南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 175-184.doi: 10.12302/j.issn.1000-2006.202110020
杨宇萍1(), 胡文敏1,2,*(), 贾冠宇1, 李果1,2, 李毅3
收稿日期:
2021-10-10
修回日期:
2022-01-19
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 胡文敏(作者简介:
杨宇萍(基金资助:
YANG Yuping1(), HU Wenmin1,2,*(), JIA Guanyu1, LI Guo1,2, LI Yi3
Received:
2021-10-10
Revised:
2022-01-19
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】基于多模型模拟预测土地利用碳存储,为权衡环洞庭湖区的土地利用发展模式和提升区域固碳能力提供科学依据。【方法】以环洞庭湖区2005、2010、2015年土地利用变化为切入点,基于InVEST模型与人工神经网络CA(ANN-CA)模型,对碳存储进行量化和空间情景模拟,探讨环洞庭湖区水环境保护情景、生物多样性保护情景以及碳中和情景下的土地利用及其碳储量变化模式。【结果】①到2035年,环洞庭湖区在水环境保护情景下的主要土地利用变化为水域面积增长1.50 km2(增加0.02%),带来的碳储量变化程度极小;在生物多样性保护情景下的主要地类变化为林地增长10.78 km2(增加0.05%),可使碳储量增长27.10×106 t(增长44.28%);在碳中和情景下主要地类变化为耕地缩减432.02 km2(减少1.63%),导致碳储量减少0.81×106 t(减少1.64%);土地利用面积与碳储量变化呈正相关关系。②环洞庭湖区高程、坡度、到公路距离与碳储量呈负相关,向阳坡碳储量高于阴坡;影响环洞庭湖区土地利用变化的主要驱动因子为坡度、高程和人口密度。【结论】基于InVEST与ANN-CA模型可模拟多情景下的土地利用及碳储量,可为环洞庭湖区土地利用结构的优化配置以及生态保护和区域发展的权衡提供情景参考。
中图分类号:
杨宇萍,胡文敏,贾冠宇,等. 基于InVEST与ANN-CA模型的环洞庭湖区土地利用碳储量情景模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 175-184.
YANG Yuping, HU Wenmin, JIA Guanyu, LI Guo, LI Yi. Scenario simulation integrating the ANN-CA model with the InVEST model to investigate land-based carbon storage in the Dongting Lake area[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 175-184.DOI: 10.12302/j.issn.1000-2006.202110020.
表1
水环境保护、生物多样性保护和碳中和情景下ANN-CA模型的数据处理"
参数 parameter | 发展目标 development goal | 驱动因素 driving factor | 地类转换 land use type conversion | 参考像元数 number of reference pixel |
---|---|---|---|---|
水环境保护情景(情景Ⅰ) water environment protection scenario(Ⅰ) | 加强流域水资源面积及质量的保护,实现水资源可持续发展,保护水生态环境 | 高程、坡度、坡向、人口密度、到公路距离、到居民点距离、到水系距离 | 水域不可转化为城市用地;未利用地不可转换为城市用地 | 2025年为11 000; 2035年为13 000 |
生物多样性保护情景(情景Ⅱ) biodiversity protection scenario(Ⅱ) | 加强生态用地保护,促进山水林田湖草系统保护修复,保护生物多样性,提升生态环境 | 高程、坡度、坡向、人口密度、年均降水、年均温、到水系距离 | 林地不可转化为城市用地;草地不可转化为城市用地 | 2025年为10 500; 2035年为12 000 |
碳中和情景(情景Ⅲ) carbon neutralization scenario(Ⅲ) | 发展遵循环境友好的低碳模式,提升区域固碳能力 | 高程、坡度、坡向、人口密度、到公路距离、GDP、碳储量 | 草地不可转化为城市用地;未利用地不可转换为城市用地;林地不可转化为城市用地 | 2025年为12 000; 2035年为13 000 |
表2
Carbon density of different land use types in Dongting Lake area单位: kg/m2"
碳库 carbon pool | 耕地 arable land | 林地woodland | 草地 meadow | 水域 water area | 建设用地 construction land | 未利用地 unused land | ||||
---|---|---|---|---|---|---|---|---|---|---|
2005年 | 2010年 | 2015年 | 2025年 | 2035年 | ||||||
地上生物量碳密度 aboveground biomass carbon density | 5.82 | 7.64 | 8.79 | 9.83 | 12.23 | 14.50 | 1.34 | 2.79 | 2.28 | 1.19 |
地下生物量碳密度 underground biomass carbon density | 0.58 | 3.06 | 3.51 | 4.07 | 4.87 | 5.80 | 4.02 | 2.92 | 4.00 | 2.50 |
土壤碳密度 soil carbon density | 12.47 | 10.25 | 11.75 | 13.63 | 16.31 | 19.42 | 13.32 | 12.23 | 13.56 | 11.92 |
表3
研究区2005—2015年各地类面积占比及碳储量变化"
地类 land use type | 面积/km2 area | 平均面积 占比/% average area proportion | 面积占比 变化/% area change proportion | 碳储量/×106 t carbon storage | 碳储量 变化/×106 t carbon storage change | ||
