基于BOVW和SVM的城市土地类型遥感变化监测研究

黄靖舒, 高心丹, 景维鹏

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 37-44.

PDF(4191 KB)
PDF(4191 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 37-44. DOI: 10.12302/j.issn.1000-2006.202110007
专题报道:第三届中国林草计算机应用大会论文精选(执行主编 李凤日)

基于BOVW和SVM的城市土地类型遥感变化监测研究

作者信息 +

Research on remote sensing change monitoring of urban land types based on BOVW and SVM

Author information +
文章历史 +

摘要

【目的】研究城市土地类型的变化,分析城市进化过程对环境气候、城市发展以及政府决策产生的影响。【方法】以15~30 m分辨率的NWPU-RESISC45标准数据集和哈尔滨城区Landsat 8遥感影像为实验数据,制作了包含城市建筑及道路、水体、植被、裸地4种土地类型的遥感影像数据集。在实验数据中加入纹理信息,提取SIFT(scale-invariant feature transform, SIFT)特征点。通过K-means聚类算法获取包含大量语义信息的视觉词典,从而构造视觉词袋模型(bag of visual words, BOVW)。然后将BOVW提取的特征点与支持向量机(support vector machine, SVM)分类器结合,对制作的数据集进行分类。最后,利用2013年、2019年同一季节Landsat 8影像,以哈尔滨市松北区为例计算各土地类型的位置及面积变化信息。【结果】基于BOVW和SVM的分类结果与5种单一分类模型和3种“特征提取+分类器”模型对比,发现使用尺寸为550个词汇的视觉词典时,本研究模型的分类与变化监测精确度分别为79.40%、79.29%。结合哈尔滨城市具体数据的监测结果表明,在2013-2019年间,哈尔滨市松北区城市建筑及道路与植被类型的覆盖面积减少明显,水体与裸地类型的覆盖面积增加,这一变化情况符合近年来哈尔滨市政府陆续推出的环境保护五年规划,以及其总体规划中合理控制城市规模的相关政策要求。【结论】对于时间跨度长、分辨率不高的Landsat遥感影像,BOVW和SVM的变化监测模型在土地类型变化监测方面效果良好,在一定程度上可提高分类与变化监测的精度,为土地类型变化监测提供借鉴。

Abstract

【Objective】 By studying changes in urban land types, we can determine the impact of urban evolution on environmental climate, urban development and government decision-making. 【Method】 Using the NWPU-RESISC45 standard dataset with a resolution of 15-30 m alongside Landsat 8 remote sensing images of the Harbin urban area as experimental data, we created a remote sensing image dataset that included four land types: urban buildings and roads, water bodies, vegetation and bare land. Texture information was added to the experimental data to extract SIFT (the scale-invariant feature transform) feature points. A visual dictionary containing a large amount of semantic information was also obtained using the K-means clustering algorithm to construct a bag of visual words (BOVW). The feature points extracted using BOVW were then combined with a support vector machine (SVM) to classify the dataset. Finally, using Landsat8 images of the same seasons in 2013 and 2019 and using those of the Songbei District of Harbin City as examples, the location and area change information for each land type were calculated. 【Result】 The classification results based on BOVW and SVM were compared with five single classification models and three “feature extraction + classifier” models. When using a visual dictionary of 550 words, the classification and change-monitoring accuracies of the model were 79.40% and 79.29%, respectively. The monitoring results, combined with the specific data of Harbin City, also showed that the coverage area of urban buildings and roads type, vegetation types in the Songbei District of Harbin decreased significantly, whilst the coverage area of water bodies and bare land types increased between 2013 and 2019. This change was in line with the five-year plan for the environmental protection successively launched by the Harbin municipal government in recent years, alongside the relevant policy requirements for the reasonable control of the urban scale in the master plan. 【Conclusion】 For Landsat remote sensing images with a long time-span and a low resolution, the change-monitoring models built using BOVW and SVM were both effective in monitoring land type changes. To a certain extent, this could improve the accuracy of classification and change monitoring, whilst providing a reference for the land type change monitoring.

