基于NDVI与DEM的山地植被垂直带定量划分——以太白山南坡为例

赵婷, 白红英, 邓晨晖, 他志杰

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 165-171.

PDF(1922 KB)
PDF(1922 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 165-171. DOI: 10.12302/j.issn.1000-2006.202110028
研究论文

基于NDVI与DEM的山地植被垂直带定量划分——以太白山南坡为例

作者信息 +

A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope

Author information +
文章历史 +

摘要

【目的】 利用遥感与地理信息技术,剖析不同植被类型植被指数与海拔的关系,实现山地植被垂直带的准确划分,获取山区植被分布空间格局。【方法】 以秦岭主峰太白山南坡为研究区,依据夏秋两季植被垂直带归一化植被指数(NDVI)的差值构建DEM-NDVI散点图,并利用半峰宽计算法将垂直带边界量化。【结果】 夏秋NDVI差值与DEM构建的散点图能够很好地体现出山地植被垂直带分布格局。太白山保护区南坡可划分6个植被垂直带,保护区下界至海拔1 919 m为栎林,1 919~2 331 m为松栎混交林,2 115~2 585 m为桦林,2 516~3 150 m为冷杉林,3 109~3 551 m为红杉林,3 551 m至山顶为高山灌丛草甸。DEM-NDVI散点图与遥感影像解译植被分类结果相比,二者的植被分布格局基本一致,但DEM-NDVI散点图能够体现植被的群体平均分布状况且能更准确地表达植被垂直带随海拔的变化特征。【结论】 利用夏秋NDVI差值与海拔所构建的散点图可快捷准确地划分山地植被垂直带。

Abstract

【Objective】 Our aim was to evaluate the accuracy of mapping vegetation distribution along the southern slope of the Taibai Mountains using remote sensing and geographic information technology.【Method】We quantified the boundary of vertical vegetation zoning by half-peak width calculation in a mountains digital elevation medel-normalized difference regetation index (DEM-NDVI) scatter map based on different NDVI between summer and autumn in the Taibai Mountains of Qinling.【Result】The scatter map constructed by NDVI differences in summer and autumn and DEM well reflected well the vertical distribution pattern of mountain vegetation. The south slope of Taibai Mountain Reserve could be divided into six vertical vegetation zones: oak forest distributed in 1 509-1 919 m, pine-oak mixed forest distributed in 1 919-2 331 m, birch forest distributed in 2 115-2 585 m, Abies forest distributed in 2 516-3 150 m, Larix chinensis forest distributed in 3 109-3 551 m, and alpine scrub meadow distributed above 3 551 m to the peak. Compared with vegetation classification results interpreted from remote sensing images, the DEM-NDVI scatter map was basically consistent with the distribution pattern of vegetation vertical belt, but the DEM-NDVI scatter map could reflect the average distribution of vegetation and more accurately expressed the variation characteristics of vegetation vertical zoning with altitudes.【Conclusion】The scatter map based on different NDVI between summer and autumn at different altitudes can quickly and accurately divide the vertical zone of mountain vegetation.

关键词

植被垂直带 / DEM / 归一化植被指数(NDVI) / 太白山

Key words

vegetation vertical belt / digital elevation model(DEM) / normalized difference vegetation index (NDVI) / Taibai Mountain

引用本文

导出引用
赵婷, 白红英, 邓晨晖, . 基于NDVI与DEM的山地植被垂直带定量划分——以太白山南坡为例[J]. 南京林业大学学报(自然科学版). 2023, 47(5): 165-171 https://doi.org/10.12302/j.issn.1000-2006.202110028
ZHAO Ting, BAI Hongying, DENG Chenhui, et al. A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(5): 165-171 https://doi.org/10.12302/j.issn.1000-2006.202110028
中图分类号: Q948;K73;S718   

参考文献

[1]
刘家福, 马帅, 李帅, 等. 1982—2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018, 38(21):7647-7657.
LIU J F, MA S, LI S, et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of northeast China[J]. Acta Ecol Sin, 2018, 38(21):7647-7657.DOI: 10.5846/stxb201712112226.
[2]
HAMILTON A C, PERROTT R A. A study of altitudinal zonation in the montane forest belt of Mt.Elgon,Kenya/Uganda[J]. Vegetatio, 1981, 45(2):107-125.DOI: 10.1007/BF00119220.
[3]
ZHANG B P, YAO Y H. Implications of mass elevation effect for the altitudinal patterns of global ecology[J]. J Geogr Sci, 2016, 26(7):871-877.DOI: 10.1007/s11442-016-1303-2.