---|---|---|---|---|---|---|---|
2005年 | 2015年 | 2005年 | 2015年 | ||||
耕地arable land | 27 411.89 | 26 520.04 | 44.29 | -1.47 | 51.32 | 49.61 | -1.71 |
林地woodland | 22 820.16 | 22 684.28 | 37.47 | -0.22 | 46.85 | 61.21 | 14.36 |
草地meadow | 838.55 | 782.21 | 1.32 | -0.09 | 1.71 | 1.60 | -0.11 |
水域water area | 7 424.82 | 7 491.62 | 12.27 | 0.11 | 13.89 | 13.99 | 0.10 |
建设用地construction land | 1 457.35 | 2 185.6 | 2.97 | 1.20 | 3.46 | 4.94 | 1.48 |
未利用地unused land | 825.25 | 1 114.27 | 1.68 | 0.48 | 1.31 | 1.76 | 0.45 |
合计total | 60 778.02 | 60 778.02 | 100.00 | 0 | 118.54 | 133.12 | 14.58 |
表4
水环境保护情景、生物多样性保护情景和碳中和情景下不同地类面积对比"
地类 land use type | 情景Ⅰ scenario Ⅰ | 情景Ⅱ scenario Ⅱ | 情景Ⅲ scenario Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
面积/km2 area | 变化比例/% change proportion | 面积/km2 area | 变化比例/% change proportion | 面积/km2 area | 变化比例/% change proportion | ||||
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||||
耕地arable land | 26 188.68 | 25 871.73 | -2.44 | 26 112.42 | 25 800.41 | -2.71 | 26 307.24 | 26 088.02 | -1.63 |
林地woodland | 22 290.76 | 22 179.33 | -2.23 | 22 683.69 | 22 695.06 | 0.05 | 22 503.86 | 22 453.12 | -1.02 |
草地meadow | 750.72 | 477.74 | 38.92 | 775.03 | 736.20 | -5.88 | 782.06 | 783.61 | 0.10 |
水域water area | 7 489.04 | 7 493.12 | 0.02 | 7 624.60 | 7 375.35 | -1.55 | 7 403.03 | 7 219.81 | -3.63 |
建设用地construction land | 2 944.34 | 3 642.36 | 66.65 | 2 483.22 | 3 145.43 | 43.92 | 2 668.42 | 3 119.83 | 42.74 |
未利用地unused land | 1 114.48 | 1 113.74 | -0.05 | 1 099.06 | 1 025.57 | -7.96 | 1 113.41 | 1 113.63 | -0.06 |
表5
2025年及2035年3种情景下的环洞庭湖区土地利用类型碳储量对比"
地类 land use type | 情景Ⅰ scenario Ⅰ | 情景Ⅱ scenario Ⅱ | 情景Ⅲ scenario Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
碳储量/×106 t carbon storage | 变化比例/% change proportion | 碳储量/×106 t carbon storage | 变化比例/% change proportion | 碳储量/×106 t carbon storage | 变化比例/% change proportion | ||||
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||||
耕地arable land | 49.01 | 48.39 | -2.47 | 48.90 | 48.31 | -2.62 | 49.21 | 48.80 | -1.64 |
林地woodland | 73.00 | 86.38 | 41.13 | 74.28 | 88.31 | 44.28 | 73.44 | 86.64 | 41.55 |
草地meadow | 1.54 | 0.97 | -38.91 | 1.58 | 1.50 | -5.85 | 1.60 | 1.60 | 0 |
水域water area | 13.99 | 13.99 | 0 | 14.19 | 13.77 | -1.59 | 13.89 | 13.50 | -3.52 |
建设用地construction land | 6.39 | 7.86 | 58.96 | 5.51 | 6.82 | 38.02 | 5.97 | 7.18 | 45.22 |
未利用地unused land | 1.76 | 1.76 | 0 | 1.74 | 1.63 | -7.50 | 1.76 | 1.76 | 0 |
表6
Distributions of carbon storage under different driving factors单位:×106 t"
驱动因素 driving factors | 范围 range | 情景Ⅰ scenario Ⅰ | 情景Ⅱscenario Ⅱ | 情景Ⅲ scenario Ⅲ | |||
---|---|---|---|---|---|---|---|
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||
坡向/(°) aspect | [0,67.5] | 28.17 | 30.37 | 28.27 | 30.85 | 28.14 | 30.57 |
(67.5,157.5] | 39.21 | 42.44 | 39.30 | 42.80 | 39.23 | 42.62 | |
