J Appl Ecol, 2013, 24(8): 2248-2256. DOI: 10.13287/j.1001-9332.2013.0383.
[19]
GU C Y, DU H Q, MAO F J, et al. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance[J]. Int J Remote Sens, 2016, 37(21/22): 5270-5286. DOI: 10.1080/01431161.2016.1239287.
[20]
LI X, STRAHLER A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Trans Geosci Remote Sens, 1992, 30(2): 276-292. DOI: 10.1109/36.134078.
[21]
ZENG Y, SCHAEPMAN M E, WU B F, et al. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China[J]. Remote Sens Environ, 2008, 112(12): 4261-4271. DOI: 10.1016/j.rse.2008.07.007.
[22]
CHEN J M, CIHLAR J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index[J]. Appl Opt, 1995, 34(27): 6211-6222. DOI: 10.1364/AO.34.006211.
[23]
CHEN J M, LEBLANC S G. A four-scale bidirectional reflectance model based on canopy architecture[J]. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1316-1337. DOI: 10.1109/36.628798.
[24]
VERSTRAETE M M, PINTY B, MYNENI R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing[J]. Remote Sens Environ, 1996, 58(2): 201-214. DOI: 10.1016/S0034-4257(96)00069-7.
[25]
CHEN J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Trans Geosci Remote Sens, 1996, 34(6):1353-1368. DOI: 10.1109/36.544559.
[26]
孙振峰, 张晓丽, 李霓雯. 机载与星载高分遥感影像单木树冠分割方法和适宜性对比[J]. 北京林业大学学报, 2019, 41(11): 66-75.
SUN Z F, ZHANG X L, LI N W. Comparison of individual tree crown extraction method and suitability of airborne and spaceborne high-resolution remote sensing images[J]. J Beijing For Univ, 2019, 41(11): 66-75. DOI: 10.13332/j.1000-1522.20180446.
[27]
PU R L, GONG P, YU Q. Comparative analysis of EO-1 Ali and Hyperion, and Landsat ETM+ Data for mapping forest crown closure and leaf area index[J]. Sensors (Basel), 2008, 8(6): 3744-3766. DOI: 10.3390/s8063744.
[28]
PU R L, GONG P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sens Environ, 2004, 91(2): 212-224. DOI: 10.1016/j.rse.2004.03.006.
[29]
刘婧怡, 汤旭光, 常守志, 等. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014, 29(1): 18-25.
LIU J Y, TANG X G, CHANG S Z, et al. Application of remote sensing to inverse the forest leaf area index and regional estimation[J]. Remote Sens Technol Appl, 2014, 29(1): 18-25. DOI: 10.11873/j.issn.1004-0323.2014.1.0018.
[30]
ZHAO J, LI J, LIU Q H, et al. Estimating fractional vegetation cover from leaf area index and clumping index based on the gap probability theory[J]. Int J Appl Earth Obs Geoinformation, 2020, 90: 102-112. DOI: 10.1016/j.jag.2020.102112.
[31]
XIAO Z Q, WANG T T, LIANG S L, et al. Estimating the fractional vegetation cover from GLASS leaf area index product[J]. Remote Sens, 2016, 8(4): 337. DOI: 10.3390/rs8040337.

基金

国家自然科学基金面上项目(31870621)
国家自然科学基金面上项目(31971580)

编辑: 李燕文
PDF(26232 KB)

Accesses

Citation

Detail

段落导航
相关文章

/