‘凤丹’PoERF4基因的克隆及表达分析

魏祯祯, 宋程威, 郭丽丽, 郭琪, 侯小改

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 56-62.

PDF(2406 KB)
PDF(2406 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 56-62. DOI: 10.12302/j.issn.1000-2006.202110033
专题报道:牡丹培育与应用研究(执行主编 李维林 张金池)

‘凤丹’PoERF4基因的克隆及表达分析

作者信息 +

Cloning and expression analyses of PoERF4 gene from Paeonia ostii ‘Feng Dan’

Author information +
文章历史 +

摘要

【目的】牡丹(Paeonia×suffruticosa)是传统的观赏名花,由于其花期短暂极大限制了牡丹的观赏价值。克隆牡丹品种‘凤丹’(Paeonia ostii ‘Feng Dan’)PoERF4基因,研究其序列特征及在不同花期、组织、品种和激素处理下的表达特性,为进一步研究PoERF4基因对牡丹花期和生长发育的调控作用提供理论参考。【方法】以‘凤丹’为研究材料,基于‘凤丹’3代全长转录组测序结果,筛选出同源性高的序列,采用RT-PCR技术克隆PoERF4基因,并进行生物信息学和表达模式分析。【结果】PoERF4基因的开放阅读框(ORF)为747 bp,编码248个氨基酸。PoERF4蛋白分子式为C2 217H3 689N747O933S174,为亲水蛋白,含有保守的AP2超家族结构域,无跨膜结构,二级结构中α-螺旋中包含28个氨基酸,延伸链中包含48个氨基酸, β-转角中包含6个氨基酸。荧光定量分析发现,PoERF4基因在‘凤丹’不同花期的花瓣中,半开期的表达量最高;在不同组织中均有表达,但其在叶片中表达量最高,花瓣次之,根中表达量最低;在3个不同品种中,晚花品种‘莲鹤’‘Lianhe’中表达量最高;在生长素处理下,PoERF4基因能够对其产生应答。【结论】从‘凤丹’中成功分离出PoERF4基因,推测其在花和叶片发育进程中起重要调控作用,参与‘凤丹’生长素信号转导过程。

Abstract

【Objective】 Paeonia×suffruticosa (peony) is a traditional ornamental flower. Because its short flowering period greatly limits the ornamental value of peony, the PoERF4 gene of ostii ‘Feng Dan’ was cloned to study its sequence and expression characteristics in different flowering periods, tissues, varieties and hormone treatments. This study aimed to provide a theoretical reference for further research on the regulation of PoERF4 during the flowering, growth and development of tree peony. 【Method】 Using ‘Feng Dan’ as the material, based on the results of the three-generation full-length transcriptome sequencing of ‘Feng Dan’, the sequences with high homology were screened, the PoERF4 gene was cloned by RT-PCR technology, and bioinformatics and expression pattern analysis were performed. 【Result】The open read frame (ORF) of the PoERF4 gene was 747 bp, which encoded 248 amino acids. The molecular formula of PoERF4 was C2 217H3 689N747O933S174, which is a hydrophilic protein containing a conserved AP2 superfamily domain with no transmembrane structure. The secondary structure contained 28 amino acids in the α-helix, 48 amino acids in the extended chain, and six amino acids in the β-turn. Fluorescence quantitative analysis found that the PoERF4 gene was mainly expressed in the petals of the half-opening period of ‘Feng Dan’ and it was expressed in different tissues of ‘Feng Dan’ peony, but its expression was highest in the leaves, followed by in the petals and roots. The expression level was the highest in the late-flower cultivar ‘Lianhe’. Under auxin treatment, the PoERF4 gene could respond. 【Conclusion】The PoERF4 gene was successfully isolated from ‘Feng Dan’ and it was speculated that it plays an important regulatory role in the development of flowers and leaves and is involved in the auxin signal transduction process of ‘Feng Dan’.

关键词

‘凤丹’ / 牡丹 / PoERF4 / 基因克隆 / 表达分析

Key words

Paeonia ostii ‘Feng Dan’ / Paeonia×suffruticosa (peony) / PoERF4 / gene cloning / expression analysis

引用本文

导出引用
魏祯祯, 宋程威, 郭丽丽, . ‘凤丹’PoERF4基因的克隆及表达分析[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 56-62 https://doi.org/10.12302/j.issn.1000-2006.202110033
WEI Zhenzhen, SONG Chengwei, GUO Lili, et al. Cloning and expression analyses of PoERF4 gene from Paeonia ostii ‘Feng Dan’[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 56-62 https://doi.org/10.12302/j.issn.1000-2006.202110033
中图分类号: S685.11;Q751   