(157.5,247.5] | 31.48 | 34.40 | 31.58 | 34.54 | 31.54 | 34.40 | |
(247.5,359.0] | 46.23 | 51.37 | 46.46 | 51.51 | 46.37 | 51.25 | |
坡度/(°) slope | [0,5] | 119.31 | 128.32 | 119.87 | 129.59 | 119.54 | 128.72 |
(5,15] | 22.17 | 26.03 | 22.14 | 25.91 | 22.14 | 25.90 | |
(15,35] | 3.36 | 3.94 | 3.34 | 3.92 | 3.34 | 3.92 | |
(35,45] | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
到公路距离/m distance to road | [0,2 000] | 86.88 | 93.77 | 87.40 | 95.11 | 87.05 | 94.27 |
(2 000,4 000] | 29.12 | 32.09 | 29.11 | 32.04 | 29.12 | 32.02 | |
(4 000,8 000] | 20.74 | 23.15 | 20.74 | 23.04 | 20.75 | 23.03 | |
(8 000,21 000] | 8.13 | 9.30 | 8.11 | 9.25 | 8.12 | 9.24 | |
高程/m DEM | [0,200] | 105.60 | 112.19 | 106.17 | 113.54 | 105.81 | 112.69 |
(200,500] | 27.37 | 32.17 | 27.37 | 32.03 | 27.38 | 32.01 | |
(500,1 000] | 10.07 | 11.86 | 10.04 | 11.78 | 10.05 | 11.78 | |
(1 000,1 900] | 1.82 | 2.10 | 1.79 | 2.08 | 1.80 | 2.08 |
[1] | 高扬, 何念鹏, 汪亚峰. 生态系统固碳特征及其研究进展[J]. 自然资源学报, 2013, 28(7): 1264-1274. |
GAO Y, HE N P, WANG Y F. Characteristics of carbon sequestration by ecosystem and progress in its research[J]. Journal of Natural Resources, 2013, 28(7):1264-1274.DOI:10.11849/zrzyxb.2013.07.018. | |
[2] | FANG J Y, YU G R, LIU L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018, 115(16):4015-4020. DOI:10.1073/pnas.1700304115. |
[3] | 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459. |
ZHU W B, ZHANG J J, CUI Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario: a case study in Qihe River basin[J]. Acta Geographica Sinica, 2019, 74(3):446-459. DOI:10.11821/dlxb201903004. | |
[4] | 黎夏, 李丹, 刘小平, 等. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907. |
LI X, LI D, LIU X P, et al. Geographical simulation and optimization system (GeoSOS) and its cutting-edge researches[J]. Advances in Earth Science, 2009, 24(8):899-907. DOI:10.3321/j.issn:1001-8166.2009.08.007. | |
[5] | 黎夏, 叶嘉安. 基于神经网络的元胞自动机及模拟复杂土地利用系统[J]. 地理研究, 2005, 24(1): 19-27. |
LI X, YE J A. Cellular automata for simulating complex land use systems using neural networks[J]. Geographical Research, 2005, 24(1): 19-27. DOI:10.3321/j.issn:1000-0585.2005.01.003. | |
[6] | LI X, ANTHONY G Y. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4): 323-343. DOI: 10.1080/13658810210137004. |
[7] | OPENSHAW S. Neural network, genetic, and fuzzy Logic models of spatial interaction[J]. Environment and Planning A: Economy and Space, 1998, 30(10): 1857-1872. DOI: 10.1068/a301857. |
[8] | 刘朋俊, 李茜楠, 李凯, 等. 基于ANN-CA的土地利用变化模拟应用研究[J]. 地理空间信息, 2020, 18(10): 20-24. |
LIU P J, LI Q N, LI K, et al. Research on land use changes simulation application based on ANN-CA[J]. Geospatial Information, 2020, 18(10):20-24.DOI:10.3969/j.issn.1672-4623.2020.10.005. | |
[9] | NOGUEIRA E M, YANAI A M, VASCONCELOS S D, et al. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia[J]. Regional Environmental Change, 2018, 18(1): 261-270. DOI:10.1007/s10113-017-1198-1. |
