基于多源遥感的森林变化对区域温度影响的监测方法研究进展

沈文娟, 纪梅, 李明诗

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 1-11.

PDF(1541 KB)
PDF(1541 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 1-11. DOI: 10.12302/j.issn.1000-2006.202110041
林学前沿

基于多源遥感的森林变化对区域温度影响的监测方法研究进展

作者信息 +

Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data

Author information +
文章历史 +

摘要

人类活动通过改变土地覆被促成森林面积变化,推动碳收支和地表能量平衡发生相应变化,进而影响全球和区域尺度的气候。现有森林变化对区域温度的影响研究主要集中在有限精度的森林变化数据与温度数据结合的简单统计方法,但高可靠度的森林变化及其生物物理过程对区域温度的影响研究表明,准确、全面地理解森林与气候之间的生物物理相互作用机制,能为森林生态系统的全面评估提供科学支撑。笔者综合分析了基于多源遥感的森林变化结合其生物物理过程对区域温度影响的多种监测方法,结果发现:①多源中高分辨率森林变化数据的有限可用性一直阻碍着对温度变化影响的精准量化;②集成遥感观测数据的多种方法在量化森林变化的生物物理机制对于区域温度变化影响的评价不一致。因此,森林变化的生物物理机制及其温度效应是一个值得深入分析的问题。未来需要充分发挥多种数据源合理集成后用于解释森林响应气候效应方面的交叉优势,理解生物物理机制与生物化学机制共同作用下的森林变化、碳循环与气候的交互关系,并通过森林生态系统的合理经营与管理实现其气候效益最大化。

Abstract

Human activities contribute to forest changes by altering land cover, promoting changes in carbon budget and surface energy balance, further affecting climate at global and regional scales. Current studies on the impact of forest changes on regional temperature are mainly focused on the simple statistical method combining forest change data with temperature data with limited accuracy, however, studies on the effects of forest changes with high reliability and its biophysical processes on regional temperature indicate that an accurate and comprehensive understanding of the biophysical interaction mechanisms between forest and climate can provide a scientific support for the comprehensive assessment of forest ecosystems. The author made a comprehensive analysis of various monitoring methods of forest changes combined with thier biophysical processes based on multi-source remote sensing on regional temperature, and found that: (1) the limited availability of high-resolution forest change data from multiple sources has been hindering the accurate quantification of the impact of temperature changes; (2) the evaluation of results about quantifying the impact of the biophysical mechanism of forest charge on regional temperature based on the methods for integrating remote sensing observations is inconsistent. Therefore, the biophysical mechanism of forest change and the temperature effects are worthy of in-depth analysis. In the future, the cross-cutting advantages of rational integration of multiple data sources to explain forest response to climate effects should be fully utilized to understand the interaction between forest change, carbon cycle and climate under biophysical and biochemical mechanisms, and to maximize climate benefits through rational management of forest ecosystems.

关键词

森林变化 / 生物物理机制 / 温度效应 / 多源遥感

Key words

forest change / biophysical mechanisms / temperature effects / multi-source remote sensing

引用本文

导出引用
沈文娟, 纪梅, 李明诗. 基于多源遥感的森林变化对区域温度影响的监测方法研究进展[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202110041
SHEN Wenjuan, JI Mei, LI Mingshi. Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202110041
中图分类号: S757;TP79   

