南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 81-87.doi: 10.12302/j.issn.1000-2006.202109026
所属专题: 乡村振兴视域下经济林果培育专题(Ⅱ)
• 专题报道:乡村振兴视域下经济林果培育专题(Ⅱ)(执行主编 李维林 方升佐) • 上一篇 下一篇
王孟珂(), 杨晓明(), 汪贵斌, 周婷婷, 国颖, 国靖
收稿日期:
2021-09-12
修回日期:
2022-02-24
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 杨晓明(作者简介:
王孟珂(基金资助:
WANG Mengke(), YANG Xiaoming(), WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing
Received:
2021-09-12
Revised:
2022-02-24
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】通过喷施不同质量浓度的24-表油菜素内酯(EBR),探索外源EBR对银杏(Ginkgo biloba)实生苗生长发育及其生理特征的影响,为银杏栽培提供理论依据。【方法】以1年生银杏半同胞家系为试验材料,采用完全随机区组试验设计,叶面喷施不同浓度(质量浓度0~2.0 mg/L)EBR后,对银杏幼苗生长、叶片光合特性及激素含量进行测定。【结果】外施EBR处理后,银杏实生苗的生长存在显著差异(P < 0.05),叶长、叶面积、苗高、叶质量和生物量等均在1.0 mg/L处理下最高,与对照相比分别提高了23.6%、52.6%、140.2%、87.7%和69.1%。1.5和2.0 mg/L EBR处理下银杏净光合速率比对照提高了40.2%和41.5%。银杏叶中双氢玉米素、吲哚丙酸、赤霉毒和脱落酸等内源激素含量在1.5 mg/L处理时达到最大值,而生长素处于最小值。外源EBR处理下,银杏叶中内源油菜素内酯的含量与茉莉酸和吲哚丙酸的含量显著正相关,与玉米素含量之间显著负相关(R>0.5, P < 0.05)。【结论】喷施适宜浓度的外源EBR能够提高银杏的净光合速率、调节各内源激素的含量,进而促进茎的伸长生长、叶面积的扩展和叶干质量的积累。
中图分类号:
王孟珂,杨晓明,汪贵斌,等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 81-87.
WANG Mengke, YANG Xiaoming, WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 81-87.DOI: 10.12302/j.issn.1000-2006.202109026.
表1
不同浓度EBR处理下银杏幼苗生长情况"
处理 treatment | 苗高/cm seedling height | 地径/cm ground diameter | 叶长/cm leaf length | 叶宽/cm leaf width | 叶面积/cm2 leaf area | 叶厚/mm leaf thickness | 根冠比 root to shoot ratio |
---|---|---|---|---|---|---|---|
CK | 5.64±0.29 c | 3.90±0.17 a | 6.35±0.37 b | 5.07±0.28 a | 11.73±0.94 b | 0.38±0.30 a | 0.21±0.03 a |
EBR1 | 9.54±0.35 b | 3.99±0.16 a | 7.15±0.08 ab | 5.39±0.04 a | 13.68±0.36 b | 0.40±0.01 a | 0.17±0.02 a |
EBR2 | 13.55±0.60 a | 4.24±0.11 a | 7.85±0.77 a | 5.86±0.57 a | 17.90±1.74 a | 0.42±0.00 a | 0.15±0.01 a |
EBR3 | 8.90±0.42 b | 3.82±0.11 a | 7.45±0.13 ab | 6.01±0.21 a | 15.35±1.05 ab | 0.41±0.02 a | 0.17±0.01 a |
EBR4 | 9.80±0.53 b | 4.13±0.17 a | 6.84±0.25 ab | 5.74±0.09 a | 14.16±1.01 b | 0.39±0.00 a | 0.19±0.02 a |
表2
Effects of exogenous EBR on biomass accumulation of ginkgo seedlings 单位:g"
处理 treatment | 叶 leaf | 茎 stem | 根 root | 合计 total |
---|---|---|---|---|
CK | 2.27±0.00 e | 0.57±0.06 a | 0.59±0.08 a | 3.43±0.1 d |
EBR1 | 2.61±0.00 d | 0.70±0.08 a | 0.57±0.09 a | 3.88±0.16 c |
EBR2 | 4.26±0.00 a | 0.77±0.07 a | 0.78±0.08 a | 5.80±0.14 a |
EBR3 | 2.92±0.00 c | 0.71±0.05 a | 0.62±0.04 a | 4.25±0.07 c |
EBR4 | 3.24±0.00 b | 0.80±0.11 a | 0.79±0.10 a | 4.84±0.20 b |
表3
外源EBR对银杏幼苗光合作用的影响"
处理 treatment | 胞间CO2浓度/ (μmol·mol-1) Ci | 净光合速率/ (μmol·m-2·s-1) Pn | 气孔导度/ (mmol·m-2·s-1) Gs | 蒸腾速率/ (mmol·m-2·s-1) Tr | 饱和水汽压差/ kPa VPD | 水分利用效率/ (μmol·mol-1) WUE |
---|---|---|---|---|---|---|
CK | 420.33±10.27 a | 3.73±0.29 b | 36.33±1.20 c | 1.10±0.06 b | 3.07±0.03 a | 3.33±0.32 a |
EBR1 | 437.17±20.70 a | 4.30±0.46 ab | 49.00±4.68 bc | 1.43±0.12 ab | 2.98±0.07 a | 3.07±0.95 a |
EBR2 | 415.83±16.58 a | 3.63±0.33 b | 45.33±4.10 c | 1.33±0.11 b | 2.98±0.06 a | 2.78±0.75 a |
EBR3 | 439.40±5.54 a | 5.42±0.40 a | 65.40±6.59 ab | 1.84±0.13 a | 2.86±0.07 a | 2.98±0.24 a |