[10] | JIANG W G, DENG Y, TANG Z, et al. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models[J]. Ecological Modelling, 2017, 345: 30-40. DOI: 10.1016/j.ecolmodel.2016.12.002. |
[11] | 王慧敏, 曾永年. 青海高原东部土地利用的低碳优化模拟——以海东市为例[J]. 地理研究, 2015, 34(7): 1270-1284. |
WANG H M, ZENG Y N. Land use optimization simulation based on low-carbon emissions in eastern part of Qinghai Plateau[J]. Geographical Research, 2015, 34(7):1270-1284.DOI:10.11821/dlyj201507007. | |
[12] | 马良, 金陶陶, 文一惠, 等. InVEST模型研究进展[J]. 生态经济, 2015, 31(10): 126-131. |
MA L, JIN T T, WEN Y H, et al. The research progress of InVEST model[J]. Ecological Economy, 2015, 31(10): 126-131.DOI:10.3969/j.issn.1671-4407.2015.10.027. | |
[13] | HU W M, ZHOU W J, HE H S. The effect of land-use intensity on surface temperature in the Dongting Lake area, China[J]. Advances in Meteorology, 2015: 1-11. DOI:10.1155/2015/632151. |
[14] | HU W M, LI G, LI Z, et al. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands-two types of homogeneous lakes as examples[J]. Ecological Indicators, 2021, 130:108069.DOI: 10.1016/j.ecolind.2021.108069 |
[15] | 邓正华, 戴丽琦, 邓冰, 等. 洞庭湖流域水资源承载力时空演变分析[J]. 经济地理, 2021, 41(5): 186-192. |
DENG Z H, DAI L Q, DENG B, et al. Spatial-temporal evolution of water resources carrying capacity in Dongting Lake basin[J]. Economic Geography, 2021, 41(5):186-192.DOI:10.15957/j.cnki.jjdl.2021.05.020. | |
[16] | 宁启蒙, 欧阳海燕, 汤放华, 等. 土地利用变化影响下洞庭湖地区景观格局的时空演变[J]. 经济地理, 2020, 40(9): 196-203. |
NING Q M, OUYANG H Y, TANG F H, et al. Temporal and spatial evolution of landscape pattern in Dongting Lake area under the influence of land use change[J]. Economic Geography, 2020, 40(9):196-203.DOI: 10.15957/j.cnki.jjdl.2020.09.021. | |
[17] | 王丽婧, 田泽斌, 李莹杰, 等. 洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究, 2020, 33(5): 1140-1149. |
WANG L J, TIAN Z B, LI Y J, et al. Trend and driving factors of water environment change in Dongting Lake in the last 30 years[J]. Research of Environmental Sciences, 2020, 33(5):1140-1149.DOI:10.13198/j.issn.1001-6929.2020.03.08. | |
[18] | 袁正科, 李星照, 田大伦, 等. 洞庭湖湿地景观破碎与生物多样性保护[J]. 中南林学院学报, 2006, 26(1): 109-116. |
YUAN Z K, LI X Z, TIAN D L, et al. Wetland landscape fragmentation and bio-diversity protection of Dongting Lake[J]. Journal of central south forestry college, 2006, 26(1):109-116.DOI: 10.3969/j.issn.1673-923X.2006.01.010. | |
[19] | 刘斌寅, 卢宏亮. 基于ANN-CA模型的安徽省淮北市土地利用变化模拟[J]. 黑龙江工程学院学报, 2019, 33(3): 35-39. |
LIU B Y, LU H L. Simulation of land use change in Huaibei City,Anhui Province based on ANN-CA model[J]. Journal of Heilongjiang Institute of Technology, 2019, 33(3):35-39. DOI: 10.19352/j.cnki.issn1671-4679.2019.03.007. | |
[20] | HU W M, LI G, GAO Z H, et al. Assessment of the impact of the poplar ecological retreat project on water conservation in the Dongting Lake wetland region using the InVEST model[J]. Science of The Total Environment, 2020, 733: 139423. DOI: 10.1016/j.scitotenv.2020.139423 |
