
结合树冠体积的油茶树高与产量估测研究
Estimating the tree height and yield of Camellia oleifera by combining crown volume
【目的】以长沙县明月村油茶林基地为研究区,探讨利用无人机倾斜摄影提取树冠体积进行油茶树高和产量估测的可行性。【方法】基于无人机正射影像和密集匹配点云,提取波段反射率、植被指数、纹理因子、高度特征等遥感变量和冠幅等冠层参数,同时利用克里金法、反距离权重法、自然邻近点法和过滤三角网法分别获取油茶树冠体积,建立多元线性回归、随机森林、K最邻近模型估测油茶树高和产量,并以地面三维激光点云获取的树冠体积、样地实测树高和产量作为实测值分别对估测结果进行精度评价。【结果】过滤三角网是获取油茶树冠体积最有效的方法,其平均相对误差(31.54%)优于反距离权重法(36.73%)、克里金法(37.04%)和自然邻近点法(38.54%)。将树冠体积作为特征变量参与建模后,树高和产量的多元线性回归、随机森林、K最邻近模型的精度均有所提升(树高相对均方根误差分别减小了3.77%、0.78%、0.64%,产量相对均方根误差分别减小了1.32%、0.34%、0.16%)。对比3种估测模型,随机森林模型的决定系数均优于多元线性回归和K最邻近(树高决定系数分别为0.78、0.51和0.19,产量决定系数分别为0.61、0.48和0.24)。研究发现,分别使用估测树高和实测树高参与产量建模的精度无明显差异。【结论】结合树冠体积和树高参与建模可有效提高油茶产量估测精度,研究结果可为区域范围内利用无人机遥感技术开展油茶树高和产量调查提供参考。
【Objective】In this study, the Camellia oleifera base in Mingyue Village, Changsha County, was used as the study area to explore the feasibility of unmanned aerial vehicle (UAV) oblique photography technology for extracting C. oleifera crown volume and estimating the tree height and yield. 【Method】Remote sensing variables such as band reflectance, vegetation indices, texture factors, height characteristics, and crown parameters were extracted from UAV orthophotos and dense matched point clouds. The Kriging, inverse distance weighting, natural neighbor, and filtered triangulation methods were used to obtain the crown volume of C. oleifera. The multiple linear regression, random forest, and K-nearest-neighbor models were established to estimate the height and yield of C. oleifera, and the accuracy of the estimation results was evaluated using the crown volume obtained from the ground 3D laser point clouds and the actual measured height and yield of the sample plots as the measured values. 【Result】The filtered triangulation method was the most effective for obtaining the crown volume with an average relative error of 31.54%, which was better than 36.73% for the inverse distance weighting method, 37.04% for the Kriging method, and 38.54% for the natural neighbor method. The accuracy of all three estimation models for the tree height and yield was improved by using the crown volume as a characteristic variable in the modeling. The relative root mean squared errors (rRMSEs) for tree height were reduced by 3.77%, 0.78% and 0.64%, respectively. In addition, the rRMSEs for the yield were reduced by 1.32%, 0.34% and 0.16%, respectively. The multiple linear regression, random forest and K-nearest-neighbor models were compared, and the coefficients of determination of the random forest model were all better than those of the multiple linear regression and K-nearest-neighbor (the R2 of tree height was 0.78, 0.51 and 0.19, and the R2 of yield was 0.61, 0.48 and 0.24, respectively). There is no significant difference in the accuracy of using the estimated tree height and measured tree height to participate in yield modeling. 【Conclusion】The combination of crown volume and tree height participation modeling can effectively improve the accuracy of C. oleifera yield estimation, and the results of this study can provide a reference for conducting C. oleifera height and yield surveys using UAV remote sensing technology on a regional scale.
