氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响

梁文超, 步行, 罗思谦, 谢寅峰, 张往祥, 胡加玲

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 81-88.

PDF(1474 KB)
PDF(1474 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 81-88. DOI: 10.12302/j.issn.1000-2006.202109025
研究论文

氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响

作者信息 +

Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage

Author information +
文章历史 +

摘要

【目的】探究增温促花后,施用氮磷钾复合肥对观赏海棠‘长寿冠’(Chaenomeles speciosa ‘Changshouguan’)生理特性的影响,为观赏海棠增温促花后的复壮栽培提供理论依据。【方法】以‘长寿冠’海棠5年生嫁接苗为材料,采用氮、磷、钾3因素的二次回归正交施肥试验设计,在‘长寿冠’海棠当年开花后2个月进行根部施肥试验,测定叶片可溶性糖、可溶性蛋白、内源激素含量及保护酶活性。【结果】①与对照相比,各氮磷钾复合肥处理下‘长寿冠’叶片可溶性糖和蛋白质含量均显著提高(P<0.05),以处理3(N3P3K2)效果最佳,其叶片可溶性糖和蛋白质含量比对照分别增加40.60%和25.89%;②各配比氮磷钾复合施肥处理下,叶片过氧化物酶(POD)、超氧化物歧化酶(SOD)活性有不同程度的增加,丙二醛(MDA)含量降低,其中处理2(N3P2K1)和处理3(N3P3K2)效果较好,均与对照差异显著(P<0.05);③各配比氮磷钾复合施肥处理对‘长寿冠’内源激素脱落酸、生长素、赤霉素、玉米素(ABA、IAA、GA3、ZR)含量均影响显著;适当的施肥处理提高了叶片IAA、GA3、ZR含量,降低了ABA含量,处理组IAA、GA3及ZR的总含量与ABA含量的比值均不同程度地提高。相关性分析表明,IAA、GA3、ZR含量与叶片可溶性糖、蛋白质含量以及POD、SOD活性之间极显著正相关,而与MDA含量极显著负相关。ABA与叶片生理特性的相关性与其他激素相反;④方差分析表明,氮是肥料3因素中影响‘长寿冠’叶片生理特性的首要因素;多重比对分析表明,氮素水平对‘长寿冠’各项生理指标均产生显著影响,磷和钾对各指标显著性影响有所不同;隶属函数综合分析表明,改善‘长寿冠’叶片生理功能的最佳氮磷钾肥配施方案为N3P3K2处理,即每株施氮肥1.2 g、磷肥0.3 g、钾肥0.4 g。【结论】施用适宜的氮磷钾复合肥能有效改善增温促花后‘长寿冠’海棠叶片的营养功能,增强其抗氧化能力;配方施肥的调节作用或与植株内源激素的调控有关。

Abstract

【Objective】 The physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ were investigated under nitrogen, phosphorus and potassium (N, P and K) compound fertilization to provide a theoretical basis for its rejuvenation cultivation after warming and promotion of flowering. 【Method】 In this study, a quadratic regression orthogonal fertilization experiment design was adopted using five-year-old grafted seedlings of ‘Changshouguan’, along with N, P, K factors. The root fertilization experiment of ‘Changshouuan’ was performed two months after flowering in the same year, and soluble sugar and protein, endogenous hormone, and protective enzyme activities were determined in the plant leaves. 【Results】 (1) Compared with the control, the soluble sugar and protein concentrations in leaves under combined N, P and K fertilizer treatments increased significantly (P<0.05), and the concentrations in leaves under treatment 3 (N3P3K2) were 40.60% and 25.89% higher than those in the control, respectively. (2) The POD and SOD activities in leaves increased, whereas the MDA content decreased when different proportions of N, P and K compound fertilization were applied. Treatments 2 and 3 (N3P2K1 and N3P3K2) were more effective than control (P<0.05). (3) The combined application of N, P and K fertilizer had a significant effect on the endogenous hormone concentrations (ABA, IAA, GA3 and ZR) of ‘Changshouguan’. Although appropriate fertilization increased the contents of IAA, GA3 and ZR in leaves, it decreased the ABA content. The ratio of total IAA, GA3 and ZR contents to that of ABA in treatment groups increased by varying degrees. Correlation analysis revealed that the concentrations of IAA, GA3 and ZR were correlated positively with those of soluble sugar and protein and the activities of POD and SOD in leaves, whereas negatively with those of MDA. The correlation between ABA and the physiological characteristics of leaves was opposite to that between ABA and other hormones. (4) Anova indicated that N was the most important factor affecting leaf physiological characteristics among the three fertilizer factors. Multiple comparative analyses exhibited that the N level had significant effects on all physiological indexes, while P and K had varyingly significant effects on them. Comprehensive analysis of subordinate function revealed that the best combination of N, P and K fertilizer for improving leaf physiological function was N3P3K2 treatment, that is, 1.2 g N, 0.3 g P, and 0.4 g K per plant. 【Conclusion】 Appropriate N, P, K compound fertilization can effectively improve the nutritional function and the antioxidant capacity of ‘Changshouguan’ leaves after warming and flowering promotion, which may be related to the regulation of endogenous hormones.