The varied altitudinal gradient of climate and vegetation is further complicated by mass elevation effect (MEE), especially in high and extensive mountain regions. However, this effect and its implications for mountain altitudinal belts have not been well studied until recently. This paper provides an overview of the research carried out in the past 5 years. MEE is virtually the heating effect of mountain massifs and can be defined as the temperature difference on a given elevation between inside and outside of a mountain mass. It can be digitally modelled with three factors of intra-mountain base elevation (MBE), latitude and hygrometric continentality; MBE usually acts as the primary factor for the magnitude of MEE and, to a great extent, could represent MEE. MEE leads to higher treelines in the interior than in the outside of mountain masses. It makes montane forests to grow at 4800-4900 m and snowlines to develop at about 6000 m in the southern Tibetan Plateau and the central Andes, and large areas of forests to live above 3500 m in a lot of high mountains of the world. The altitudinal distribution of global treelines can be modelled with high precision when taking into account MEE and the result shows that MEE contributes the most to treeline distribution pattern. Without MEE, forests could only develop upmost to about 3500 m above sea level and the world ecological pattern would be much simpler. The quantification of MEE should be further improved with higher resolution data and its global implications are to be further revealed.

[4]
王青, 石敏球, 郭亚琳, 等. 岷江上游山区聚落生态位垂直分异研究[J]. 地理学报, 2013, 68(11):1559-1567.
摘要
以岷江上游山区聚落为研究对象,采用生态位的方法,利用遥感资料和GIS技术,提取岷江上游山区空间信息,定量研究山区聚落生态位影响尺度、人口密度及民族类型带谱垂直分异特征,并建立民族聚落生态位类型图谱。研究表明:聚落生态位地理半径随着海拔升高而增大,其数值介于300~600 m;相反,聚落生态位人口密度却随着海拔升高而递减,其数值介于200~630 人/km<sup>2</sup>;聚落生态位地理半径和人口密度的垂直分异特征,是山区居民长期适应山地环境的结果,与民族类型及其生计方式密切相关。在流域尺度上,岷江上游作为我国西南地区的一条民族廊道,聚落生态位民族类型空间格局具有典型的带谱特征:藏族和回族聚落生态位均处于河流干支流的上部,羌族聚落生态位对应于干旱河谷和V型河谷上部的低半山缓坡地带,汉族聚落生态位位于岷江上游入口处的河谷地带。
WANG Q, SHI M Q, GUO Y L, et al. The vertical differentiation of the mountain settlement niche in the upper reaches of Minjiang River[J]. Acta Geogr Sin, 2013, 68(11):1559-1567.DOI: 10.11821/dlxb201311011.
Based on remote sensing data and the geographic information system, the spatial information of the human settlements in the upper reaches of Minjiang River was extracted. Then, using the method of niche, the geo-information spectra of human settlement niches were established, including their spatial influence scopes, population densities and nationality types. The results show that: the radius in geography of settlement niche increases as altitude increases, spanning from 300-600 m; on the contrary, the population density decreases as altitude increases, ranging from 200-630 people/km<sup>2</sup>. The vertical differentiation characteristics, namely the radius in physical geography and the population density of settlement niche, reflect the adaptation of local residents to the mountain environment in the periods of historical evolution, which is closely related with the characteristics of the nationalities and their livelihoods. In basin scale, the spatial pattern of settlement niche of national types in the upper reaches of Minjiang River, as one of the national corridors in Southwest China, has some typical characteristics, (1) the settlement niches of Tibetan and Hui nationalities are located in the upper reaches of the main stream and tributaries, (2) the settlement niche of Qiang nationality lies in the arid valley and the gentle slope of the upper V-shaped valley, (3) the settlement niche of Han nationality is located in the valley of the entrance of the upper reaches of Minjiang River. The paper presents important models for clarifying the range of human activities in mountain areas, and useful ways for macro-regulation of the local governments.
[5]
马明哲, 申国珍, 熊高明, 等. 神农架自然遗产地植被垂直带谱的特点和代表性[J]. 植物生态学报, 2017, 41(11):1127-1139.
摘要