参考文献

[1]
张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7):44-56.
ZHANG J Y, WANG Q J, GUO Z R. Progresses on plant AP2/ERF transcription factors[J]. Hereditas, 2012, 34(7):44-56.DOI: 10.3724/SP.J.1005.2012.00835.
[2]
MOFFAT C S, INGLE R A, WATHUGALA D L, et al. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis[J]. PLoS One, 2012, 7(4):e35995.DOI: 10.1371/journal.pone.0035995.
[3]
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432.DOI: 10.1104/pp.105.073783.
[4]
LICAUSI F, GIORGI F M, ZENONI S, et al. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera[J]. BMC Genomics, 2010, 11:719.DOI: 10.1186/1471-2164-11-719.
[5]
SONG X M, LI Y, HOU X L. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp.pekinensis)[J]. BMC Genomics, 2013, 14:573.DOI: 10.1186/1471-2164-14-573.
[6]
ITO T M, POLIDO P B, RAMPIM M C, et al. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis)[J]. Genet Mol Res, 2014, 13(3):7839-7851.DOI: 10.4238/2014.September.26.22.
[7]
KOYAMA T, NII H, MITSUDA N, et al. A regulatory cascade involving class ii ethylene response factor transcriptional repressors operates in the progression of leaf senescence[J]. Plant Physiol, 2013, 162(2):991-1005.DOI: 10.1104/pp.113.218115.
[8]
LIU W, WU T, LI Q W, et al. An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis[J]. Sci Rep, 2018, 8(1):1068.DOI: 10.1038/s41598-018-19518-4.
[9]
AN J P, ZHANG X W, XU R R, et al. Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription[J]. Plant Sci, 2018, 276:181-188.DOI: 10.1016/j.plantsci.2018.08.017.
[10]
HUANG P Y, CATINOT J, ZIMMERLI L. Ethylene response factors in Arabidopsis immunity[J]. J Exp Bot, 2016, 67(5):1231-1241.DOI: 10.1093/jxb/erv518.
[11]
RIESTER L, KÖSTER-HOFMANN S, DOLL J, et al. Impact of alternatively polyadenylated isoforms of ETHYLENE RESPONSE FACTOR4 with activator and repressor function on senescence in Arabidopsis thaliana L[J]. Genes, 2019, 10(2):91.DOI: 10.3390/genes10020091.
[12]
CHEN Y L, ZHANG L P, ZHANG H Y, et al. ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis[J]. J Integr Plant Biol, 2021, 63(10):1712-1723.DOI: 10.1111/jipb.13144.
[13]
GAO Y R, LIU Y, LIANG Y, et al. Rosa hybrida RhERF1 and RhERF4 mediate ethylene-and auxin-regulated petal abscission by influencing pectin degradation[J]. Plant J, 2019, 99(6):1159-1171.DOI: 10.1111/tpj.14412.
[14]
HONG D Y. Notes on taxonomy of Paeonia Sect.Moutan DC.(Paeoniaceae)[J]. Acta Phytotaxon Sin, 2005, 43(2):169.DOI: 10.1360/aps040065.
[15]
陈法志, 陈镇, 戢小梅, 等. 油用牡丹种质资源及育种研究进展[J]. 江汉大学学报(自然科学版), 2019, 47(2):181-185.
CHEN F Z, CHEN Z, JI X M, et al. Progress in germplasm resources and breeding research of oil peony(Paeonia suffruticosa)[J]. J Jianghan Univ (Nat Sci Ed), 2019, 47(2):181-185.DOI: 10.16389/j.cnki.cn42-1737/n.2019.02.014.
[16]
张扬. 牡丹PsSVP基因的克隆与功能分析[D]. 青岛: 青岛农业大学, 2013.
ZHANG Y. Cloning and functional analysis of PsSVP gene from Paeonia suffruticosa[D]. Qingdao: Qingdao Agricultural University, 2013.10.7666/d.Y2663389
[17]
WANG S L, BERUTO M, XUE J Q, et al. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony[J]. Plant Cell Rep, 2015, 34(8):1459-1471.DOI: 10.1007/s00299-015-1800-2.
[18]
ZHANG Y X, LI Y, ZHANG Y, et al. Isolation and characterization of a SOC1-like gene from tree peony (Paeonia suffruticosa)[J]. Plant Mol Biol Rep, 2015, 33(4):855-866.DOI: 10.1007/s11105-014-0800-7.
[19]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.DOI: 10.1006/meth.2001.1262.