经济林 / 油茶产量 / 随机森林 / 无人机 / 树冠体积 / 空间插值
non-wood forest / yield of Camellia oleifera / random forest(RF) / unmanned aerial vehicle / crown volume / spatial interpolation
[1] |
|
[2] |
|
[3] |
|
[4] |
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10.
|
[5] |
付虹雨, 崔国贤, 李绪孟, 等. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9):1448-1455.
本研究旨在探索一种利用无人机-RGB系统提取的苎麻株高和可见光图像光谱信息估测产量的新方法。试验于2019年在湖南农业大学耘园苎麻基地进行, 利用无人机搭载高清数码相机获取二季苎麻苗期和成熟期的图像。首先利用Pix4D mapper生成苎麻冠层2个生育期的数字表面模型和高清数码正射图像; 然后基于数字表面模型采用“差分法”计算试验小区的平均株高(DSM-based H); 基于正射图像提取试验小区RGB通道均值, 进而计算遥感图像数码变量和植被指数, 分析苎麻种质间的图像光谱表型性状和产量株高比性状的差异性与多样性; 最后采用逐步回归方法建立苎麻产量预测模型, 并对各项产量解释因子进行相关性分析。结果表明: (1)基于无人机-RGB系统遥感株高与实测株高显著相关(r=0.90), 修正遥感株高的均方根误差为0.04 m。(2)苎麻产量与株高信息存在极显著相关性(r=0.91), 而与图像光谱表型相关性不明显。(3)融合遥感图像株高和种质特征差异构建的苎麻产量估测模型精度较高, R<sup>2</sup>=0.85, RMSE=0.71。因此, 基于无人机遥感图像的苎麻产量估测是可行的, 这对苎麻种质特征评价和产量估测具有重要的意义。
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
樊仲谋, 冯仲科, 郑君, 等. 基于立方体格网法的树冠体积计算与预估模型建立[J]. 农业机械学报, 2015, 46(3):320-327.
|
[12] |
李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19):207-213.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
刘芳, 冯仲科, 杨立岩, 等. 基于三维激光点云数据的树冠体积估算研究[J]. 农业机械学报, 2016, 47(3):328-334.
|
[17] |
林松, 田林亚, 毕继鑫, 等. 三维激光扫描数据的单木树冠体积精确计算[J]. 测绘科学, 2020, 45(8):115-122.
|
[18] |
吴炅, 彭邵锋, 蒋馥根, 等. 基于多尺度标记优化分水岭方法的油茶冠幅提取[J]. 应用生态学报, 2021, 32(7):2449-2457.
|
[19] |
|
[20] |
|
[21] |
伍艳莲, 赵力, 姜海燕, 等. 基于改进均值漂移算法的绿色作物图像分割方法[J]. 农业工程学报, 2014, 30(24):161-167.
|
[22] |
蒋馥根, 孙华, 林辉, 等. 旺业甸林场人工林生物量遥感反演研究[J]. 中南林业科技大学学报, 2019, 39(10):88-94.
|
[23] |
|
[24] |
韦雪花, 王永国, 郑君, 等. 基于三维激光扫描点云的树冠体积计算方法[J]. 农业机械学报, 2013, 44(7):235-240.
|
[25] |
陈松, 孙华, 吴童, 等. 基于Sentinel-2与机载激光雷达数据的误差变量联立方程组森林蓄积量反演研究[J]. 中南林业科技大学学报, 2020, 40(12):44-53.
|
[26] |
周元琦, 王敦亮, 陈晨, 等. 基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J]. 扬州大学学报(农业与生命科学版), 2021, 42(3):110-116.
|
[27] |
龙军, 张黎明, 沈金泉, 等. 复杂地貌类型区耕地土壤有机质空间插值方法研究[J]. 土壤学报, 2014, 51(6):1270-1281.
|
[28] |
张军国, 闫浩, 胡春鹤, 等. 无人机在林业中的应用及前景展望[J]. 林业工程学报, 2019, 4(1):8-16.
|
/
〈 |
|
〉 |