关键词

‘长寿冠’海棠 / 氮磷钾复合肥 / 生理功能 / 内源激素 / 综合评价

Key words

Chaenomeles speciosa ‘Changshouguan’ / N、P、K compound fertilization / physiological function / endogenous hormone / comprehensive evaluation

引用本文

导出引用
梁文超, 步行, 罗思谦, . 氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 81-88 https://doi.org/10.12302/j.issn.1000-2006.202109025
LIANG Wenchao, BU Xing, LUO Siqian, et al. Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 81-88 https://doi.org/10.12302/j.issn.1000-2006.202109025
中图分类号: S718   

参考文献

[1]
臧德奎, 王关祥, 郑林, 等. 我国木瓜属观赏品种的调查与分类[J]. 林业科学, 2007, 43(6):72-76.
ZANG D K, WANG G X, ZHENG L, et al. Cultivar classification of Chaenomeles in China[J]. Sci Silvae Sin, 2007, 43(6):72-76.DOI:10.3321/j.issn:1001-7488.2007.06.013.
[2]
卢俊芳, 步行, 王涛, 等. 增温促花对傲大贴梗海棠‘长寿冠’叶片生长及光合指标影响[J]. 安徽农业大学学报, 2014, 41(5):853-858.
LU J F, BU X, WANG T, et al. Effects of blossom-promotion by raising temperature on the leaf growth and photosynthetic indexes in Chaenomeles speciosa(Sweet) Nakai ‘Changshouguan’[J]. J Anhui Agric Univ, 2014, 41(5):853-858.DOI:10.13610/j.cnki.1672-352x.20140827.011.
[3]
初梦圆, 于延冲. 影响植物叶片衰老因素的研究进展[J]. 生命科学, 2019, 31(2):178-184.
CHU M Y, YU Y C. The research progress of factors affecting plant leaf senescence[J]. Chin Bull Life Sci, 2019, 31(2):178-184. DOI:10.13376/j.cbls/2019026.
[4]
毕俊国. 粳稻植酸磷和矿质元素积累的氮磷肥调控效应研究[D]. 南京: 南京农业大学, 2012.
BI J G. The effect of nitrogen and phosphorus fertilizer on phosphorus of phytic acid and mineral nutrients accumulation in Japanica rice grains[D]. Nanjing: Nanjing Agricultural University, 2012.
[5]
WAQAS M, FENG S Z, AMJAD H, et al. Protein phosphatase (PP2C9) induces protein expression differentially to mediate nitrogen utilization efficiency in rice under nitrogen-deficient condition[J]. Int J Mol Sci, 2018, 19(9):2827.DOI:10.3390/ijms19092827.
[6]
康利允, 常高正, 马政华, 等. 不同氮钾肥用量对甜瓜坐果节位叶片生理特性的影响[J]. 中国土壤与肥料, 2019(4):96-104.
KANG L Y, CHANG G Z, MA Z H, et al. Effects of different nitrogen and potassium application amounts on physiological characteristics of fruiting node leaf of melon[J]. Soils Fertil Sci China, 2019(4):96-104.DOI:10.11838/sfsc.1673-6257.18387.
[7]
温旭丁, 陈花. 海南海桑幼苗氮磷钾施肥量分析[J]. 森林与环境学报, 2021, 41(4):351-357.
WEN X D, CHEN H. Study on application rates of nitrogen,phosphorus,and potassium fertilizers in Sonneratia hainanensis seedling cultivation[J]. J For Environ, 2021, 41(4):351-357.DOI:10.13324/j.cnki.jfcf.2021.04.003.
[8]
张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009.
[9]
CHEN Y, LIN F Z, YANG H, et al. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba:relationship to chlorophyll fluorescence,ion homeostasis,antioxidant system and ultrastructure[J]. Acta Physiol Plant, 2014, 36(12):3173-3187.DOI:10.1007/s11738-014-1684-8.
[10]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[11]
张治安. 植物生理学实验指导[M]. 北京: 中国农业科学技术出版社, 2004:26-34.
[12]
杨锋, 刘晨, 姜丽娟, 等. 苹果属植物抗旱性评价[J]. 西北农林科技大学学报(自然科学版), 2020, 48(8):119-128.
YANG F, LIU C, JIANG L J, et al. Comprehensive evaluation on drought tolerance of Malus[J]. J Northwest A F Univ (Nat Sci Ed), 2020, 48(8):119-128.DOI:10.13207/j.cnki.jnwafu.2020.08.015.