关键词

土地类型监测 / 视觉词袋模型(BOVW) / 支持向量机(SVM) / 城市变化监测 / 分类后比较法 / 哈尔滨市

Key words

land type monitoring / BOVW / SVM / urban change monitoring / post classification comparison / Harbin City

引用本文

导出引用
黄靖舒, 高心丹, 景维鹏. 基于BOVW和SVM的城市土地类型遥感变化监测研究[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 37-44 https://doi.org/10.12302/j.issn.1000-2006.202110007
HUANG Jingshu, GAO Xindan, JING Weipeng. Research on remote sensing change monitoring of urban land types based on BOVW and SVM[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 37-44 https://doi.org/10.12302/j.issn.1000-2006.202110007
中图分类号: TP79;TU982   

参考文献

[1]
ZHU Q, ZHONG Y, ZHANG B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 13(6): 747-751.
[2]
CSURKA G, DANCE C R, FAN L X, et al. Visual categorization with bags of key points[EB/OL]. [2011-02-28]. https://wenku.baidu.com/view/5baf27c2d5bbfd0a7956736e.html.
[3]
徐培罡, 张海青, 王超, 等. 基于多重分割关联子的高分辨率遥感场景分类[J]. 地理科学, 2018, 38(2):293-299.
XU P G, ZHANG H Q, WANG C, et al. High resolution remote sensing image classification based on multiple segmentation correlograms model[J]. Sci Geogr Sin, 2018, 38(2):293-299.DOI:10.13249/j.cnki.sgs.2018.02.016.
[4]
MÜLLEROVÁ J, PERGL J, PYŠEK P. Remote sensing as a tool for monitoring plant invasions:testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)[J]. Int J Appl Earth Obs Geoinformation, 2013, 25:55-65.DOI:10.1016/j.jag.2013.03.004.
[5]
李亮, 舒宁, 王琰. 利用归一化互信息进行基于像斑的遥感影像变化检测[J]. 遥感信息, 2011, 26(6):18-22.
LI L, SHU N, WANG Y. Segment-based remote sensing image change detection using normalized mutual information[J]. Remote Sens Inf, 2011, 26(6):18-22.
[6]
ZHANG C S, LI G J, CUI W H. High-resolution remote sensing image change detection by statistical-object-based method[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(7):2440-2447.DOI:10.1109/JSTARS.2018.2817121.
[7]
李春干, 代华兵. 基于统计检验的面向对象高分辨率遥感图像森林变化检测[J]. 林业科学, 2017, 53(5):74-81.
LI C G, DAI H B. Statistical object-based method for forest change detection using high-resolution remote sensing images[J]. Sci Silvae Sin, 2017, 53(5):74-81.
[8]
李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953,959.
LI L, SHU N, WANG K, et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geod Cartogr Sin, 2014, 43(9):945-953,959.DOI:10.13485/j.cnki.11-2089.2014.0138.
[9]
赵忠明, 孟瑜, 岳安志, 等. 遥感时间序列影像变化检测研究进展[J]. 遥感学报, 2016, 20(5):1110-1125.
ZHAO Z M, MENG Y, YUE A Z, et al. Review of remotely sensed time series data for change detection[J]. J Remote Sens, 2016, 20(5):1110-1125.
[10]
李权, 周兴社. 基于KPCA的多变量时间序列数据异常检测方法研究[J]. 计算机测量与控制, 2011, 19(4):822-825.
LI Q, ZHOU X S. Multivariate time series anomaly detection method based on KPCA[J]. Comput Meas Control, 2011, 19(4):822-825.DOI:10.16526/j.cnki.11-4762/tp.2011.04.071.
[11]
ZHANG C X, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS J Photogramm Remote Sens, 2020, 166:183-200.DOI:10.1016/j.isprsjprs.2020.06.003.
[12]
CHEN G, HAY G J, CARVALHO L M T, et al. Object-based change detection[J]. Int J Remote Sens, 2012, 33(14):4434-4457.DOI:10.1080/01431161.2011.648285.
