[1] |
马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5):62-72.
|
|
MA X W, XIONG K N, ZHANG Y, et al. Research progresses and prospects of carbon storage in forest ecosystems[J]. J Northwest For Univ, 2019, 34(5):62-72.DOI: 10.3969/j.issn.1001-7461.2019.05.10.
doi: 10.3969/j.issn.1001-7461.2019.05.10
|
[2] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
|
|
LI H K, LEI Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
|
[3] |
郭云, 李增元, 陈尔学, 等. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1):140-149.
|
|
GUO Y, LI Z Y, CHEN E X, et al. Estimating forest above-ground biomass in the upper reaches of Heihe river basin using multi-spectral remote SensingChinese full text[J]. Sci Silvae Sin, 2015, 51(1):140-149.
|
[4] |
罗洪斌, 舒清态, 王强, 等. 运用机载激光雷达和陆地卫星数据对橡胶林地上生物量的估测[J]. 东北林业大学学报, 2019, 47(7):56-61.
|
|
LUO H B, SHU Q T, WANG Q, et al. Estimation of above ground biomass of rubber forest with airborne Li DAR and Landsat8/OLI DataChinese full text[J]. J Northeast For Univ, 2019, 47(7):56-61.DOI: 10.13759/j.cnki.dlxb.2019.07.010.
doi: 10.13759/j.cnki.dlxb.2019.07.010
|
[5] |
李特. 基于机载LiDAR与Landsat-5遥感数据的森林地上生物量反演研究[D]. 北京:中国地质大学(北京), 2019.
|
|
LI T. Inversion of forest aboveground biomass using airborne LiDAR and multispectral remote sensing data[D]. Beijing:China University of Geosciences, 2019.
|
[6] |
DUNCANSON L I, NIEMANN K O, WULDER M A. Integration of GLAS and Landsat TM data for aboveground biomass estimation[J]. Can J Remote Sens, 2010, 36(2):129-141.DOI: 10.5589/m10-037.
doi: 10.5589/m10-037
|
[7] |
吴娇娇, 张亚红, 杨凯博, 等. 机载激光雷达在林业中的应用[J]. 安徽农业科学, 2016, 44(35):209-212.
|
|
WU J J, ZHANG Y H, YANG K B, et al. Application of airborn LiDAR in Forestry Chinese full TextEnglish full text (MT)[J]. J Anhui Agric Sci, 2016, 44(35):209-212.DOI: 10.13989/j.cnki.0517-6611.2016.35.072.
doi: 10.13989/j.cnki.0517-6611.2016.35.072
|
[8] |
POPESCU S C, WYNNE R H, SCRIVANI J A. Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia,USA[J]. For Sci, 2004, 50(4):551-565.DOI: 10.1093/forestscience/50.4.551.
doi: 10.1093/forestscience/50.4.551
|
[9] |
徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
doi: 10.17521/cjpe.2015.0030
|
|
XU T, CAO L, SHEN X, et al. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data[J]. Chin J Plant Ecol, 2015, 39(4):309-321.DOI: 10.17521/cjpe.2015.0030.
doi: 10.17521/cjpe.2015.0030
|
[10] |
卜帆. 基于多源遥感数据的森林地上生物量估算研究[D]. 南京:南京信息工程大学, 2019.
|
|
BU F. Estimation of forest aboveground biomass based on multi-source remote sensing data[D]. Nanjing:Nanjing University of Information Science & Technology, 2019.
|
[11] |
韩宗涛. 基于特征优选的森林地上生物量遥感估测[D]. 福州:福州大学, 2017.
|
|
HAN Z T. Forest above-ground biomass estimation using feature selection based on remote sensing data[D]. Fuzhou:Fuzhou University, 2017.
|
[12] |
韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70-79.
|
|
HAN Z T, JIANG H, WANG W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing DataChinese full text[J]. Sci Silvae Sin, 2018, 54(9):70-79.
|
[13] |
张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938.
|
|
ZHANG S W, HUI G Y, HAN Z T, et al. Estimation of Large-scale forest Above-ground biomass based on fast optimizing remotely sensed features from pptical Multi-spectral and sar data[J]. Remote Sens Technol Appl, 2019, 34(5):925-938.DOI: 10.11873/j.issn.1004-0323.2019.5.0925.
doi: 10.11873/j.issn.1004-0323.2019.5.0925
|
[14] |
穆喜云. 森林地上生物量遥感估测方法研究[D]. 呼和浩特:内蒙古农业大学, 2015.
|
|
MU X Y. A study on the estimating method of forest above ground biomass based on remote sensing data[D]. Hohhot:Inner Mongolia Agricultural University, 2015.
|
[15] |
陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.
|
[16] |
NILSSON M. Estimation of tree heights and stand volume using an airborne lidar system[J]. Remote Sens Environ, 1996, 56(1):1-7.DOI: 10.1016/0034-4257(95)00224-3.
doi: 10.1016/0034-4257(95)00224-3
|
[17] |
秦浩, 林志娟, 陈景武. 偏最小二乘回归原理、分析步骤及程序[J]. 数理医药学杂志, 2007, 20(4):450-451.
|
[18] |
WOLD S . PLS for Multivariate linear modeling[M]// Chemometric methods in molecular design, Illinois: Elsevier Ltd, 1995.
|
[19] |
许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155.
|
|
XU Z Y, LI Y C, LI M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. J Central South Univ For Technol, 2020, 40(11):147-155.DOI: 10.14067/j.cnki.1673-923x.2020.11.018.
doi: 10.14067/j.cnki.1673-923x.2020.11.018
|
[20] |
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19.
|
|
LI Y, ZHANG W F, CUI J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization methodChinese Full Text[J]. J Beijing For Univ, 2020, 42(10):11-19.
|
[21] |
庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105.
|
|
PANG Y, LI Z Y. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains,Northeastern of China[J]. Chin J Plant Ecol, 2012, 36(10):1095-1105.DOI: 10.3724/SP.J.1258.2012.01095.
doi: 10.3724/SP.J.1258.2012.01095
|
[22] |
FOODY G M, BOYD D S, CUTLER M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sens Environ, 2003, 85(4):463-474.DOI: 10.1016/S0034-4257(03)00039-7.
doi: 10.1016/S0034-4257(03)00039-7
|
[23] |
胡凯龙, 刘清旺, 李世明, 等. 运用融合纹理和机载LiDAR特征模型估测森林地上生物量[J]. 东北林业大学学报, 2018, 46(1):52-57.
|
|
HU K L, LIU Q W, LI S M, et al. Estimation of forest aboveground biomass by fusion of optical image texture and airborne LiDAR MetricsChinese full text[J]. J Northeast For Univ, 2018, 46(1):52-57.DOI: 10.13759/j.cnki.dlxb.2018.01.010.
doi: 10.13759/j.cnki.dlxb.2018.01.010
|