充分认识并掌握我国自然遗产地山地植被垂直带谱代表性, 对正确评估自然遗产地的价值进而制定相关保护管理政策具有重要的科学意义和现实意义。该研究基于群落调查数据、全球1 km<sup>2</sup>土地利用数据, 通过对比分析、空间分析等方法, 从植被垂直带谱的地带性、完整性及不同垂直带群落物种更替等角度, 分析论证了神农架自然遗产地植被垂直带谱的代表性。结果显示: 神农架自然遗产地从低海拔到高海拔依次发育有常绿阔叶林带(遗产地南坡)、常绿落叶阔叶混交林带、落叶阔叶林带、针阔混交林带、针叶林带及亚高山灌丛和草甸带, 其北坡保存的地带性常绿落叶阔叶混交林是北半球常绿落叶阔叶混交林生态系统的最典型代表。神农架自然遗产地拥有的植被垂直带谱是“全球生物地理区划”中东方落叶林生物地理省最完整的植被垂直带谱, 在东方落叶林生物地理省具有唯一性和代表性, 在较小的水平距离范围内浓缩了中亚热带、北亚热带、暖温带、温带和寒温带等生态系统特征, 成为研究全球气候变化下山地生态系统垂直分异规律及其生态学过程的杰出范例, 具有突出的世界自然遗产价值。
MA M Z, SHEN G Z, XIONG G M, et al. Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage[J]. Chin J Plant Ecol, 2017, 41(11):1127-1139.DOI: 10.17521/cjpe.2017.0092.
[6]
李春干, 谭必增. 基于“3S”的红树林资源调查方法研究[J]. 自然资源学报, 2003, 18(2):215-221.
LI C G, TAN B Z. Studies on the methods of mangrove inventory based on RS,GPS and GIS[J]. J Nat Resour, 2003, 18(2):215-221.DOI: 10.11849/zrzyxb.2003.02.014.
In this paper,the method of mangrove inventory combined"3S"with ground invento-ry was studied.Through adopting a series of technological methods including image processing,visual interpretation and mangrove mapping,in-situ checking and correcting the boundary line of the sub-compartment of the map,woods condition factor inventory and GIS space analysis,a number of technological problems have been solved effectively and a kind of scientific method for mangrove inventory has been advanced.These technological problems include that the low area precision and inadequate accuracy of the spatial position localization of the general method,low classification precision of remote sensing,and the low efficiency and the great labor intensity of the method of GPS.
[7]
张桥英, 张运春, 罗鹏, 等. 白马雪山阳坡林线方枝柏种群的生态特征[J]. 植物生态学报, 2007, 31(5):857-864.
ZHANG Q Y, ZHSNG Y C, LUO P, et al. Ecological characteristics of cypress population in yang-slope forest line of Baima Mountain[J]. Chinese Journal of Plant Ecology, 2007, 31(5):857-864.
[8]
MIHAI B, SAVULESCU I, SANDRIC I. Change detection analysis (1986—2002) of vegetation cover in Romania[J]. Mt Res Dev, 2007, 27(3):250-258.DOI: 10.1659/mred.0645.
[9]
SITKO I, TROLL M. Timberline changes in relation to summer farming in the western chornohora (Ukrainian carpathians)[J]. Mt Res Dev, 2008, 28(3/4):263-271.DOI: 10.1659/mrd.0963.
[10]
李伟涛. 高分辨率遥感森林植被分类提取研究[D]. 北京: 北京林业大学, 2016.
LI W T. Forest vegetation classification using high resolution remote sensing image[D]. Beijing: Beijing Forestry University, 2016.
[11]
张俊瑶, 姚永慧, 索南东主, 等. 基于垂直带谱的太白山区山地植被遥感信息提取[J]. 地球信息科学学报, 2019, 21(8):1284-1294.
摘要
遥感数据因其全覆盖的优势被广泛应用于山地植被信息的调查和研究。为了实现山区植被类型的高精度提取,本文以太白山区为实验区,结合山地植被的垂直地带性分布规律,利用太白山植被垂直带谱、高分辨率遥感影像(GF1/GF2/ZY3)和1:1万的数字表面模型(Digital Surface Model, DSM)数据,进行了多层次、多尺度的影像分割,构建了具有植被垂直带谱信息的地形约束因子,并据此进行样本选择和面向对象的分类,分类总精度达92.9%,kappa系数达到0.9160。该方法相比于未辅以垂直带谱信息的分类,总精度提高了10%。研究结果表明,分类过程中加入具有垂直带谱信息的地形约束因子,能显著地提高样本选择的效率和准确率,为后续的植被分类提供了精度的保证。通过人机交互的方式,将垂直带谱知识应用到分类中,可以有效地提高山地植被分类的精度。
ZHANG J Y, YAO Y H, SUONAN D Z, et al. Mapping of mountain vegetation in Taibai Mountain based on mountain altitudinal belts with remote sensing[J]. J Geo Inf Sci, 2019, 21(8):1284-1294.DOI: 10.12082/dqxxkx.2019.180650.
[12]
DANZEGLOOCKE J, OLUIC M. Remote sensing of upper timberline elevation in the Alps on different scales[C]// DUBROVNIK C. New strategies for European remote sensing. Proceedings of the 24th Symposium of the European Association of Remote Sensing Laboratories. Rotterdam,Netherlands: Millpress Science Publishers, 2005:145-151.
[13]
DANZEGLOCKE J, MENZ G. Analysis of upper timberline elevation in the European Alps using MODIS data[C]// IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium. September 20-24,2004,Anchorage,AK,USA.IEEE, 2004:2373-2376.DOI: 10.1109/IGARSS.2004.1369765.
[14]
常纯, 王心源, 杨瑞霞, 等. 基于DEM-NDVI的高山植被带定量刻划[J]. 地理研究, 2015, 34(11):2113-2123.
摘要
根据不同高山植被类型具有不同归一化植被指数响应的特点,通过对NDVI的分析来定量刻划高山植被带的海拔分布。首先,利用DEM、NDVI构建DEM-NDVI散点分布图;然后,结合地面调查资料与WorldView-2高分遥感影像对DEM-NDVI散点分布图进行统计回归分析;最后,利用分析结果定量刻划高山植被垂直分带结构。将该方法应用于四川卧龙大熊猫保护区的卧龙关沟,结果表明:① NDVI随海拔升高而呈“Z”字形变化;② DEM-NDVI散点图比样本点DEM-NDVI分布图能更完全地表达高山植被NDVI随高程变化的特征;③ 卧龙关沟东北坡高山植被带海拔高度为3255~4415 m,西南坡高山植被带海拔高度为3193~4473 m,与地面调查得到的区域代表植被的分布高度基本一致。
CHANG C, WANG X Y, YANG R X, et al. A quantitative characterization method for alpine vegetation zone based on DEM and NDVI[J]. Geogr Res, 2015, 34(11):2113-2123.DOI: 10.11821/dlyj201511010.

