[1] |
曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007: 1-3.
|
|
CAO F L. Chinese Ginkgo biloba[M]. Beijing: China Forestry Press, 2007: 1-3.
|
[2] |
SEUFI A M, IBRAHIM S S, ELMAGHRABY T K, et al. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences[J]. J Exp Clin Cancer Res, 2009, 28(1): 80. DOI: 10.1186/1756-9966-28-80.
|
[3] |
SHU Z M, SHAR A H, SHAHEN M, et al. Pharmacological uses of Ginkgo biloba extracts for cardiovascular disease and coronary heart diseases[J]. International J Pharmacology, 2019, 15(1): 1-9. DOI: 10.3923/ijp.2019.1.9.
|
[4] |
NODA N, KANNO Y, KATO N, et al. Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum)[J]. Physiologia Plant, 2010, 122(3): 305-313. DOI: 10.1111/j.1399-3054.2004.00407.x.
|
[5] |
徐友. 温度和光强对银杏生长和次生代谢产物合成的影响[D]. 南京: 南京林业大学, 2016.
|
|
XU Y. Effects of temperature and light intensity on growth and secondary metabolites biosynthesis of ginkgo (Ginkgo biloba L.) leaves[D]. Nanjing: Nanjing Forestry University, 2016.
|
[6] |
ZHAO B B, WANG L, PANG S Y, et al. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves[J]. Ind Crops Prod, 2020, 151: 112483. DOI: 10.1016/j.indcrop.2020.112483.
|
[7] |
YANG M Y, WANG L, BELWAL T, et al. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho[J]. Molecules, 2020, 25(1): 12. DOI: 10.3390/molecules25010012.
|
[8] |
XU F, CAI R, CHENG S, et al. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba[J]. AFRICAN J BIOTECHNOLOGY, 2008, 7(6): 721-729. DOI: 10.5897/AJB2008.000-5022.
|
[9] |
XU F, LI L L, ZHANG W W, et al. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba[J]. Mol Biol Rep, 2012, 39(3): 2285-2296. DOI: 10.1007/s11033-011-0978-9.
|
[10] |
FERRERO M, PAGLIARANI C, NOVÁK O, et al. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries[J]. J Exp Bot, 2018, 69(9): 2391-2401. DOI: 10.1093/jxb/ery033.
|
[11] |
BRUNETTI C, SEBASTIANI F, TATTINI M. Review: ABA, flavonols, and the evolvability of land plants[J]. Plant Sci, 2019, 280:448-454. DOI: 10.1016/j.plantsci.2018.12.010.
|
[12] |
王燕, 程水源, 费永俊, 等. 提高银杏叶黄酮含量的调控措施[J]. 湖北农业科学, 2002, 41(5): 103-105.
|
|
WANG Y, CHENG S Y, FEI Y J, et al. Studies on the effects of regulating measures on the flavonoids contents in Ginkgo biloba leaves[J]. Hubei Agric Sci, 2002, 41(5): 103-105. DOI: 10.3969/j.issn.0439-8114.2002.05.045.
|
[13] |
JEONG S T, GOTO-YAMAMOTO N, KOBAYASHI S, et al. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins[J]. Plant Sci, 2004, 167(2):247-252. DOI: 10.1016/j.plantsci.2004.03.021.
|
[14] |
GAI Z S, WANG Y, DING Y Q, et al. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress[J]. Sci Rep, 2020, 10(1): 12275. DOI: 10.1038/s41598-020-69080-1.
|
[15] |
国家药典委员会. 中华人民共和国药典一部[M]. 北京: 中国医药科技出版社, 2020.
|
|
National Pharmacopoeia Commission. The first pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medical Science and Technology Press, 2020.
|
[16] |
刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2010: 75-76.
|
|
LIU J Y, LIU X. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2010: 75-76.
|
[17] |
陈雷, 常丽, 曹福亮, 等. 银杏叶黄酮类化合物含量及相关酶活性对温度和干旱胁迫的响应[J]. 西北植物学报, 2013, 33(4): 755-762.
|
|
CHEN L, CHANG L, CAO F L, et al. Effects of temperature and soil water deficit on the flavonoid content and activities of enzymes involved in Ginkgo leaves[J]. Acta Bot Boreali-Occidentalia Sin, 2013, 33(4): 755-762. DOI: 10.3969/j.issn.1000-4025.2013.04.017.
|
[18] |
张宏涛, 陈纹, 李小伟, 等. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10): 5-8.
|
|
ZHANG H T, CHEN W, LI X W, et al. The activity of key enzymes related to flavonoids in test-tube plantlets of Hippophae neurocarpa under low temperature[J]. North Hortic, 2015(10): 5-8. DOI: 10.11937/bfyy.201510002.
|
[19] |
苏西娅, 石元豹, 杨晓明, 等. 银杏实时荧光定量PCR分析中内参基因的选择与验证[J]. 植物生理学报, 2019, 55(6): 875-882.