EBR4 | 468.25±4.59 a | 5.50±0.44 a | 78.50±8.02 a | 1.88±0.28 a | 2.43±0.14 b | 3.03±0.50 a |
表4
外源EBR对银杏幼苗叶片叶绿素的影响"
处理 treatment | 含量/(mg·g-1) content | 叶绿素a/b chlorophyll a/b | 类胡萝卜素/ 总叶绿素 carotenoids/ chlorophyll | |||
---|---|---|---|---|---|---|
叶绿素a chlorophyll | 叶绿素b chlorophyll b | 总叶绿素 chlorophyll | 类胡萝卜素 carotenoids | |||
CK | 1.49±0.01 a | 0.58±0.02 a | 2.07±0.03 a | 0.27±0.00 a | 2.56±0.07 b | 0.11±0.00 a |
EBR1 | 1.48±0.04 a | 0.59±0.09 a | 2.06±0.13 a | 0.27±0.02 a | 2.60±0.3 b | 0.11±0.00 a |
EBR2 | 1.25±0.03 b | 0.37±0.01 b | 1.62±0.04 b | 0.26±0.00 a | 3.40±0.03 a | 0.08±0.00 b |
EBR3 | 1.47±0.01 a | 0.51±0.01 a | 1.98±0.02 a | 0.28±0.01 a | 2.90±0.06 ab | 0.10±0.00 a |
EBR4 | 1.50±0.01 a | 0.59±0.05 a | 2.08±0.06 a | 0.27±0.01 a | 2.57±0.18 b | 0.11±0.00 a |
表5
Changes in endogenous hormone content under different treatments单位:ng/g"
处理 treatment | 赤霉素 GA3 | 脱落酸 ABA | 玉米素 ZR | 茉莉酸 JAMe | 生长素 IAA | 油菜素内酯 BR | 双氢玉米素 DHZR | 吲哚丙酸 IPA | 赤霉素 GA4 |
---|---|---|---|---|---|---|---|---|---|
CK | 2.91±0.11 c | 74.48±1.14 b | 6.75±0.33 b | 24.92±0.84 a | 48.94±2.05 a | 7.77±0.30 a | 2.75±0.14 b | 8.73±0.21 b | 5.49±0.24 b |
EBR1 | 3.57±0.16 b | 93.83±3.05 a | 9.05±0.43 a | 20.39±0.80 b | 50.06±1.92 a | 7.05±0.16 b | 2.95±0.14 b | 8.56±0.48 b | 6.03±0.30 b |
EBR2 | 3.51±0.05 b | 67.43±2.80 b | 7.86±0.39 ab | 16.83±0.45 c | 50.13±1.20 a | 6.78±0.19 b | 2.51±0.12 b | 8.14±0.13 b | 5.91±0.21 b |
EBR3 | 3.96±0.11 a | 94.29±2.39 a | 6.76±0.37 b | 22.93±1.05 a | 35.51±1.43 b | 7.77±0.02 a | 4.10±0.15 a | 10.64±0.34 a | 8.39±0.31 a |
EBR4 | 2.96±0.09 c | 72.65±3.22 b | 8.28±0.29 a | 16.00±0.61 c | 31.69±1.45 b | 7.18±0.24 ab | 2.82±0.12 b | 9.21±0.39 b | 6.03±0.23 b |
表6
外源EBR对银杏叶片各内源激素含量的影响"
激素种类 hormones | GA3 | ABA | ZR | JAMe | IAA | BR | DHZR | IPA |
---|---|---|---|---|---|---|---|---|
ABA | 0.549* | |||||||
ZR | 0.029 | 0.077 | ||||||
JAMe | 0.135 | 0.429 | -0.575* | |||||
IAA | 0.002 | -0.124 | 0.123 | 0.230 | ||||
BR | 0.008 | 0.325 | -0.749** | 0.739** | -0.212 | |||
DHZR | 0.616* | 0.693** | -0.320 | 0.437 | -0.478 | 0.478 | ||
IPA | 0.387 | 0.474 | -0.417 | 0.315 | -0.697** | 0.533* | 0.820** | |
GA4 | 0.705** | 0.559* | -0.345 | 0.199 | -0.480 | 0.380 | 0.779** | 0.713** |
[1] | 曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007:1-3. |
CAO F L. Chinese Ginkgo biloba[M]. Beijing: China Forestry Publishing House, 2007:1-3. | |
[2] | HEISS C, KEEN C L, KELM M. Flavanols and cardiovascular disease prevention[J]. Eur Heart J, 2010, 31(21): 2583-2592. DOI: 10.1093/eurheartj/ehq332. |
[3] | 却枫, 查若飞, 魏强. 植物纤维素合成酶研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 207-214. |
QUE F, ZHA R F, WEI Q. Advances in research of cellulose synthase genes in plants[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 207-214.DOI: 10.12302/j.issn.1000-2006.202105039. | |
[4] | 李不凡. 油菜素甾醇调控甘蓝型油菜生长发育的机制及研究激素处理影响胚珠发育的简易方法[D]. 上海: 上海交通大学, 2018. |
