基于多源数据及三层模型的小班林型识别

黄健, 吴达胜, 方陆明

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 69-80.

PDF(3971 KB)
PDF(3971 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 69-80. DOI: 10.12302/j.issn.1000-2006.202109037
专题报道Ⅱ:第二届中国林草计算机大会论文精选(执行主编 李凤日)

基于多源数据及三层模型的小班林型识别

作者信息 +

Identification of sub-compartment forest type based on multi-source data and three-tier models

Author information +
文章历史 +

摘要

【目的】目前关于林型识别的研究区域主要为小范围森林区域和林场,为了探究较大范围内林型的识别方法,本研究使用Sentinel-2光学遥感影像、森林资源二类调查数据、数字高程模型(DEM)和Sentinel-1雷达遥感影像数据建立林型识别模型。【方法】以淳安县作为研究区域,针对淳安县各个小班中的7种林型:毛竹(Phyllosstachys edulis)林、茶树(Camellia sinensis)林、山核桃(Carya cathayensis)林、杉木(Cunninghamia lanceolata)林、马尾松(Pinus massoniana)林、阔叶混交林、其他硬阔林进行识别。研究采用分层的方法对林型进行识别,整体分为3层。第1层使用RF算法建立林地与非林地识别模型;第2层对林地数据进行树种结构识别,分别使用随机森林(random forest, RF)、极端梯度提升(eXtreme gradient boosting, XGBoost)和 轻量级梯度提升机(light gradient boosting machine, LightGBM)方法建立不同模型并对比分析实验结果;第3层将树种结构细分为林型。【结果】第1层RF林地与非林地识别模型总体精度为98.08%;第2层树种结构识别模型中对比了3个模型不同特征组合下的性能,其中LightGBM模型总体精度最高,达到81.43%;第3层模型对林型进行识别,基于所有特征结合雷达遥感因子建模的情况下,LightGBM模型精度为84.51%,经递归特征消除法(recursive feature elimination, RFE)选择特征后,最优精度为83.21%。【结论】通过各个模型的特征重要性图发现,光学遥感中的绿光、红光、近红外波段和红边波段,以及DEM提取的地形因子对研究区域小班林型识别有较好的效果,而Sentinel-1雷达中提取的自变量对林型的识别没有特别明显的帮助。

Abstract

【Objective】 Currently, forest type identification research is mainly focused on small forest areas and forest farms. To explore the forest type identification method across a large range, this study used Sentinel-2 optical remote sensing imagery, forest resource survey data, a digital elevation model (DEM), and Sentinel-1 radar remote sensing image data to establish tree species identification model.【Method】 The research area was defined as Chun’an County, where seven forest types were modeled separately, including Phyllosstachys edulis forest, Camellia sinensis forest, Carya cathayensis forest, Cunninghamia lanceolata forest, Pinus massoniana forest, broad-leaved mixed forest, and other hard broad-leaved species. Models were divided into three layers. In the first layer, the RF algorithm was used to establish the identification model of forested land and non-forested land. In the second layer, forest structure was identified from forested land. The RF, XGBoost and LightGBM methods were used to build various models and analyze the experimental results. In the third layer, the forest structures were further divided into forest type.【Result】 The overall accuracy of the first-layer model based on the RF algorithm dividing samples into forested and non-forested land samples was 98.08%. In the second layer (i.e., forest structure recognition model), the performance of the three models under various feature combinations were compared. It was found that the LightGBM model had the highest overall accuracy of 81.43%. In the third layer, the performance indicators for seven forest type models were compared; based on the combination of all features and radar factors, the overall accuracy of the LightGBM model was 84.51%, after feature selection by the recursive feature elimination algorithm, the optimal accuracy was 83.21%.【Conclusion】 The green, red, near-infrared and red-edge bands from optical remote sensing imagery, and terrain factors from a DEM are effective in identifying the forest type. However, independent variables extracted from Sentinel-1 radar do not provide significant help to identify forest type.

关键词

林型识别 / 光学遥感 / 雷达遥感 / 数字高程模型 / 模型分层

Key words

forest type identification / optical remote sensing / radar remote sensing / digital elevation model / multi-layer models

引用本文

导出引用
黄健, 吴达胜, 方陆明. 基于多源数据及三层模型的小班林型识别[J]. 南京林业大学学报(自然科学版). 2022, 46(1): 69-80 https://doi.org/10.12302/j.issn.1000-2006.202109037
HUANG Jian, WU Dasheng, FANG Luming. Identification of sub-compartment forest type based on multi-source data and three-tier models[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 69-80 https://doi.org/10.12302/j.issn.1000-2006.202109037
中图分类号: S771.8   