Alpine vegetations, whose distribution vary with changing altitudes, are located in inaccessible areas under cold climate condition. This has caused great challenges in terms of quantitatively characterizing the spatial distribution of alpine vegetation. For example, extremely huge time and money costs are the inevitable handicaps in traditional ground transects and quadrat surveys. Moreover, ground transects, and quadrat survey methods may cause some errors when local ecological features are used to characterize the expanded region. Based on the theory that vegetation of different types have different normalized difference vegetation index (NDVI) responses, NDVI analysis in this study was used to quantitatively characterize the spatial distribution of alpine vegetation. Firstly, a DEM-NDVI scatter diagram was plotted based on DEM and NDVI data. Secondly, statistical regression analysis was conducted in combination of ground survey data, high resolution remote sensing images with the DEM-NDVI scatter diagram. The spatial distribution of alpine vegetation was then derived upon the analysis results. We applied the method to a test area, Wolongguangou, Wolong Giant Panda Reserve. The results demonstrated that: (1) NDVI presented a 'Z' pattern as the altitude increased. (2) The DEM-NDVI scatter diagram expressed the NDVI variation of alpine vegetation more completely when compared to a traditional sample-point DEM-NDVI plot. (3) The elevations of alpine vegetation ranged from 3255 m to 4415 m on the northeast slope and 3193 m to 4473 m on the southwest slope, respectively. This finding was favorably consistent with the ground survey results in the respective regions.