参考文献

[1]
华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9):1025-1036.
HUA W J, CHEN H S, LI X. Review of land use and land cover change in China and associated climatic effects[J]. Adv Earth Sci, 2014, 29(9):1025-1036.DOI: 10.11867/j.issn.1001-8166.2014.09.1025.
[2]
刘纪远, 邵全琴, 黄麟. 大尺度土地利用变化对全球气候的影响[J]. 中国基础科学, 2015, 17(3):32-39.
LIU J Y, SHAO Q Q, HUANG L. Researches on the impacts of large-scale land use change on global climate[J]. China Basic Sci, 2015, 17(3):32-39.DOI: 10.3969/j.issn.1009-2412.2015.03.006.
[3]
CHEN C, PARK T, WANG X H, et al. China and India lead in greening of the world through land-use management[J]. Nat Sustain, 2019, 2:122-129.DOI: 10.1038/s41893-019-0220-7.
[4]
SONG X P, HANSEN M C, STEHMAN S V, et al. Global land change from 1982 to 2016[J]. Nature, 2018, 560(7720):639-643.DOI: 10.1038/s41586-018-0411-9.
[5]
ALKAMA R, CESCATTI A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351(6273):600-604.DOI: 10.1126/science.aac8083.
[6]
MAHMOOD R, PIELKE SR R A, HUBBARD K G, et al. Land cover changes and their biogeophysical effects on climate[J]. Int J Climatol, 2014, 34(4):929-953.DOI: 10.1002/joc.3736.
[7]
PERUGINI L, CAPORASO L, MARCONI S, et al. Biophysical effects on temperature and precipitation due to land cover change[J]. Environ Res Lett, 2017, 12(5):053002.DOI: 10.1088/1748-9326/aa6b3f.
[8]
PIELKE SR R A, PITMAN A, NIYOGI D, et al. Land use/land cover changes and climate:modeling analysis and observational evidence[J]. Wiley Interdiscip Rev Clim Change, 2011, 2(6):828-850.DOI: 10.1002/wcc.144.
[9]
BONAN G B. Forests and climate change:forcings,feedbacks,and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.DOI: 10.1126/science.1155121.
[10]
LI Z L, TANG B H, WU H, et al. Satellite-derived land surface temperature: current status and perspectives[J]. Remote Sens Environ, 2013, 131:14-37.DOI: 10.1016/j.rse.2012.12.008.
[11]
DAVIN E L, DE NOBLET-DUCOUDRÉ N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes[J]. J Clim, 2010, 23(1):97-112.DOI: 10.1175/2009jcli3102.1.
[12]
LI Y, ZHAO M S, MOTESHARREI S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nat Commun, 2015, 6:6603.DOI: 10.1038/ncomms7603.
[13]
朱若柠, 沈文娟, 张亚丽, 等. 基于时间序列MODIS-VCF数据的云南省森林覆盖变化及破碎化分析[J]. 南京林业大学学报(自然科学版), 2019, 43(2):184-190.
ZHU R N, SHEN W J, ZHANG Y L, et al. Assessing changes in forest coverage and forest fragmentation patterns in Yunnan Province from time series MODIS-VCF products(2000-2016)[J]. J Nanjing For Univ (Nat Sci Ed),2019, 43(2):184-190.DOI: 10.3969/j.issn.1000-2006.201805001.
[14]
沈文娟, 徐婷, 李明诗. 中国三大林区森林破碎化及干扰模式变动分析[J]. 南京林业大学学报(自然科学版), 2013, 37(4):75-79.
SHEN W J, XU T, LI M S. Spatio-temporal changes in forest fragmentation,disturbance patterns over the three giant forested regions of China[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(4):75-79.
[15]
沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6):1005-1022.
SHEN W J, LI M S, HUANG C Q. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. J Remote Sens, 2018, 22(6):1005-1022.