参考文献

[1]
樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2):110-116.
FAN X, LIU Q W, TAN B X. Classification of forest species using airborne PHI hyperspectral data[J]. Remote Sens Land Resour, 2017, 29(2):110-116.DOI: 10.6046/gtzyyg.2017.02.16.
[2]
王佳, 张隆裕, 吕春东, 等. 基于地面激光雷达点云数据的树种识别方法[J]. 农业机械学报, 2018, 49(11):180-188.
WANG J, ZHANG L Y, LYU C D, et al. Tree species identification methods based on point cloud data using ground-based LiDAR[J]. Trans Chin Soc Agric Mach, 2018, 49(11):180-188.DOI: 10.6041/j.issn.1000-1298.2018.11.021.
[3]
李煜, 李崇贵, 刘思涵, 等. 应用哨兵2A多时相遥感影像对树种的识别[J]. 东北林业大学学报, 2021, 49(3):44-47,51.
LI Y, LI C G, LIU S H, et al. Tree species recognition with sentinel-2A multitemporal remote sensing Image[J]. J Northeast For Univ, 2021, 49(3):44-47,51.DOI: 10.13759/j.cnki.dlxb.2021.03.008.
[4]
张悦楠, 房磊, 乔泽宇, 等. 亚热带常绿林型遥感识别及尺度效应[J]. 生态学杂志, 2020, 39(5):1636-1650.
ZHANG Y N, FANG L, QIAO Z Y, et al. Remote sensing-based identification of forest types and the scale effect in subtropical evergreen forests[J]. Chin J Ecol, 2020, 39(5):1636-1650.DOI: 10.13292/j.1000-4890.202005.016.
[5]
蔡林菲, 吴达胜, 方陆明, 等. 基于XGBoost的高分二号影像树种识别[J]. 林业资源管理, 2019(5):44-51.
CAI L F, WU D S, FANG L M, et al. Tree species identification using XGBoost based on GF-2 Image[J]. For Resour Manag, 2019(5):44-51.DOI: 10.13466/j.cnki.lyzygl.2019.05.009.
[6]
刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679-695.
LIU L J, PANG Y, FAN W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. J Remote Sens, 2013, 17(3):679-695.
[7]
赵颖慧, 张大力, 甄贞. 基于非参数分类算法和多源遥感数据的单木树种分类[J]. 南京林业大学学报(自然科学版), 2019, 43(5):103-112.
ZHAO Y H, ZHANG D L, ZHEN Z. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):103-112.DOI: 10.3969/j.issn.1000-2006.201810041.
[8]
王瑞瑞, 李文静, 石伟, 等. 基于多源遥感数据的输电线走廊树种分类[J]. 农业机械学报, 2021, 52(3):226-233.
WANG R R, LI W J, SHI W, et al. Tree species classification of power line corridor based on multi-source remote sensing Data[J]. Trans Chin Soc Agric Mach, 2021, 52(3):226-233.
[9]
徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
XU Y, ZHEN J N, JIANG X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. Natl Remote Sens Bull, 2021, 25(3):737-752.
[10]
皋厦, 申鑫, 代劲松, 等. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J]. 遥感技术与应用, 2018, 33(6):1073-1083.
GAO S, SHEN X, DAI J S, et al. Tree species classification in urban forests based on LiDAR point cloud segmentation and hyperspectral metrics extraction[J]. Remote Sens Technol Appl, 2018, 33(6):1073-1083.DOI: 10.11873/j.issn.1004-0323.2018.6.1073.
[11]
PERSSON M, LINDBERG E, REESE H. Tree species classification with multi-temporal sentinel-2 data[J]. Remote Sens, 2018, 10(11):1794.DOI: 10.3390/rs10111794.
[12]
DALPONTE M, BRUZZONE L, GIANELLE D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data[J]. Remote Sens Environ, 2012, 123:258-270.DOI: 10.1016/j.rse.2012.03.013.
[13]
田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57-65.
TIAN Y, CHEN Z Q, HUI F M, et al. ESA Sentinel-2A/B satellite:characteristics and applications[J]. J Beijing Norm Univ (Nat Sci), 2019, 55(1):57-65.DOI: 10.16360/j.cnki.jbnuns.2019.01.007.
[14]
邱布布, 徐丽华, 张茂震, 等. 基于Landsat OLI和ETM+的杭州城市绿地地上生物量估算比较研究[J]. 西北林学院学报, 2018, 33(1):225-232.
QIU B B, XU L H, ZHANG M Z, et al. Estimation of above-ground biomass of urban green land in Hangzhou based on landsat OLI and ETM+ data[J]. J Northwest For Univ, 2018, 33(1):225-232.DOI: 10.3969/j.issn.1001-7461.2018.01.37.
[15]
LIM J, KIM K M, KIM E H, et al. Machine learning for tree species classification using sentinel-2 spectral information,crown texture,and environmental variables[J]. Remote Sens, 2020, 12(12):2049.DOI: 10.3390/rs12122049.
[16]
傅锋, 王新杰, 汪锦, 等. 高分二号影像树种识别及龄组划分[J]. 国土资源遥感, 2019, 31(2):118-124.
FU F, WANG X J, WANG J, et al. Tree species and age groups classification based on GF-2 image[J]. Remote Sens Land &Resour, 2019, 31(2):118-124.DOI: 10.6046/gtzyyg.2019.02.17.