[13]
袁婷婷, 路远峰, 谢寅峰, 等. 硼钼铜微肥配施对太子参光合特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4):130-136.
YUAN T T, LU Y F, XIE Y F, et al. Effects of combined application of boron-molybdenum-copper microfertilizers on photosynthetic characteristics of Pseudostellaria heterophylla[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):130-136.DOI:10.12302/j.issn.1000-2006.202003024.
[14]
李明, 李迎春, 牛晓光, 等. 大气CO2浓度升高与氮肥互作对玉米花后碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(17):3647-3665.
LI M, LI Y C, NIU X G, et al. Effects of elevated atmospheric CO2 concentration and nitrogen fertilizer on the yield of summer maize and carbon and nitrogen metabolism after flowering[J]. Sci Agric Sin, 2021, 54(17):3647-3665.DOI:10.3864/j.issn.0578-1752.2021.17.008.
[15]
詹福麟. 不同浓度多效唑对10种三角梅花期调控效果的影响[J]. 防护林科技, 2021(5):14-17.
ZHAN F L. Effect of paclobutrazol in different concentrations on the florescence regulation of ten cultivar seedlings of Bougainvillea spp[J]. Prot For Sci Technol, 2021(5):14-17.DOI:10.13601/j.issn.1005-5215.2021.05.004.
[16]
魏丽娜, 周冠军, 孙海龙, 等. 氮磷施肥对水曲柳叶片光合特征及体内非结构性碳的影响[J]. 森林工程, 2021, 37(5):20-27.
WEI L N, ZHOU G J, SUN H L, et al. Effects of nitrogen and phosphorus fertilization on photosynthetic characteristics and non-structural carbohydrate of Fraxinus mandshurica[J]. For Eng, 2021, 37(5):20-27.DOI:10.16270/j.cnki.slgc.2021.05.001.
[17]
张林海, 曾从盛, 胡伟芳. 氮输入对植物光合固碳的影响研究进展[J]. 生态学报, 2017, 37(1):147-155.
ZHANG L H, ZENG C S, HU W F. Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation[J]. Acta Ecol Sin, 2017, 37(1):147-155.
[18]
陈卫东, 张玉霞, 丛百明, 等. 钾肥对紫花苜蓿根颈丙二醛、可溶性蛋白含量与抗氧化系统的影响[J]. 草地学报, 2021, 29(4):717-723.
CHEN W D, ZHANG Y X, CONG B M, et al. Effects of potassium fertilizer on MDA,SP content and antioxidant system of alfalfa root neck[J]. Acta Agrestia Sin, 2021, 29(4):717-723.DOI:10.11733/j.issn.1007-0435.2021.04.011.
[19]
普布卓玛, 罗艺岚, 高金柱, 等. 2,4表-油菜素内酯对低温胁迫下西藏野生垂穗披碱草幼苗抗氧化保护和渗透调节的影响[J]. 草地学报, 2019, 27(3):547-552.
PUBUZHUOMA, LUO Y L, GAO J Z, et al. Effect of 2,4-epibrassinolide on antioxidant defense and osmotic adjustment of Elymus nutans under low temperature stress[J]. Acta Agrestia Sin, 2019, 27(3):547-552.DOI:10.11733/j.issn.1007-0435.2019.03.04.
[20]
陈雅琦, 苏楷淇, 陈泰祥, 等. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3):137-157.
CHEN Y Q, SU K Q, CHEN T X, et al. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians[J]. Acta Prataculturae Sin, 2021, 30(3):137-157.DOI:10.11686/cyxb2020416.
[21]
列淦文, 叶龙华, 薛立. 臭氧胁迫对植物主要生理功能的影响[J]. 生态学报, 2014, 34(2):294-306.
LIE G W, YE L H, XUE L. Effects of ozone stress on major plant physiological functions[J]. Acta Ecol Sin, 2014, 34(2):294-306.
[22]
徐亚军, 赵龙飞, 邢鸿福, 等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响[J]. 生态学报, 2020, 40(11):3726-3737.
XU Y J, ZHAO L F, XING H F, et al. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress[J]. Acta Ecol Sin, 2020, 40(11):3726-3737.DOI:10.5846/stxb201802060309.
[23]
余小芬, 线罕英, 邱学礼, 等. 低温与氮肥耦合对水稻生理指标的影响[J]. 西南农业学报, 2020, 33(10):2190-2197.