[20]
ESTORNELL L H, AGUSTÍ J, MERELO P, et al. Elucidating mechanisms underlying organ abscission[J]. Plant Sci, 2013, 199/200:48-60.DOI: 10.1016/j.plantsci.2012.10.008.
[21]
陈林波, 房超, 王郁, 等. 茶树抗逆相关基因ERF的克隆与表达特性分析[J]. 茶叶科学, 2011, 31(1):53-58.
CHEN L B, FANG C, WANG Y, et al. Cloning and expression analysis of stress-resistant ERF genes from tea plant[Camellia sinensis(L.) O.Kuntze][J]. J Tea Sci, 2011, 31(1):53-58.DOI: 10.13305/j.cnki.jts.2011.01.009.
[22]
董超. 紫花针茅ERF转录因子基因的克隆及功能研究[D]. 北京: 中国科学院大学, 2016.
DONG C. Cloning and functional study of ERF transcription factor gene from Stipa purpurea[D]. Beijing: University of Chinese Academy of Sciences, 2016.
[23]
崔波, 郝平安, 梁芳, 等. 蝴蝶兰AP2/ERF家族基因的克隆及在低温下表达特性分析[J]. 园艺学报, 2020, 47(1):85-97.
CUI B, HAO P A, LIANG F, et al. Cloning and expression analysis of AP2/ERF family gene from Phalaenopsis under low temperature[J]. Acta Hortic Sin, 2020, 47(1):85-97.DOI: 10.16420/j.issn.0513-353x.2019-0091.
[24]
王孟东, 杨金宇, 黄海娜, 等. ‘砀山酥梨’褐皮芽变中两个ERF基因的克隆与表达分析[J]. 热带亚热带植物学报, 2015, 23(4):379-385.
WANG M D, YANG J Y, HUANG H N, et al. Cloning and expression analysis of two ERF genes in pericarp of russet mutant of‘Dangshansuli’ pear[J]. J Trop Subtrop Bot, 2015, 23(4):379-385.DOI: 10.11926/j.issn.1005-3395.2015.04.003.
[25]
宋佳亮. 杨树ERF家族成员基因克隆与表达模式分析[D]. 南京: 南京林业大学, 2013.
SONG J L. Cloning and expression pattern analysis of ERF family members in poplar[D]. Nanjing: Nanjing Forestry University, 2013.
[26]
吴蓓, 李梦瑶, 王广龙, 等. 芹菜AgERF4转录因子基因的克隆与表达分析[J]. 园艺学报, 2016, 43(11):2193-2202.
WU B, LI M Y, WANG G L, et al. Cloning and expression profile analysis of AgERF4 transcription factor gene from Apium graveolens[J]. Acta Hortic Sin, 2016, 43(11):2193-2202.DOI: 10.16420/j.issn.0513-353x.2016-0462.
[27]
TOURNIER B, SANCHEZ-BALLESTA M T, JONES B, et al. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element[J]. FEBS Lett, 2003, 550(1/2/3):149-154.DOI: 10.1016/S0014-5793(03)00757-9.
[28]
关尔鑫. 小麦ERF转录因子基因的克隆及其功能分析[D]. 沈阳: 沈阳师范大学, 2011.
GUAN E X. Isolation and function analysis of the ERF transcription factor gene in wheat[D]. Shenyang: Shenyang Normal University, 2011.
[29]
于晓惠. 巴西橡胶ERF转录因子基因的克隆与功能分析[D]. 海口: 海南大学, 2013.
YU X H. Cloning and functional analysis of the HbERF from Hevea brasiliensis[D]. Haikou: Hainan University, 2013.
[30]
JIN L G, LIU J Y. Molecular cloning,expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum)[J]. Plant Physiol Biochem, 2008, 46(1):46-53.DOI: 10.1016/j.plaphy.2007.10.004.
[31]
蔡汉阳, 肖卓丽, 严雁, 等. 辣椒CaERF4的全长cDNA克隆及其表达分析[J]. 热带作物学报, 2014, 35(6):1102-1107.
CAI H Y, XIAO Z L, YAN Y, et al. Full length cDNA cloning and expressional characterization of CaERF4 of Capsicum annuum[J]. Chin J Trop Crops, 2014, 35(6):1102-1107.DOI: 10.3969/j.issn.1000-2561.2014.06.011.
[32]
ACHARD P, BAGHOUR M, CHAPPLE A, et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes[J]. Proc Natl Acad Sci USA, 2007, 104(15):6484-6489.DOI: 10.1073/pnas.0610717104.
[33]
KHASKHELI A J, AHMED W, MA C, et al. RhERF113 functions in ethylene-induced petal senescence by modulating cytokinin content in rose[J]. Plant Cell Physiol, 2018, 59(12):2442-2451.DOI: 10.1093/pcp/pcy162.
[34]
GU C, GUO Z H, HAO P P, et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Bot Stud, 2017, 58(1):6.DOI: 10.1186/s40529-016-0159-1.

基金

国家自然科学基金项目(U1804233)
河南省创新型科技人才队伍建设工程(202101510003)

编辑: 吴祝华
PDF(2406 KB)

Accesses

Citation

Detail

段落导航
相关文章

/