[15]
冀欣阳, 骆磊, 王心源, 等. 基于 “DEM-DNVI-土地覆盖分类” 的天山博格达自然遗产地山地垂直带提取与变化分析[J]. 地球信息科学学报, 2018, 20(9):1350-1360.
摘要
本文基于Landsat影像数据获取天山博格达自然遗产地土地覆盖分类,结合归一化植被指数(NDVI)和数字高程模型(DEM)构建“DEM-NDVI-土地覆盖分类”散点图分析研究区植被受海拔和坡向的水热空间变化影响的分布特征,通过概率统计分析提取博格达遗产地山地垂直带,并结合研究区的气温、降水数据和NDVI变化特征分析垂直带变化的原因。研究结果表明:① 本文利用“DEM-NDVI-土地覆盖分类”散点图,揭示了研究区1989年和2016年的NDVI值和分类类别随着海拔上升的变化特征,其中NDVI值随着海拔上升呈现“倒U形”变化,而不同分类类别在一定的海拔区间内呈现出聚集效应,且不同分类类别有明显的高程界限。② 1989年和2016年博格达遗产地山地垂直带分带上限分别为:1278 m和1185 m(温带荒漠草原带)、1784 m和1759 m(山地草原带)、2706 m和2730 m(山地针叶林带)、3272 m和3293 m(高山草甸带)、3636 m和3690 m(高山垫状植被带)。③ 博格达遗产地1989年和2016年山地垂直带受区域气温升高和降雨增加的影响有较为明显的改变,其中温带荒漠草原带最为敏感,其上限变化最大,向下收缩93 m;山地针叶林带的分布范围则向两侧扩张49 m;山地草甸带带宽基本保持不变,但整体上移了约20 m;冰雪带则受到全球气候变暖的影响向上退缩54 m。
JI X Y, LUO L, WANG X Y, et al. Identification and change analysis of mountain altitudinal zone in Tianshan Bogda Natural Heritage Site based on “DEM-DNVI-land cover classification”[J]. J Geo Inf Sci, 2018, 20(9):1350-1360.
[16]
廖颖. 王朗自然保护区亚高山植被垂直带精细观测与定量刻划[D]. 北京: 中国科学院大学, 2016.
LIAO Y. Fine observation and quantitative characterization of subalpine vegetation vertical zone in Wanglang Nature Reserve[D]. Beijing: University of Chinese Academy of Sciences, 2016.
[17]
岳明. 秦岭植物垂直带谱完整复杂[J]. 森林与人类, 2015(2):76-81.
YUE M. The vertical band spectrum of plants in Qinling Mountains is complete and complex[J]. For & Humankind, 2015(2):76-81.
[18]
岳明, 许跃波. 植物的秦岭[J]. 森林与人类, 2014(2):14-25.
YUE M, XU Y B. Qinling Mountains of plants[J]. For & Humankind, 2014(2):14-25.
[19]
尚升海, 邢海虹. 秦岭南北坡植被垂直分布的差异比较[J]. 吉林农业, 2016(1):114-115.
SHANG S H, XING H H. Comparison of vertical distribution of vegetation on the north and south slopes of Qinling Mountains[J]. Agric Jilin, 2016(1):114-115.DOI: 10.14025/j.cnki.jlny.2016.01.057.
[20]
李海宁. 太白山北坡植物物种多样性及其垂直分布格局研究[D]. 西安: 陕西师范大学, 2007.
LI H N. Studies on the species diversity and vertical distribution pattern on northern slopes of Mt.Taibai[D]. Xi’an: Shaanxi Normal University, 2007.
[21]
雷梅, 陈同斌, 冯立孝, 等. 太白山北坡成土因素及不同土壤垂直带谱的比较[J]. 地理研究, 2001, 20(5):583-592.
LEI M, CHEN T B, FENG L X, et al. Soil formation factors and comparison among different altitudinal zonations of the soils on northern slope of the Taibai Mountains[J]. Geogr Res, 2001, 20(5):583-592.
<p>The altitudinal zonation of natural landscape have distinct characteristics on the northern slope of the grand Taibai Mountains. The landforms consist of the higher district of the mountain all over which glaciers remain scattered, the middle district characterized by stone forest, and the lower district covered with loess. The mountain climate may be divided into four zonations: subfrigid zonation&rarr;frigid-temperate zonation&rarr;temperate zonation &rarr;warm-temperate zonation. The altitudinal vegetation zonations are : zonation of alpine shrubby meadow &rarr;alpine conifer zonation &rarr;birch zonation &rarr;zonation of mixed Form. plnus armandi, Quercus and deciduous broad-leaved forests &rarr;low mountain and hill dry deciduous broad-leaved forests and oriental arborvitae zonation. Influenced by those factors, the representative altitudinal zonations of the soils have