YU X F, XIAN H Y, QIU X L, et al. Coupling effect of low temperature and nitrogen on physiological indexes of rice[J]. Southwest China J Agric Sci, 2020, 33(10):2190-2197.DOI:10.16213/j.cnki.scjas.2020.10.008.
[24]
丁兴萃, 田新立, 潘雁红, 等. 早竹覆盖栽培的衰老生理机制[J]. 林业科学, 2009, 45(4):41-45.
DING X C, TIAN X L, PAN Y H, et al. Physiological mechanism of precocious senescence of Phyllostachys violascens stands promoted by mulching cultivation[J]. Sci Silvae Sin, 2009, 45(4):41-45.DOI:10.3321/j.issn:1001-7488.2009.04.007.
[25]
代建龙, 董合忠, 李维江, 等. 棉花早衰的表现及其机理[J]. 中国农学通报, 2008, 24(3):210-214.
DAI J L, DONG H Z, LI W J, et al. Performance and mechanisms of premature senescence in cotton[J]. Chin Agric Sci Bull, 2008, 24(3):210-214
[26]
ZHANG K W, GAN S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiol, 2012, 158(2):961-969.DOI:10.1104/pp.111.190876.
[27]
JIBRAN R, HUNTER D, DIJKWEL P. Hormonal regulation of leaf senescence through integration of developmental and stress signals[J]. Plant Mol Biol, 2013, 82(6):547-561.DOI:10.1007/s11103-013-0043-2.
[28]
KIM J I, MURPHY A S, BAEK D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana[J]. J Exp Bot, 2011, 62(11):3981-3992.DOI:10.1093/jxb/err094.
[29]
GUO Y F, GAN S S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis[J]. Plant Physiol, 2011, 156(3):1612-1619.DOI:10.1104/pp.111.177022.
[30]
GUINN G, BRUMMETT D L. Leaf age, decline in photosynthesis,and changes in abscisic acid,indole-3-acetic acid,and cytokinin in cotton leaves[J]. Field Crops Res, 1993, 32(3/4):269-275.DOI:10.1016/0378-4290(93)90036-M.
[31]
WANG W Q, HAO Q Q, WANG W L, et al. The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant,tasg1[J]. Plant Sci, 2019, 278:70-79.DOI:10.1016/j.plantsci.2018.10.024.
[32]
尹冬梅, 梁可, 高马也, 等. 脱落酸在低氮条件下延缓拟南芥叶片衰老[J]. 上海农业学报, 2018, 34(2):23-27.
YIN D M, LIANG K, GAO M Y, et al. A delaying effect of abscisic acid on leaf senescence of Arabidopsis thaliana under low-nitrogen conditions[J]. Acta Agric Shanghai, 2018, 34(2):23-27.DOI:10.15955/j.issn1000-3924.2018.02.05.
[33]
李梦雪, 夏富娴, 杨光映, 等. 果实糖代谢中激素调控研究进展[J]. 云南大学学报(自然科学版), 2019, 41(4):819-831.
LI M X, XIA F X, YANG G Y, et al. An research on the progress of hormone regulation of sugar metabolism in fruits[J]. J Yunnan Univ (Nat Sci Ed), 2019, 41(4):819-831.DOI:10.7540/j.ynu.20180354.
[34]
GU J Y, WANG Y, ZHANG X, et al. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics[J]. Front Biosci, 2010, 15(3):826-839.DOI:10.2741/3648.
[35]
卢凯政, 李欣悦, 刘洋, 等. 苹果叶芽萌发过程中内源激素含量与酶活性的变化[J]. 北方园艺, 2021(10):22-27.
LU K Z, LI X Y, LIU Y, et al. Changes of endogenous hormone content and enzyme activity in apple leaf buds during genmination[J]. North Hortic, 2021(10):22-27.DOI:10.11937/bfyy.20203850.
[36]
李红卫, 韩涛, 李丽萍, 等. ABA、GA3处理对冬枣采后果肉活性氧代谢的影响[J]. 园艺学报, 2005, 32(5):793-797.
LI H W, HAN T, LI L P, et al. Effect of ABA and GA3 treatments on the metabolism of active oxygen species in cold stored‘Brumal jujube’ Flesh[J]. Acta Hortic Sin, 2005, 32(5):793-797. DOI:10.16420/j.issn.0513-353x.2005.05.007.

基金

江苏省现代农业发展专项资金项目(BE2019389)
扬州市科技计划项目(YZ2019037)

编辑: 孟苗婧
PDF(1474 KB)

Accesses

Citation

Detail

段落导航
相关文章

/