
基于InVEST与ANN-CA模型的环洞庭湖区土地利用碳储量情景模拟
杨宇萍, 胡文敏, 贾冠宇, 李果, 李毅
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 175-184.
基于InVEST与ANN-CA模型的环洞庭湖区土地利用碳储量情景模拟
Scenario simulation integrating the ANN-CA model with the InVEST model to investigate land-based carbon storage in the Dongting Lake area
【目的】基于多模型模拟预测土地利用碳存储,为权衡环洞庭湖区的土地利用发展模式和提升区域固碳能力提供科学依据。【方法】以环洞庭湖区2005、2010、2015年土地利用变化为切入点,基于InVEST模型与人工神经网络CA(ANN-CA)模型,对碳存储进行量化和空间情景模拟,探讨环洞庭湖区水环境保护情景、生物多样性保护情景以及碳中和情景下的土地利用及其碳储量变化模式。【结果】①到2035年,环洞庭湖区在水环境保护情景下的主要土地利用变化为水域面积增长1.50 km2(增加0.02%),带来的碳储量变化程度极小;在生物多样性保护情景下的主要地类变化为林地增长10.78 km2(增加0.05%),可使碳储量增长27.10×106 t(增长44.28%);在碳中和情景下主要地类变化为耕地缩减432.02 km2(减少1.63%),导致碳储量减少0.81×106 t(减少1.64%);土地利用面积与碳储量变化呈正相关关系。②环洞庭湖区高程、坡度、到公路距离与碳储量呈负相关,向阳坡碳储量高于阴坡;影响环洞庭湖区土地利用变化的主要驱动因子为坡度、高程和人口密度。【结论】基于InVEST与ANN-CA模型可模拟多情景下的土地利用及碳储量,可为环洞庭湖区土地利用结构的优化配置以及生态保护和区域发展的权衡提供情景参考。
【Objective】Multi-model simulation was utilized to explore land-use associated carbon storage, providing scientific reference for development in the Dongting Lake area.【Method】Land-use changes from 2005, 2010 and 2015 were taken as the research object and InVEST and ANN-CA were used to quantitatively and spatially simulate the changing land-use patterns and the associated carbon storage around Dongting Lake under protection of the water environment and biodiversity. Different carbon neutralization scenarios are discussed.【Result】In terms of land use area and carbon stock changes in the Dongting Lake area, the main land type change under water protection is a 1.50 km2 (increase 0.02%) increase in the water area by 2035, which will lead to minimal carbon stock changes; the main land type change under biodiversity protection is a 10.78 km2 (increase 0.05%) increase in woodland, which will result in an increase of 27.10×106 t (increase 44.28%) of carbon stock; and the main land type change under carbon neutralization is a decrease of 432.02 km2 (reduce 1.63%) in the amount of arable land, resulting in a decrease of 0.81×106 t (reduce 1.64%) carbon stock. Positive correlation was observed between land use area and carbon stock changes. DEM, slope and distance to the highway were negatively correlated with carbon storage and more carbon stored on sunny slopes than shady slopes. The main driving factors affecting land-use changes in Dongting Lake area are slope, DEM and population density.【Conclusion】The use of InVEST and ANN-CA was beneficial in simulating land use and carbon storage under multiple scenarios and provided a reference for the optimal allocation of land to obtain balance between ecological protection and regional development in the Dongting Lake area.
环洞庭湖区 / 碳储量 / 人工神经网络CA模型 / InVEST模型
Dongting Lake area / carbon storage / artificial neural network CA model / InVEST model
[1] |
高扬, 何念鹏, 汪亚峰. 生态系统固碳特征及其研究进展[J]. 自然资源学报, 2013, 28(7): 1264-1274.
|
[2] |
|
[3] |
朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459.
|
[4] |
黎夏, 李丹, 刘小平, 等. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907.
|
[5] |
黎夏, 叶嘉安. 基于神经网络的元胞自动机及模拟复杂土地利用系统[J]. 地理研究, 2005, 24(1): 19-27.
|
[6] |
|
[7] |
|
[8] |
刘朋俊, 李茜楠, 李凯, 等. 基于ANN-CA的土地利用变化模拟应用研究[J]. 地理空间信息, 2020, 18(10): 20-24.
|
[9] |
|
[10] |
|
[11] |
王慧敏, 曾永年. 青海高原东部土地利用的低碳优化模拟——以海东市为例[J]. 地理研究, 2015, 34(7): 1270-1284.
|
[12] |
马良, 金陶陶, 文一惠, 等. InVEST模型研究进展[J]. 生态经济, 2015, 31(10): 126-131.
|
[13] |
|
[14] |
|
[15] |
邓正华, 戴丽琦, 邓冰, 等. 洞庭湖流域水资源承载力时空演变分析[J]. 经济地理, 2021, 41(5): 186-192.
|
[16] |
宁启蒙, 欧阳海燕, 汤放华, 等. 土地利用变化影响下洞庭湖地区景观格局的时空演变[J]. 经济地理, 2020, 40(9): 196-203.
|
[17] |
王丽婧, 田泽斌, 李莹杰, 等. 洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究, 2020, 33(5): 1140-1149.
|
[18] |
袁正科, 李星照, 田大伦, 等. 洞庭湖湿地景观破碎与生物多样性保护[J]. 中南林学院学报, 2006, 26(1): 109-116.
|
[19] |
刘斌寅, 卢宏亮. 基于ANN-CA模型的安徽省淮北市土地利用变化模拟[J]. 黑龙江工程学院学报, 2019, 33(3): 35-39.
|
[20] |
|
[21] |
揣小伟, 黄贤金, 郑泽庆, 等. 江苏省土地利用变化对陆地生态系统碳储量的影响[J]. 资源科学, 2011, 33(10): 1932-1939.
|
[22] |
陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测[J]. 遥感学报, 2002, 6(2): 129-135.
|
[23] |
陈仕栋, 方晰. 湖南省土壤有机碳库及其空间分布格局[J]. 中南林业科技大学学报, 2011, 31(5): 146-151.
|
[24] |
奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1): 58-67.
|
[25] |
解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(1):35-43.
|
[26] |
|
[27] |
奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3): 573-583.
|
[28] |
刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3): 397-409.
|
[29] |
李瑾璞, 夏少霞, 于秀波, 等. 基于InVEST模型的河北省陆地生态系统碳储量研究[J]. 生态与农村环境学报, 2020, 36(7): 854-861.
|
[30] |
陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007, 2(1): 34-42.
|
[31] |
|
[32] |
岳隽, 王仰麟, 李正国, 等. 河流水质时空变化及其受土地利用影响的研究——以深圳市主要河流为例[J]. 水科学进展, 2006, 17(3): 359-364.
|
[33] |
潘海啸. 面向低碳的城市空间结构——城市交通与土地使用的新模式[J]. 城市发展研究, 2010, 17(1): 40-45.
|
[34] |
柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响——以湖北省为例[J]. 生态学报, 2019, 39(2): 672-683.
|
[35] |
余娜, 李淑杰, 王灵芝, 等. 基于ANN-CA及AgentLA模型的农用地整治研究——以吉林省敦化市为例[J]. 地域研究与开发, 2019, 38(6): 136-140.
|
[36] |
孙赫, 梁红梅, 常学礼, 等. 中国土地利用碳排放及其空间关联[J]. 经济地理, 2015, 35(3): 154-162.
|
/
〈 |
|
〉 |