been formed on the northern slope of the Taibai Mountains. But when pedogenetic classification was applied, there were many different classification results of the soil altitudinal zonations on the northern slope of the Taibai Mountains. Because the pedogenentic classification was based on the biologic and climatic conditions, and the soil forming processes, the central conceptions were emphasized but the boundaries of the conceptions were neglected in the pedogenetic classification. For convenience of international communication, the Chinese Soil Taxonomy was published in 1995. Then the characterizations and the factors of soil formation were investigated on the northern slope. According to the Chinese Soil Taxonomy (revised proposal), the result of the soil Taxonomy is obtained:Umb-Cryic Cambisols (>3 500m) &rarr;Mol-Cryic Cambisols (3 300~3 500m) &rarr;Acid-Udic Cambisols(2 500~3 300m) &rarr;Hap-Udic Luvisols (1 400~2 500m) &rarr;Hap-Ustic Luvisols (<1 400m). The result of the Taxonomy coincides basically with that of the pedogenetic classification and the boundaries roundly identify with each other. The results of two soil classification systems show that the Chinese pedogenetic classification is based on the pedogenic theory, and the Chinese Soil Taxonomy is guided by soil genesis principle. There are close relations between two classification systems. In addition, measurable diagnostic horizon and diagnostic characteristics are used to classify soils in the Chinese Soil Taxonomy, which make soil classification more quantitative and more objective, and soil classification standardized.</p>
[22]
康慕谊, 朱源. 秦岭山地生态分界线的论证[J]. 生态学报, 2007, 27(7):2774-2784.
KANG M Y, ZHU Y. Discussion and analysis on the geo-ecological boundary in Qinling range[J]. Acta Ecol Sin, 2007, 27(7):2774-2784.DOI: 10.3321/j.issn:1000-0933.2007.07.014.
[23]
白红英, 马新萍, 高翔, 等. 基于DEM的秦岭山地1月气温及0 ℃等温线变化[J]. 地理学报, 2012, 67(11):1443-1450.
BAI H Y, MA X P, GAO X, et al. Variations in January temperature and 0 ℃ isothermal curve in Qinling Mountains based on DEM[J]. Acta Geogr Sin, 2012, 67(11):1443-1450.DOI: 10.11821/xb201211001.
[24]
秦进, 白红英, 李书恒, 等. 太白山南北坡高山林线太白红杉对气候变化的响应差异[J]. 生态学报, 2016, 36(17):5333-5342.
QIN J, BAI H Y, LI S H, et al. Differences in growth response of Larix chinensis to climate change at the upper timberline of southern and northern slopes of Mt.Taibai in central Qinling Mountains,China[J]. Acta Ecol Sin, 2016, 36(17):5333-5342.DOI: 10.5846/stxb201502060304.
[25]
张善红, 白红英, 高翔, 等. 太白山植被指数时空变化及其对区域温度的响应[J]. 自然资源学报, 2011, 26(8):1377-1386.
摘要
太白山地处陕西秦岭腹地中段,是秦岭最高峰。基于5月的遥感影像提取研究区NDVI数据,结合实际调查,对太白山自然保护区1979-2009年植被指数变化特征进行分析,研究不同植被带NDVI对温度变化的响应。结果表明:近30 a来,太白山5月植被指数NDVI平均值达0.2以上的面积占研究区面积的89.5%,植被整体覆盖较高;但NDVI表现出明显的垂直性差异,中低海拔区NDVI大多分布在0.2以上,而较高海拔区NDVI则主要分布在0.2~0.5区间。有56%以上的区域NDVI基本没有发生变化;NDVI增加极显著和减少极显著区占总面积的4.88%和3.92%。近30 a来,研究区年平均温度呈明显上升趋势,线性增加趋势为0.35℃/10 a;随着海拔的升高,各植被带NDVI对温度的变化更为敏感,高海拔植被对温度变化的敏感性远大于低海拔植被,即人为影响相对较小、但海拔相差巨大的太白山植被生态系统,已成为气候变化影响的敏感场所。
ZHANG S H, BAI H Y, GAO X, et al. Spatial-temporal changes of vegetation index and its responses to regional temperature in Taibai Mountain[J]. J Nat Resour, 2011, 26(8):1377-1386.