LI B F. Mechanism of brassica napus growth and development regulated by brassinosteroid and a simple method for hormone treatment affecting ovule development[D]. Shanghai: Shanghai Jiaotong University, 2018. | |
[5] | SONG L I, ZHOU X Y, LI L I, et al. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis[J]. Molecular Plant, 2009, 2(4): 755-772. |
[6] | NOLAN T M, VUKASINOVIC N, LIU D, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2): 295-318. |
[7] | 王灵燕. 油菜素内酯调控拟南芥黄化幼苗转绿的分子机制研究[D]. 济南: 山东大学, 2020. |
WANG L Y. Molecular mechanism of brassinolide regulating the greening of arabidopsis yellowing seedlings[D]. Ji'nan: Shandong University, 2020. | |
[8] | LI X, WEI J P, AHAMMED G J, et al. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L.[J]. Front Plant Sci, 2018, 9: 1016.DOI: 10.3389/fpls.2018.01016. |
[9] | 张弦, 王志博, 聂雅婷, 等. 茉莉酸甲酯和油菜素内酯减轻苹果叶片光抑制的生理机制研究[J]. 西北农业学报, 2017, 26(6): 906-915. |
ZHANG X, WANG Z B, NIE Y T, et al. Alleviation of photoinhibition by methyl jasmornate and brassinolide under strong light in apple leaves[J]. Northwest Agricultural Journal, 2017, 26(6): 906-915. | |
[10] | 胡春红, 郭婕, 陈龙, 等. 防腐剂胁迫下外源芸苔素内酯对玉米幼苗生长及抗性的影响[J]. 2014, 40(2), 113-116. |
HU C H, GUO J, CHEN L, et al. Influence of exogenous brassinolide on the growth and resistance of maize seedling with preservative stress[J]. 2014, 40( 2), 113-116 DOI:10.13331/j.cnki.jhau.2014.02.001. | |
[11] | VERGARA A E, DÍAZ K, CARVAJAL R, et al. Exogenous applications of brassinosteroids improve color of Red Table Grape (Vitis vinifera L. cv. Redglobe) berries[J]. Front Plant Sci, 2018, 9: 363. |
[12] | 王小璐. 24-表油菜素内酯对猕猴桃果实冷藏品质的影响及其机理[D]. 西安: 西北大学, 2020. |
WANG X L. Effect of 24-epibrassinolide on the cold storage quality of kiwifruit and its mechanism[D]. Xi'an: Northwest University, 2020. | |
[13] | ZHAO M, YUAN L, WANG J, et al. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature[J]. BMC Genomics, 2019, 20(1): 810. |
[14] | ZHENG L, MA J, ZHANG L, et al. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis[J]. Journal of Proteomics, 2018, 173: 139-154. |
[15] | GUO Y, GAO C Y, WANG M K, et al. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions[J]. Ind Crops Prod, 2020, 158:112963. DOI: 10.1016/j.indcrop.2020.112963. |
[16] | 钱龙梁, 薛源, 曹福亮, 等. 生物遮阴对银杏幼苗生长的影响[J]. 中南林业科技大学学报, 2018, 38(10):21-26. |
QIAN L L, XUE Y, CAO F L, et al. Effects of biological shading on growth of ginkgo seedlings[J]. J Central South Univ For Technol, 2018, 38(10):21-26. DOI: 10.14067/j.cnki.1673-923x.2018.10.004. | |
[17] | ZHAO J, LI G, YI G X, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules[J]. Anal Chimica Acta, 2006, 571(1): 79-85. DOI: 10.1016/j.aca.2006.04.060. |
[18] | YANG J, ZHANG J, WANG Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiol, 2001, 127(1): 315-323. DOI: 10.1104/pp.127.1.315. |
[19] | YANG Y M, XU C N, WANG B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant Growth Regul, 2001, 35(3): 233-237. DOI: 10.1023/A:1014442015872. |
[20] | 王鼎豪, 刘宇, 国颖, 等. 外源激素对银杏叶中黄酮类化合物积累的影响[J]. 经济林研究, 2020, 38(2): 123-130. |