[21] | 揣小伟, 黄贤金, 郑泽庆, 等. 江苏省土地利用变化对陆地生态系统碳储量的影响[J]. 资源科学, 2011, 33(10): 1932-1939. |
CHUAI X W, HUANG X J, ZHENG Z Q, et al. Land use change and its influence on carbon storage of terrestrial ecosystems in Jiangsu Province[J]. Resources Science, 2011, 33(10):1932-1939.DOI:CNKI:SUN:ZRZY.0.2011-10-016. | |
[22] | 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测[J]. 遥感学报, 2002, 6(2): 129-135. |
CHEN L J, LIU G H, LI H G. Estimating net primary productivity of terrestrial vegetation in China using remote sensing[J]. Journal of Remote Sensing, 2002, 6(2):129-135.DOI: 10.11834/jrs.20020210. | |
[23] | 陈仕栋, 方晰. 湖南省土壤有机碳库及其空间分布格局[J]. 中南林业科技大学学报, 2011, 31(5): 146-151. |
CHEN S D, FANG X. Studies of spatial distribution pattern of soil organic carbon in Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2011, 31(5):146-151.DOI: 10.3969/j.issn.1673-923X.2011.05.026. | |
[24] | 奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1): 58-67. |
XI X H, ZHANG J X, LIAO Q L, et al. Multi-purpose regional geochemical survey and soil carbon reserves problem: examples of Jiangsu, Hunan, Sichuan, Jilin Provinces and Inner Mongolia[J]. Quaternary Sciences, 2008, 28(1):58-67.DOI: 10.3321/j.issn:1001-7410.2008.01.007. | |
[25] | 解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(1):35-43. |
XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 2004, 41(1):35-43.DOI: 10.11766/trxb200301140106. | |
[26] | FANG J Y, WANG G G, LIU G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8(4): 1084.DOI:10.2307/2640963. |
[27] | 奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3): 573-583. |
XI X H, YANG Z F, LIAO Q L, et al. Soil organic carbon storage in typical regions of China[J]. Quaternary Sciences, 2010, 30(3):573-583.DOI:10.3969/j.issn.1001-7410.2010.03.16. | |
[28] | 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3): 397-409. |
LIU X J, LI X, LIANG X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3):397-409. DOI:10.13284/j.cnki.rddl.003138. | |
[29] | 李瑾璞, 夏少霞, 于秀波, 等. 基于InVEST模型的河北省陆地生态系统碳储量研究[J]. 生态与农村环境学报, 2020, 36(7): 854-861. |
LI J P, XIA S X, YU X P, et al. Evaluation of carbon storage on terrestrial ecosystem in Hebei Province based on InVEST model[J]. Journal of Ecology and Rural Environment, 2020, 36(7): 854-861.DOI:10.19741/j.issn.1673-4831.2019.0918. | |
[30] | 陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007, 2(1): 34-42. |
CHEN G S, YANG Y S, LIU L Z, et al. Research review on total belowground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007, 2(1):34-42.DOI: 10.3969/j.issn.1673-7105.2007.01.005. | |
[31] | CALVO B E, TANABE K, KRANJC A, et al. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Switzerland: IPCC, 2019. |
[32] | 岳隽, 王仰麟, 李正国, 等. 河流水质时空变化及其受土地利用影响的研究——以深圳市主要河流为例[J]. 水科学进展, 2006, 17(3): 359-364. |