[13]
ZANETTI M, BRUZZONE L. A theoretical framework for change detection based on a compound multiclass statistical model of the difference image[J]. IEEE Trans Geosci Remote Sens, 2018, 56(2):1129-1143.DOI:10.1109/TGRS.2017.2759663.
[14]
HOU B, WANG Y H, LIU Q J. A saliency guided semi-supervised building change detection method for high resolution remote sensing images[J]. Sensors (Basel), 2016, 16(9):1377.DOI:10.3390/s16091377.
[15]
LOWE D G. Object recognition from local scale-invariant features[C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. September 20-27,1999, Kerkyra,Greece: IEEE, 1999:1150-1157.DOI:10.1109/ICCV.1999.790410.
[16]
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. Int J Comput Vis, 2004, 60(2):91-110.DOI:10.1023/b:visi.0000029664.99615.94.
[17]
王芳, 王建, 谢兵, 等. 一种遥感影像自适应分割尺度的分类方法[J]. 测绘科学, 2019, 44(11):156-163.
WANG F, WANG J, XIE B, et al. Discussion on classification method of adaptive scale based on remote sensing image[J]. Sci Surv Mapp, 2019, 44(11):156-163.DOI:10.16251/j.cnki.1009-2307.2019.11.023.
[18]
金丹青. 基于马尔可夫随机场的图像分割方法研究[J]. 宁波教育学院学报, 2012, 14(1):51-55.
JIN D Q. Studying image segmentation based on Markov random field[J]. J Ningbo Inst Educ, 2012, 14(1):51-55.DOI:10.3969/j.issn.1009-2560.2012.01.015.
[19]
李鑫滨, 邱建坤, 韩松. 基于线性孪生支持向量机的特征选择方法[J]. 计算机工程与应用, 2016, 52(15):88-92.
LI X B, QIU J K, HAN S. Feature selection method based on linear twin support vector machine[J]. Comput Eng Appl, 2016, 52(15):88-92.DOI:10.3778/j.issn.1002-8331.1409-0368.
[20]
王立国, 赵亮, 刘丹凤. SVM在高光谱图像处理中的应用综述[J]. 哈尔滨工程大学学报, 2018, 39(6):973-983.
WANG L G, ZHAO L, LIU D F. A review on the application of SVM in hyperspectral image processing[J]. J Harbin Eng Univ, 2018, 39(6):973-983.DOI:10.11990/jheu.201704074.
[21]
邓开艳, 关春秋, 李雪艳. 基于地理国情普查数据的综合统计分析研究-以哈尔滨中心城区基本公共服务为例[J]. 测绘与空间地理信息, 2019, 42(12):136-138.
DENG K Y, GUAN C Q, LI X Y. Comprehensive statistical analysis study based on national geographic condition survey data: the case of basic public service of Harbin central urban area[J]. Geo & Spa Inf Tech, 2019, 42(12): 136-138. DOI: 10.3969/j.issn.1672-5867.2019.12.038.
[22]
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Trans Syst,Man,Cybern, 1973, SMC-3(6):610-621.DOI:10.1109/tsmc.1973.4309314.
[23]
郝剑南, 王瑞红. 纹理特征与面向对象结合的高分影像耕地提取应用[J]. 安徽农业科学, 2018, 46(19):72-75,136.
HAO J N, WANG R H. Application of high-resolution image farmland extraction combining texture feature and object-oriented[J]. J Anhui Agric Sci, 2018, 46(19):72-75,136.DOI:10.13989/j.cnki.0517-6611.2018.19.021.
[24]
OLIVA A, TORRALBA A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. Int J Comput Vis, 2001, 42(3):145-175.DOI:10.1023/A:1011139631724.
[25]
俞滨洋. 用科学发展观指导城市总体规划修编--以哈尔滨市城市总体规划修编为例[J]. 城市规划, 2006(S1):90-94.
[26]
哈尔滨市统计局. 哈尔滨统计年鉴:2010[M]. 北京: 中国统计出版社, 2010.

基金

国家自然科学基金项目(32171777)
黑龙江省应用技术研究与开发计划项目(GA20A301)

编辑: 郑琰燚
PDF(4191 KB)

Accesses

Citation

Detail

段落导航
相关文章

/