WANG D H, LIU Y, GUO Y, et al. Effects of exogenous hormones on accumulation of flavonoids in Ginkgo biloba leaves[J]. Nonwood For Res, 2020, 38(2): 123-130. DOI: 10.14067/j.cnki.1003-8981.2020.02.015. | |
[21] | CHOE S. Brassinosteroid biosynthesis and inactivation[J]. Physiol Plant, 2006, 126(4): 539-548. DOI: 10.1111/j.1399-3054.2006.00681.x. |
[22] | KHRIPACH V, ZHABINSKII V, DE GROOT A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century[J]. Ann Bot, 2000, 86(3): 441-447. DOI: 10.1006/anbo.2000.1227. |
[23] | 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58. |
ZHENG J, WANG L. Advance in mechanism of brassinosteroids in plant development[J]. J Agric Sci Technol, 2014, 16(1): 52-58. | |
[24] | AZPIROZ R, WU Y, LOCASCIO J C, et al. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation[J]. Plant Cell, 1998, 10(2): 219-230. DOI: 10.1105/tpc.10.2.219. |
[25] | CATTEROU M, DUBOIS F, SCHALLER H, et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana Ⅱ. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant[J]. Planta, 2001, 212(5/6): 673-683. DOI: 10.1007/s004250000467. |
[26] | GAUDINOVÁ A, SÜSSENBEKOVÁ H, VOJTĚCHOVÁ M, et al. Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue[J]. Plant Growth Regul, 1995, 17(2): 121-126. DOI: 10.1007/BF00024171. |
[27] | 李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1)120-127. |
LI Q C, YU X J. Effects of exogenous BR on physiological characteristics of Phyllostachys edulis seedlings[J]. J Zhejiang A&F Univ, 2021, 38(1)120-127. DOI: 10.11833/j.issn.2095-0756.20200161. | |
[28] | LU Z, HUANG M, GE D P, et al. Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae)[J]. 2003, 73: 87-89. DOI:1023/A:102266521011. |
[29] | EMES M J, BOWSHER C G, HEDLEY C, et al. Starch synthesis and carbon partitioning in developing endosperm[J]. J Exp Bot, 2003, 54(382):569-575. DOI: 10.1093/jxb/erg089. |
[30] | 石新新, 李佐同, 杨克军, 等. 表油菜素内酯对高粱幼苗生长和光合特性的影响[J]. 黑龙江八一农垦大学学报, 2015, 27(5):56-60. |
SHI X X, LI Z T, YANG K J, et al. Effects of EBR on growth and photosynthetic system on Sorghum seedlings[J]. J Heilongjiang August First Land Reclam Univ, 2015, 27(5): 56-60. DOI: 10.3969/j.issn.1002-2090.2015.05.013. | |
[31] | BRAUN P, WILD A. The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants[J]. J Plant Physiol, 1984, 116(3): 189-196.DOI: 10.1016/S0176-1617(84)80088-7. |
[32] | 郝建军, 玄美淑, 何若韫. 油菜素内酯对玉米幼苗光合速率与呼吸速率的影响[J]. 沈阳农业大学学报, 1990, 21(1): 43-47. |
HAO J J, XUAN M S, HE R W. Effects of brassinolide (BR) on the rate of photosynthesis and respiration in maize seedlings[J]. J Shenyang Agric Univ, 1990, 21(1): 43-47. | |
[33] | 尚玉磊, 李春喜, 邵云, 等. 禾本科主要作物生育初期内源激素动态及其作用的比较[J]. 华北农学报, 2004(4):47-50. |
SHANG Y L, LI C X, SHAO Y, et al. Comparison of dynamics and functions of endogenous IAA, CTK content among main crops of Gramineae at early growing stage[J]. Acta Agric Boreali Sin, 2004, 19(4): 47-50. DOI: 10.3321/j.issn:1000-7091.2004.04.013. | |
[34] | NEMHAUSER J L, HONG F, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126(3): 467-475. DOI: 10.1016/j.cell.2006.05.050. |