YUE J, WANG Y L, LI Z G, et al. Spatial-temporal trends of water quality and its influence by land use: a case study of the main rivers in Shenzhen[J]. Advances in Water Science, 2006, 17(3):359-364. DOI:10.3321/j.issn:1001-6791.2006.03.011. | |
[33] | 潘海啸. 面向低碳的城市空间结构——城市交通与土地使用的新模式[J]. 城市发展研究, 2010, 17(1): 40-45. |
PAN H X. Urban spatial structure towards low carbon: new urban transport and land use model[J]. Urban Development Studies, 2010, 17(1):40-45.DOI: 10.3969/j.issn.1006-3862.2010.01.007. | |
[34] | 柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响——以湖北省为例[J]. 生态学报, 2019, 39(2): 672-683. |
KE X L, TANG L P. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province,China[J]. Acta Ecologica Sinica, 2019, 39(2):672-683.DOI:10.5846/stxb201712042177. | |
[35] | 余娜, 李淑杰, 王灵芝, 等. 基于ANN-CA及AgentLA模型的农用地整治研究——以吉林省敦化市为例[J]. 地域研究与开发, 2019, 38(6): 136-140. |
YU N, LI S J, WANG L Z, et al. Agricultural land reclamation based on ANN-CA and AgentLA model: a case study of Dunhua City in Jilin Province[J]. Areal Research and Development, 2019, 38(6):136-140.DOI:10.3969/j.issn.1003-2363.2019.06.025. | |
[36] | 孙赫, 梁红梅, 常学礼, 等. 中国土地利用碳排放及其空间关联[J]. 经济地理, 2015, 35(3): 154-162. |
SUN H, LIANG H M, CHANG X L, et al. Land use patterns on carbon emission and spatial association in China[J]. Economic Geography, 2015, 35(3):154-162. DOI:10.15957/j.cnki.jjdl.2015.03.023. |
[1] | 张莹, 王让会, 刘春伟, 周丽敏. 祁连山自然保护区生境质量模拟及预测[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 135-144. |
[2] | 沈浩, 姜姜, 周晨, 潘庆全. 江西石城不同起源阔叶林碳储量驱动因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 185-190. |
[3] | 朱志洪, 周本智, 王懿祥, 祁军, 李爱博, 黄润霞. 近30年千岛湖流域产水量时空变化及其影响因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 111-119. |
[4] | 张育诚, 韩念龙, 胡珂, 于淼, 黎兴强. 海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 115-122. |
[5] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[6] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[7] | 李潇, 杨加猛, 陈禹衡, 毛岭峰, 葛之葳. 基于土地利用变化的江苏盐城湿地自然保护区生境质量评估[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 169-176. |
[8] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[9] | 肖君. 福建省天然乔木林碳储量动态变化及增汇策略[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 27-32. |
[10] | 王有良, 林开敏, 宋重升, 崔朝伟, 彭丽鸿, 郑宏, 郑鸣鸣, 任正标, 邱明镜. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73. |
[11] | 辛士冬, 姜立春, 穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 115-121. |
[12] | 吴国训,唐学君,阮宏华,罗细芳. 基于森林资源清查的江西省森林碳储量及固碳潜力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 105-110. |
[13] | 范立红,朱建华,李奇,冯源,肖文发. 三峡库区土地利用/覆被变化对碳储量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 53-60. |
[14] | 孟雪,刘雪惠,高媛赟,刘俊,温小荣,林国忠,徐达. 基于区域转换因子的不同立地质量阔叶林碳储量估测[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 87-92. |
[15] | 韩会庆,罗绪强,游仁龙,罗晓珊,陈瑶. 基于InVEST模型的贵州省珠江流域水质净化功能分析[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 87-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||