[1] |
樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2):110-116.
|
|
FAN X, LIU Q W, TAN B X. Classification of forest species using airborne PHI hyperspectral data[J]. Remote Sens Land Resour, 2017, 29(2):110-116.DOI: 10.6046/gtzyyg.2017.02.16.
doi: 10.6046/gtzyyg.2017.02.16
|
[2] |
王佳, 张隆裕, 吕春东, 等. 基于地面激光雷达点云数据的树种识别方法[J]. 农业机械学报, 2018, 49(11):180-188.
|
|
WANG J, ZHANG L Y, LYU C D, et al. Tree species identification methods based on point cloud data using ground-based LiDAR[J]. Trans Chin Soc Agric Mach, 2018, 49(11):180-188.DOI: 10.6041/j.issn.1000-1298.2018.11.021.
doi: 10.6041/j.issn.1000-1298.2018.11.021
|
[3] |
李煜, 李崇贵, 刘思涵, 等. 应用哨兵2A多时相遥感影像对树种的识别[J]. 东北林业大学学报, 2021, 49(3):44-47,51.
|
|
LI Y, LI C G, LIU S H, et al. Tree species recognition with sentinel-2A multitemporal remote sensing Image[J]. J Northeast For Univ, 2021, 49(3):44-47,51.DOI: 10.13759/j.cnki.dlxb.2021.03.008.
doi: 10.13759/j.cnki.dlxb.2021.03.008
|
[4] |
张悦楠, 房磊, 乔泽宇, 等. 亚热带常绿林型遥感识别及尺度效应[J]. 生态学杂志, 2020, 39(5):1636-1650.
|
|
ZHANG Y N, FANG L, QIAO Z Y, et al. Remote sensing-based identification of forest types and the scale effect in subtropical evergreen forests[J]. Chin J Ecol, 2020, 39(5):1636-1650.DOI: 10.13292/j.1000-4890.202005.016.
doi: 10.13292/j.1000-4890.202005.016
|
[5] |
蔡林菲, 吴达胜, 方陆明, 等. 基于XGBoost的高分二号影像树种识别[J]. 林业资源管理, 2019(5):44-51.
|
|
CAI L F, WU D S, FANG L M, et al. Tree species identification using XGBoost based on GF-2 Image[J]. For Resour Manag, 2019(5):44-51.DOI: 10.13466/j.cnki.lyzygl.2019.05.009.
doi: 10.13466/j.cnki.lyzygl.2019.05.009
|
[6] |
刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679-695.
|
|
LIU L J, PANG Y, FAN W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. J Remote Sens, 2013, 17(3):679-695.
|
[7] |
赵颖慧, 张大力, 甄贞. 基于非参数分类算法和多源遥感数据的单木树种分类[J]. 南京林业大学学报(自然科学版), 2019, 43(5):103-112.
|
|
ZHAO Y H, ZHANG D L, ZHEN Z. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):103-112.DOI: 10.3969/j.issn.1000-2006.201810041.
doi: 10.3969/j.issn.1000-2006.201810041
|
[8] |
王瑞瑞, 李文静, 石伟, 等. 基于多源遥感数据的输电线走廊树种分类[J]. 农业机械学报, 2021, 52(3):226-233.
|
|
WANG R R, LI W J, SHI W, et al. Tree species classification of power line corridor based on multi-source remote sensing Data[J]. Trans Chin Soc Agric Mach, 2021, 52(3):226-233.
|
[9] |
徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
|
|
XU Y, ZHEN J N, JIANG X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. Natl Remote Sens Bull, 2021, 25(3):737-752.
|
[10] |
皋厦, 申鑫, 代劲松, 等. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J]. 遥感技术与应用, 2018, 33(6):1073-1083.
|
|
GAO S, SHEN X, DAI J S, et al. Tree species classification in urban forests based on LiDAR point cloud segmentation and hyperspectral metrics extraction[J]. Remote Sens Technol Appl, 2018, 33(6):1073-1083.DOI: 10.11873/j.issn.1004-0323.2018.6.1073.
doi: 10.11873/j.issn.1004-0323.2018.6.1073
|
[11] |
PERSSON M, LINDBERG E, REESE H. Tree species classification with multi-temporal sentinel-2 data[J]. Remote Sens, 2018, 10(11):1794.DOI: 10.3390/rs10111794.
doi: 10.3390/rs10111794
|
[12] |
DALPONTE M, BRUZZONE L, GIANELLE D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data[J]. Remote Sens Environ, 2012, 123:258-270.DOI: 10.1016/j.rse.2012.03.013.
doi: 10.1016/j.rse.2012.03.013
|
[13] |
田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57-65.
|
|
TIAN Y, CHEN Z Q, HUI F M, et al. ESA Sentinel-2A/B satellite:characteristics and applications[J]. J Beijing Norm Univ (Nat Sci), 2019, 55(1):57-65.DOI: 10.16360/j.cnki.jbnuns.2019.01.007.
doi: 10.16360/j.cnki.jbnuns.2019.01.007
|
[14] |
邱布布, 徐丽华, 张茂震, 等. 基于Landsat OLI和ETM+的杭州城市绿地地上生物量估算比较研究[J]. 西北林学院学报, 2018, 33(1):225-232.
|
|
QIU B B, XU L H, ZHANG M Z, et al. Estimation of above-ground biomass of urban green land in Hangzhou based on landsat OLI and ETM+ data[J]. J Northwest For Univ, 2018, 33(1):225-232.DOI: 10.3969/j.issn.1001-7461.2018.01.37.