|
|
SU X Y, SHI Y B, YANG X M, et al. Selection and validation of reference genes for quantitative real-time PCR analysis in Ginkgo biloba[J]. Plant Physiol J, 2019, 55(6): 875-882. DOI: 10.13592/j.cnki.ppj.2018.0512.
|
[20] |
于江珊, 张苗苗, 施江, 等. 植物激素对类黄酮代谢调控机制研究进展[J]. 中国中药杂志, 2021, 46(15): 3806-3813.
|
|
YU J S, ZHANG M M, SHI J, et al. Research progress on the regulation mechanism of plant hormones on flavonoids metabolism[J]. China J Chin Mater Med, 2021, 46(15): 3806-3813. DOI: 10.19540/j.cnki.cjcmm.20210522.103.
|
[21] |
杨果. 光合作用及外源激素对银杏种实生长发育的影响[D]. 长沙: 中南林业科技大学, 2020.
|
|
YANG G. Effects of photosynthesis and exogenous hormones on the growth and development of Ginkgo biloba seeds[D]. Changsha: Central South University of Forestry and Technology, 2020.
|
[22] |
HAO G P, DU X H, ZHAO F X, et al. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba[J]. Biotechnol Lett, 2010, 32(2): 305-314. DOI: 10.1007/s10529-009-0139-6.
|
[23] |
SUN Y L, LIU Q Z, XI B, et al. Study on the regulation of anthocyanin biosynthesis by exogenous abscisic acid in grapevine[J]. Sci Hortic, 2019, 250: 294-301. DOI: 10.1016/j.scienta.2019.02.054.
|
[24] |
周浩, 强玮, 敖雯雯, 等. 外源脱落酸对钩藤中生物碱合成的影响[J/OL]. 分子植物育种:1-15(2021-08-16)[2023-06-12].
|
|
ZHOU H, QIANG W, AO W W, et al. Effect of exogenous abscisic acid on biosynthesis of alkaloids in Uncaria[J/OL]. Molecular Plant Breeding:1-15(2021-08-16)[2023-06-12]. http://kns.cnki.net/kcms/detail/4b.1068.s.20210816.1404.006.html.
|
[25] |
诸姮, 胡宏友, 卢昌义, 等. 植物体内的黄酮类化合物代谢及其调控研究进展[J]. 厦门大学学报(自然科学版), 2007, 46(增刊1):136-143.
|
|
ZHU H, HU H Y, LU C Y, et al. Progresses on flavonoid metabolism in plants and it's regulation[J]. J Xiamen Univ (Nat Sci), 2007, 46(S1): 136-143. DOI: 10.3321/j.issn:0438-0479.2007.z1.030.
|
[26] |
JIAN Z, DAVIS L C, VERPOORTE R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005, 23(4): 283-333. DOI: 10.1016/j.biotechadv.2005.01.003.
|
[27] |
李栋栋. 脱落酸调控草莓果实成熟的分子机理和关键miRNA调控因子的探究[D]. 杭州: 浙江大学, 2019.
|
|
LI D D. The mechanism of abscisic acid-regulated strawberry fruit ripening and identification of key miRNAs involved[D]. Hangzhou: Zhejiang University, 2019.
|
[28] |
员盎然, 孙小娟, 马小雯, 等. GA3与ABA对黑穗醋栗二次萌芽总酚含量及代谢酶活性的影响[J]. 南方农业学报, 2019, 50(6): 1263-1270.
|
|
YUAN A R, SUN X J, MA X W, et al. Effects of GA3 and ABA on the content of phenolic substances and metabolic enzyme activities in the secondary bud burst of black currant (Ribes nigrum L.)[J]. J South Agric, 2019, 50(6): 1263-1270. DOI: 10.3969/j.issn.2095-1191.2019.06.15.
|
[29] |
田晓艳, 刘延吉. 脱落酸对南果梨色素及部分合成关键酶的影响[J]. 北方园艺, 2008(12): 155-156.
|
|
TIAN X Y, LIU Y J. The effect of ABA on cyanidin content and partial synthetic key enzymes of Nanguo pear[J]. North Hortic, 2008(12): 155-156.
|
[30] |
XU Y, WANG G B, CAO F L, et al. Light intensity affects the growth and flavonol biosynthesis of ginkgo (Ginkgo biloba L.)[J]. New For, 2014, 45(6): 765-776. DOI: 10.1007/s11056-014-9435-7.
|
[31] |
ANWAR M, YU W J, YAO H, et al. NtMYB3, an R2R3-MYB from Narcissus, regulates flavonoid biosynthesis[J]. Int J Mol Sci, 2019, 20(21): 5456. DOI: 10.3390/ijms20215456.
|
[32] |
WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene,VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(2):387-398. DOI: 10.1007/s11240-016-0953-1.
|
[33] |
伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J]. 植物遗传资源学报, 2020, 21(5): 1270-1278.
|
|
WU X F, GAO G Y, ZUO Q, et al. Deciphering the functional basis of FtMYB1 transcription factor in flavonol biosynthesis of tartary buckwheat hairy root[J]. J Plant Genet Resour, 2020, 21(5): 1270-1278. DOI: 10.13430/j.cnki.jpgr.20200118001.
|