[1] |
ZHU Q, ZHONG Y, ZHANG B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 13(6): 747-751.
|
[2] |
CSURKA G, DANCE C R, FAN L X, et al. Visual categorization with bags of key points[EB/OL]. [2011-02-28]. https://wenku.baidu.com/view/5baf27c2d5bbfd0a7956736e.html.
|
[3] |
徐培罡, 张海青, 王超, 等. 基于多重分割关联子的高分辨率遥感场景分类[J]. 地理科学, 2018, 38(2):293-299.
|
|
XU P G, ZHANG H Q, WANG C, et al. High resolution remote sensing image classification based on multiple segmentation correlograms model[J]. Sci Geogr Sin, 2018, 38(2):293-299.DOI:10.13249/j.cnki.sgs.2018.02.016.
|
[4] |
MÜLLEROVÁ J, PERGL J, PYŠEK P. Remote sensing as a tool for monitoring plant invasions:testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)[J]. Int J Appl Earth Obs Geoinformation, 2013, 25:55-65.DOI:10.1016/j.jag.2013.03.004.
|
[5] |
李亮, 舒宁, 王琰. 利用归一化互信息进行基于像斑的遥感影像变化检测[J]. 遥感信息, 2011, 26(6):18-22.
|
|
LI L, SHU N, WANG Y. Segment-based remote sensing image change detection using normalized mutual information[J]. Remote Sens Inf, 2011, 26(6):18-22.
|
[6] |
ZHANG C S, LI G J, CUI W H. High-resolution remote sensing image change detection by statistical-object-based method[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(7):2440-2447.DOI:10.1109/JSTARS.2018.2817121.
|
[7] |
李春干, 代华兵. 基于统计检验的面向对象高分辨率遥感图像森林变化检测[J]. 林业科学, 2017, 53(5):74-81.
|
|
LI C G, DAI H B. Statistical object-based method for forest change detection using high-resolution remote sensing images[J]. Sci Silvae Sin, 2017, 53(5):74-81.
|
[8] |
李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953,959.
|
|
LI L, SHU N, WANG K, et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geod Cartogr Sin, 2014, 43(9):945-953,959.DOI:10.13485/j.cnki.11-2089.2014.0138.
|
[9] |
赵忠明, 孟瑜, 岳安志, 等. 遥感时间序列影像变化检测研究进展[J]. 遥感学报, 2016, 20(5):1110-1125.
|
|
ZHAO Z M, MENG Y, YUE A Z, et al. Review of remotely sensed time series data for change detection[J]. J Remote Sens, 2016, 20(5):1110-1125.
|
[10] |
李权, 周兴社. 基于KPCA的多变量时间序列数据异常检测方法研究[J]. 计算机测量与控制, 2011, 19(4):822-825.
|
|
LI Q, ZHOU X S. Multivariate time series anomaly detection method based on KPCA[J]. Comput Meas Control, 2011, 19(4):822-825.DOI:10.16526/j.cnki.11-4762/tp.2011.04.071.
|
[11] |
ZHANG C X, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS J Photogramm Remote Sens, 2020, 166:183-200.DOI:10.1016/j.isprsjprs.2020.06.003.
|
[12] |
CHEN G, HAY G J, CARVALHO L M T, et al. Object-based change detection[J]. Int J Remote Sens, 2012, 33(14):4434-4457.DOI:10.1080/01431161.2011.648285.
|
[13] |
ZANETTI M, BRUZZONE L. A theoretical framework for change detection based on a compound multiclass statistical model of the difference image[J]. IEEE Trans Geosci Remote Sens, 2018, 56(2):1129-1143.DOI:10.1109/TGRS.2017.2759663.
|
[14] |
HOU B, WANG Y H, LIU Q J. A saliency guided semi-supervised building change detection method for high resolution remote sensing images[J]. Sensors (Basel), 2016, 16(9):1377.DOI:10.3390/s16091377.
|
[15] |
LOWE D G. Object recognition from local scale-invariant features[C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. September 20-27,1999, Kerkyra,Greece: IEEE, 1999:1150-1157.DOI:10.1109/ICCV.1999.790410.
|
[16] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. Int J Comput Vis, 2004, 60(2):91-110.DOI:10.1023/b:visi.0000029664.99615.94.
|
[17] |
王芳, 王建, 谢兵, 等. 一种遥感影像自适应分割尺度的分类方法[J]. 测绘科学, 2019, 44(11):156-163.
|
|
WANG F, WANG J, XIE B, et al. Discussion on classification method of adaptive scale based on remote sensing image[J]. Sci Surv Mapp, 2019, 44(11):156-163.DOI:10.16251/j.cnki.1009-2307.2019.11.023.
|
[18] |
金丹青. 基于马尔可夫随机场的图像分割方法研究[J]. 宁波教育学院学报, 2012, 14(1):51-55.
|
|
JIN D Q. Studying image segmentation based on Markov random field[J]. J Ningbo Inst Educ, 2012, 14(1):51-55.DOI:10.3969/j.issn.1009-2560.2012.01.015.
|
[19] |
李鑫滨, 邱建坤, 韩松. 基于线性孪生支持向量机的特征选择方法[J]. 计算机工程与应用, 2016, 52(15):88-92.
|
|
LI X B, QIU J K, HAN S. Feature selection method based on linear twin support vector machine[J]. Comput Eng Appl, 2016, 52(15):88-92.DOI:10.3778/j.issn.1002-8331.1409-0368.
|
[20] |
王立国, 赵亮, 刘丹凤. SVM在高光谱图像处理中的应用综述[J]. 哈尔滨工程大学学报, 2018, 39(6):973-983.
|
|
WANG L G, ZHAO L, LIU D F. A review on the application of SVM in hyperspectral image processing[J]. J Harbin Eng Univ, 2018, 39(6):973-983.DOI:10.11990/jheu.201704074.
|
[21] |
邓开艳, 关春秋, 李雪艳. 基于地理国情普查数据的综合统计分析研究-以哈尔滨中心城区基本公共服务为例[J]. 测绘与空间地理信息, 2019, 42(12):136-138.
|
|
DENG K Y, GUAN C Q, LI X Y. Comprehensive statistical analysis study based on national geographic condition survey data: the case of basic public service of Harbin central urban area[J]. Geo & Spa Inf Tech, 2019, 42(12): 136-138. DOI: 10.3969/j.issn.1672-5867.2019.12.038.
|
[22] |
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Trans Syst,Man,Cybern, 1973, SMC-3(6):610-621.DOI:10.1109/tsmc.1973.4309314.
|
[23] |
郝剑南, 王瑞红. 纹理特征与面向对象结合的高分影像耕地提取应用[J]. 安徽农业科学, 2018, 46(19):72-75,136.
|
|
HAO J N, WANG R H. Application of high-resolution image farmland extraction combining texture feature and object-oriented[J]. J Anhui Agric Sci, 2018, 46(19):72-75,136.DOI:10.13989/j.cnki.0517-6611.2018.19.021.
|
[24] |
OLIVA A, TORRALBA A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. Int J Comput Vis, 2001, 42(3):145-175.DOI:10.1023/A:1011139631724.
|
[25] |
俞滨洋. 用科学发展观指导城市总体规划修编--以哈尔滨市城市总体规划修编为例[J]. 城市规划, 2006(S1):90-94.
|
[26] |
哈尔滨市统计局. 哈尔滨统计年鉴:2010[M]. 北京: 中国统计出版社, 2010.
|