doi: 10.3969/j.issn.1001-7461.2018.01.37
|
[15] |
LIM J, KIM K M, KIM E H, et al. Machine learning for tree species classification using sentinel-2 spectral information,crown texture,and environmental variables[J]. Remote Sens, 2020, 12(12):2049.DOI: 10.3390/rs12122049.
doi: 10.3390/rs12122049
|
[16] |
傅锋, 王新杰, 汪锦, 等. 高分二号影像树种识别及龄组划分[J]. 国土资源遥感, 2019, 31(2):118-124.
|
|
FU F, WANG X J, WANG J, et al. Tree species and age groups classification based on GF-2 image[J]. Remote Sens Land &Resour, 2019, 31(2):118-124.DOI: 10.6046/gtzyyg.2019.02.17.
doi: 10.6046/gtzyyg.2019.02.17
|
[17] |
郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2):386-394.
|
|
HAO ( L /S), CHEN Y F, LIU H, et al. Object-oriented forest classification of Linzhi County based on CART decision tree with texture information[J]. Remote Sens Technol Appl, 2017, 32(2):386-394.DOI: 10.11873/j.issn.1004-0323.2017.2.0386.
doi: 10.11873/j.issn.1004-0323.2017.2.0386
|
[18] |
吕杰, 郝宁燕, 李崇贵, 等. 利用随机森林和纹理特征的森林类型识别[J]. 遥感信息, 2017, 32(6):109-114.
|
|
LV J, HAO N Y, LI C G, et al. Identification of forest type based on random forest and texture Characteristics[J]. Remote Sens Inf, 2017, 32(6):109-114.
|
[19] |
杜雨菲, 吴保国, 陈玉玲. 基于机器学习算法的广西桉树适宜性研究[J]. 浙江农林大学学报, 2020, 37(1):122-128.
|
|
DU Y F, WU B G, CHEN Y L. Eucalyptus suitability in Guangxi based on machine learning algorithms[J]. J Zhejiang A&F Univ, 2020, 37(1):122-128.DOI: 10.11833/j.issn.2095-0756.2020.01.016.
doi: 10.11833/j.issn.2095-0756.2020.01.016
|
[20] |
孙杰杰, 沈爱华, 黄玉洁, 等. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(4):85-93.
|
|
SUN J J, SHEN A H, HUANG Y J, et al. Quantitative classification and ordination of Zelkova schneideriana habitat in Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):85-93.DOI: 10.3969/j.issn.1000-2006.201809027.
doi: 10.3969/j.issn.1000-2006.201809027
|
[21] |
刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1):88-92.
|
|
LIU B W, DAI Y S, JIN J C, et al. Marine farsighted target-detection method based on spatial distribution and statistical characteristics[J]. Mar Sci, 2018, 42(1):88-92.DOI: 10.11759/hykx20171011005.
doi: 10.11759/hykx20171011005
|
[22] |
林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12):3358-3362.
|
|
LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species[J]. Spectrosc Spectr Anal, 2014, 34(12):3358-3362.DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05.
doi: 10.3964/j.issn.1000-0593(2014)12-3358-05
|
[23] |
陶江玥, 刘丽娟, 庞勇, 等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2):314-323.
|
|
TAO J Y, LIU L J, PANG Y, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. J Zhejiang A F Univ, 2018, 35(2):314-323.
|
[24] |
陈继龙, 魏雪馨, 刘洋, 等. 基于多时相遥感观测的板栗林分布提取研究[J]. 遥感技术与应用, 2020, 35(5):1226-1236.
|
|
CHEN J L, WEI X X, LIU Y, et al. Extraction of chestnut forest distribution based on multi-temporal remote sensing Observations[J]. Remote Sens Technol Appl, 2020, 35(5):1226-1236.
|
[25] |
张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
doi: 10.12082/dqxxkx.2019.190116
|
|
ZHANG Q Y, LI Z, XIA C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. J Geo Inf Sci, 2019, 21(10):1619-1628.
|
[26] |
BOLYN C, MICHEZ A, GAUCHER P, et al. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery[J]. Biotechnol Agron Société et Environnement, 2018, 22(3):172-187.
|
[27] |
TRAN A T, NGUYEN K A, LIOU Y A, et al. Classification and observed seasonal phenology of broadleaf deciduous forests in a tropical region by using multitemporal sentinel-1A and landsat 8 data[J]. Forests, 2021, 12(2):235.DOI: 10.3390/f12020235.
doi: 10.3390/f12020235
|
[28] |
WAN H M, TANG Y W, JING L H, et al. Tree species classification of forest stands using multisource remote sensing data[J]. Remote Sens, 2021, 13(1):144.DOI: 10.3390/rs13010144.
doi: 10.3390/rs13010144
|
[29] |
胥为, 周云轩, 沈芳, 等. 基于Sentinel-1A雷达影像的崇明东滩芦苇盐沼植被识别提取[J]. 吉林大学学报(地球科学版), 2018, 48(4):1192-1200.
|
|
XU W, ZHOU Y X, SHEN F, et al. Recognition and extraction of Phragmites australis salt marsh vegetation in Chongming tidal flat from sentinel-1A SAR Data[J]. J Jilin Univ (Earth Sci Ed), 2018, 48(4):1192-1200.DOI: 10.13278/j.cnki.jjuese.20170004.
doi: 10.13278/j.cnki.jjuese.20170004
|