[17]
郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2):386-394.
HAO ( L /S), CHEN Y F, LIU H, et al. Object-oriented forest classification of Linzhi County based on CART decision tree with texture information[J]. Remote Sens Technol Appl, 2017, 32(2):386-394.DOI: 10.11873/j.issn.1004-0323.2017.2.0386.
[18]
吕杰, 郝宁燕, 李崇贵, 等. 利用随机森林和纹理特征的森林类型识别[J]. 遥感信息, 2017, 32(6):109-114.
LV J, HAO N Y, LI C G, et al. Identification of forest type based on random forest and texture Characteristics[J]. Remote Sens Inf, 2017, 32(6):109-114.
[19]
杜雨菲, 吴保国, 陈玉玲. 基于机器学习算法的广西桉树适宜性研究[J]. 浙江农林大学学报, 2020, 37(1):122-128.
DU Y F, WU B G, CHEN Y L. Eucalyptus suitability in Guangxi based on machine learning algorithms[J]. J Zhejiang A&F Univ, 2020, 37(1):122-128.DOI: 10.11833/j.issn.2095-0756.2020.01.016.
[20]
孙杰杰, 沈爱华, 黄玉洁, 等. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(4):85-93.
SUN J J, SHEN A H, HUANG Y J, et al. Quantitative classification and ordination of Zelkova schneideriana habitat in Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):85-93.DOI: 10.3969/j.issn.1000-2006.201809027.
[21]
刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1):88-92.
LIU B W, DAI Y S, JIN J C, et al. Marine farsighted target-detection method based on spatial distribution and statistical characteristics[J]. Mar Sci, 2018, 42(1):88-92.DOI: 10.11759/hykx20171011005.
[22]
林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12):3358-3362.
LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species[J]. Spectrosc Spectr Anal, 2014, 34(12):3358-3362.DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05.
[23]
陶江玥, 刘丽娟, 庞勇, 等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2):314-323.
TAO J Y, LIU L J, PANG Y, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. J Zhejiang A F Univ, 2018, 35(2):314-323.
[24]
陈继龙, 魏雪馨, 刘洋, 等. 基于多时相遥感观测的板栗林分布提取研究[J]. 遥感技术与应用, 2020, 35(5):1226-1236.
CHEN J L, WEI X X, LIU Y, et al. Extraction of chestnut forest distribution based on multi-temporal remote sensing Observations[J]. Remote Sens Technol Appl, 2020, 35(5):1226-1236.
[25]
张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
摘要
高分六号卫星具有覆盖广、多种分辨率、波段多的优势,能为遥感解译提供更丰富的信息。为探究高分六号卫星新增波段在森林树种识别上的应用,本文以覆盖根河市阿龙山林业局的一期高分六号宽幅影像为数据源,基于特征优化空间算法(Feature Space Optimization,FSO)和最大似然分类法,分别利用高分六号的前4个波段和所有波段(8波段)的光谱、纹理等特征进行了森林树种分类,并逐一添加新增波段特征确定了各波段的贡献率排名。结果表明:在加入了优选出的均匀性纹理、均值纹理和角二阶矩纹理3种纹理特征后,前4波段和8波段的分类精度比只基于光谱特征时的精度分别高出13.23%和24.63%;利用8波段信息比只利用前4波段在基于光谱特征上的精度高11.88%,在基于光谱+纹理特征上则高23.24%;基于8波段光谱+纹理特征的树种分类精度最高,达到68.74%,新增4波段的贡献率排名为B6>B5>B8>B7,说明新增红边波段对于本次树种分类试验的贡献率最高,能为北方树种识别提供有效帮助。
ZHANG Q Y, LI Z, XIA C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. J Geo Inf Sci, 2019, 21(10):1619-1628.
[26]
BOLYN C, MICHEZ A, GAUCHER P, et al. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery[J]. Biotechnol Agron Société et Environnement, 2018, 22(3):172-187.
[27]
TRAN A T, NGUYEN K A, LIOU Y A, et al. Classification and observed seasonal phenology of broadleaf deciduous forests in a tropical region by using multitemporal sentinel-1A and landsat 8 data[J]. Forests, 2021, 12(2):235.DOI: 10.3390/f12020235.
[28]
WAN H M, TANG Y W, JING L H, et al. Tree species classification of forest stands using multisource remote sensing data[J]. Remote Sens, 2021, 13(1):144.DOI: 10.3390/rs13010144.
[29]
胥为, 周云轩, 沈芳, 等. 基于Sentinel-1A雷达影像的崇明东滩芦苇盐沼植被识别提取[J]. 吉林大学学报(地球科学版), 2018, 48(4):1192-1200.
XU W, ZHOU Y X, SHEN F, et al. Recognition and extraction of Phragmites australis salt marsh vegetation in Chongming tidal flat from sentinel-1A SAR Data[J]. J Jilin Univ (Earth Sci Ed), 2018, 48(4):1192-1200.DOI: 10.13278/j.cnki.jjuese.20170004.

基金

浙江省科技重点研发计划资助项目(2018C02013)

编辑: 林志

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(3971 KB)

Accesses

Citation

Detail

段落导航
相关文章

/