[35] | 王鑫, 刘丹, 陈婧婷, 等. 外源BR对盐碱胁迫下甜菜内源激素含量及保护酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(7):20-30, 41. |
WANG X, LIU D, CHEN J T, et al. Effects of exogenous BR on endogenous hormone and protective enzyme activities in sugar beet under saline-alkali stress[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(7)20-30, 41. DOI: 10.13207/j.cnki.jnwafu.2021.07.003. | |
[36] | TONG H N, XIAO Y H, LIU D P, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. DOI: 10.1105/tpc.114.132092. |
[37] | UNTERHOLZNER S J, ROZHON W, PAPACEK M, et al. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis[J]. Plant Cell, 2015, 27(8): 2261-2272. DOI: 10.1105/tpc.15.00433. |
[38] | 贾承国. 番茄中茉莉酸与其他激素信号的相互作用研究[D]. 杭州: 浙江大学, 2009. |
JIA C G. Study on the interaction between jasmonic acid and other hormone signals in tomato[D]. Hangzhou: Zhejiang University, 2009. | |
[39] | HE Y Q, HONG G J, ZHANG H H, et al. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4[J]. Plant Cell, 2020, 32(9): 2806-2822. DOI: 10.1105/tpc.19.00499. |
[40] | 郑文光, 耿宇, 李常保, 等. 茉莉酸信号转导突变体ber15的分离和基因克隆表明油菜素内酯的合成影响茉莉酸信号转导[J]. 植物学通报, 2006(5): 603-610. |
ZHENG W G, GENG Y, LI C B, et al. Characterization of jasmonic acid response mutant ber15 demonstrates cross talk between jasmonic acid and brassinosteriod signaling[J]. Chin Bull Bot, 2006(5): 603-610. |
[1] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[2] | 李婷婷, 国靖, 汪贵斌. 外源ABA对银杏叶黄酮类化合物体内合成的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 88-94. |
[3] | 王孟珂, 国颖, 汪贵斌, 苑柯, 杨晓明, 国靖. 不同生境对银杏雌、雄株嫁接苗叶中聚戊烯醇等成分积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 121-128. |
[4] | 梁文超, 步行, 罗思谦, 谢寅峰, 张往祥, 胡加玲. 氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 81-88. |
[5] | 狄晶晶, 叶威, 吴琴霞, 冯凯, 曹栋, 李强, 陈颖. 银杏雌、雄植株花芽分化后期及开花期间生理代谢的比较[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 59-67. |
[6] | 马娟娟, 吴琴霞, 陈颖, 王瑞敏, 袁斌龄, 胡宇辰, 曹福亮. 银杏胚乳不同发育时期生理代谢变化与其胚性感受态的相关性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 68-76. |
[7] | 叶威, 李强, 陈颖, 胡菲, 胡宇辰, 吴琴霞, 曹福亮. 雌、雄株和金叶银杏光合生理及黄酮成分年动态变化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 77-86. |
[8] | 张吉玲, 李明阳, 李勇, 刘丽, 费裕翀, 曹光球. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 153-158. |
[9] | 龙伟, 姚小华, 吕乐燕, 王开良. 油茶种子性状及浸种后内源激素含量分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 148-156. |
[10] | 王改萍, 张磊, 姚雪冰, 祝遵凌. 金叶银杏叶色变化特性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 41-48. |
[11] | 姜楠南, 张启翔, 王媛, 孙音, 房义福, 徐金光. 赤霉素对‘大富贵’芍药休眠解除及内源激素和糖类代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 26-32. |
[12] | 赵辉, 吕良贺, 路鑫, 郭力宇, 祝遵凌, 王改萍. 杂种金叶银杏叶片光合特性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 193-199. |
[13] | 孙旭, 姜东, 徐莉, 花彤彤, 宣艳, 曹福亮. 银杏白果干燥过程中水分分布及迁移的变化[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 188-192. |
[14] | 冯景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 193-200. |
[15] | 张宁,黄曜曜,敖妍,苏淑钗,刘金凤,张行杰,刘觉非. 文冠果花芽分化过程及内源激素动态变化[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 33-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||