Taibai Mountain, the peak of Qinling Mountains, is located in the middle hinterland of Qinling Mountains. Based on NDVI data of Taibai Mountains Nature Reserve in May which were derived from remote sensing and in site survey, we analyzed the spatial-temporal changes of vegetation index for different vegetation zones during 1979 to 2009, as well as their responses to temperature. The results showed that the area where the average NDVI in May was higher than 0.2 accounts for 89.5% of the total Taibai Mountain, which indicates a good vegetation cover in the mountain nowadays. However, the significant vertical deviation was found in NDVI. The value of NDVI is generally over 0.2 for the low altitude regions while ranges from 0.2 to 0.5 for the high altitude regions. The pixles where NDVI increased and decreased significantly during the past three decades account for 4.88% and 3.92%, respectively, and no change was found in about 56% of the total pixles. The annual mean temperature in the study area tends to increase with a slope of 0.35℃/10 a during the last 30 years. The vegetation changes became more sensitive to temperature with the increase of altitude, which indicates that the ecosystem of Taibai Mountain that is characterized by a small human disturbance and a high elevation deviation has become a sensitive place responding to climate change.
[26]
翟丹平, 白红英, 秦进, 等. 秦岭太白山气温直减率时空差异性研究[J]. 地理学报, 2016, 71(9):1587-1595.
摘要
在评估山地生态系统对气候变化响应的过程中,作为气温要素的重要输入参数,气温直减率(γ)的精确性直接影响到相关科研工作的真实性和可靠性。本文基于秦岭主峰太白山(3771.2 m)11个分布于南北坡和不同海拔的标准气象站点2013-2015年连续3年实测日均温资料和25 m×25 m空间分辨率的DEM数据,研究了太白山气温直减率在不同时间尺度上的变化规律及不同坡向上的空间分布特征。结果表明:① 2013-2015年太白山年均γ北坡均大于南坡,北坡为0.513 ℃/100m,南坡为0.499 ℃/100m;北坡年均γ随海拔变化表现出一定的差异性,而南坡相对稳定。② 年内γ在不同时间尺度上均存在明显差异,且南北坡变化趋势不一致。在季尺度上,γ最大值北坡为夏季,为0.619 ℃/100m,而南坡最大出现在春季,为0.546 ℃/100m,最小值均为冬季,南北坡分别为0.449 ℃/100m和0.390 ℃/100m;春季和夏季,北坡γ均大于南坡,而冬季相反,北坡小于南坡,秋季几乎无差异。在月尺度上,气温相对高的月份γ亦较高,北坡γ变化幅度大于南坡;年始和年末(11-12月、1-2月)北坡γ小于南坡,而5-9月北坡大于南坡,且南北坡γ相差较大。③ 经数据可信度分析,所获得的γ可较为客观地反映太白山气温随海拔变化的规律性,将为山地气温空间分布规律及其生态系统响应等定量研究提供理论基础。
ZHAI D P, BAI H Y, QIN J, et al. Temporal and spatial variability of air temperature lapse rates in Mt.Taibai,central Qinling Mountains[J]. Acta Geogr Sin, 2016, 71(9):1587-1595.DOI: 10.11821/dlxb201609010.
[27]
李晓东. 对陕西秦岭西段南坡植被垂直带划分问题的一点认识[J]. 陕西林业科技, 1985(3):88-92.
LI X D. Some understanding on the division of vertical vegetation zones on the southern slope of the western Qinling Mountains in Shaanxi Province[J]. Shaanxi For Sci Technol, 1985(3):88-92.
[28]
方正, 高淑贞. 秦岭太白山南北坡的植被垂直带谱[J]. 植物生态学与地植物学丛刊, 1963, 1(S1):162-163.
FANG Z, GAO S Z. Vertical belt spectrum of vegetation on the north and south slopes of Taibai Mountain in Qinling Mountains[J]. Chin J Plant Ecol, 1963, 1(S1):162-163.
[29]
徐文铎. 吉良的热量指数及其在中国植被中的应用[J]. 生态学杂志, 1985, 4(3):35-39.
XU W D. Kira’s temperature indices and their application in the study of vegetation[J]. Chin J Ecol, 1985, 4(3):35-39.

基金

国家林业公益性行业科研专项(201304309)
陕西省教育厅科研项目(21JK0305)

编辑: 吴祝华
PDF(1922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/