[16]
贾小凤, 朱红春, 凌峰, 等. 基于Landsat多光谱与PALSAR/PALSAR-2数据的汉江流域森林覆盖变化研究[J]. 长江流域资源与环境, 2021, 30(2):321-329.
JIA X F, ZHU H C, LING F, et al. Forest cover monitoring and its changes in Hanjiang River Basin based on landsat multispectral and PALSAR/PALSAR-2 data[J]. Resour Environ Yangtze Basin, 2021, 30(2):321-329.DOI: 10.11870/cjlyzyyhj202102007.
[17]
HANSEN M C, POTAPOV P V, MOORE R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.DOI: 10.1126/science.1244693.
[18]
LIANG S, WANG J. Forest cover changes: mapping and climatic impact assessment[M]. New York: Academic Press, 2020:915-952.
[19]
PREVEDELLO J A, WINCK G R, WEBER M M, et al. Impacts of forestation and deforestation on local temperature across the globe[J]. PLoS One, 2019, 14(3):e0213368.DOI: 10.1371/journal.pone.0213368.
[20]
SHEN W J, HE J Y, HUANG C Q, et al. Quantifying the actual impacts of forest cover change on surface temperature in Guangdong,China[J]. Remote Sens, 2020, 12(15):2354.DOI: 10.3390/rs12152354.
[21]
SHEN W J, LI M S, HUANG C Q, et al. Local land surface temperature change induced by afforestation based on satellite observations in Guangdong plantation forests in China[J]. Agric For Meteorol, 2019, 276/277:107641.DOI: 10.1016/j.agrformet.2019.107641.
[22]
黄春波, 佃袁勇, 周志翔, 等. 基于时间序列统计特性的森林变化监测[J]. 遥感学报, 2015, 19(4):657-668.
HUANG C B, DIAN Y Y, ZHOU Z X, et al. Forest change detection based on time series images with statistical properties[J]. J Remote Sens, 2015, 19(4):657-668.DOI: 10.11834/jrs.20154104.
[23]
ARORA V K, MONTENEGRO A. Small temperature benefits provided by realistic afforestation efforts[J]. Nat Geosci, 2011, 4 (8):514-518.DOI: 10.1038/ngeo1182.
[24]
BONAN G B. Effects of land use on the climate of the United States[J]. Clim Change, 1997, 37(3):449-486.DOI: 10.1023/A:1005305708775.
[25]
孙舒婷, 范文义, 张智超. 大兴安岭森林地表温度的遥感估算及分析研究[J]. 森林工程, 2015, 31(3):35-39,80.
SUN S T, FAN W Y, ZHANG Z C. Remote sensing estimation analysis of land surface temperature in Greater Khingan Mountains forest[J]. For Eng, 2015, 31(3):35-39,80.DOI: 10.16270/j.cnki.slgc.2015.03.009.
[26]
徐凯健, 曾宏达, 张仲德, 等. 亚热带福建省森林生长季与气温、降水相关性的遥感分析[J]. 地球信息科学学报, 2015, 17(10):1249-1259.
摘要
植物生长季的变化反映了全球气候变化对生态环境的影响。本研究以2000-2006年间MODIS-NDVI影像数据集,使用TIMESAT软件从归一化植被指数(NDVI)时间序列中,分别提取福建省不同森林植被的生长季开始日期(Start of Season,SOS)、生长季结束日期(End of Season,EOS)和生长季长度(Length of season,LOS)等物候参数,并与全省尺度的气温与降水量进行相关分析。结果表明:不同森林类型NDVI与当月月均气温之间具有较显著的相关性(R<sup>2</sup>为0.72-0.79,p&#x0003C;0.01),同期温度变化对植被生长的影响相对于降水量更重要;而植被生长对降水量的响应存在大约2个月的时滞效应(R<sup>2</sup>为0.54-0.75,p&#x0003C;0.01),说明前期的降水累积对于后续植被生长有较显著影响。福建省森林植被生长季持续时间约213~223 d,开始于每年4月初到4月中旬(第98~103 d),结束于11月中旬前后(第316~321 d)。其中,南亚热带森林生长季长于中亚热带森林,相同气候条件下的阔叶林生长季时间略长于针叶林。另外,春季(2-4月)气温变化是导致福建省内2个气候带森林生长季开始时间、生长季结束时间及生长季长度变化的关键因素,而伴随春季温度升高,植被生长季开始时间提前(R<sup>2</sup>为0.83,p&#x0003C;0.01),同时生长季长度延长(R<sup>2</sup>为0.80,p&#x0003C;0.01)。7 a间,生长季持续时间呈现微弱延长趋势,总体延长幅度为2.4~3.1 d。
XU K J, ZENG H D, ZHANG Z D, et al. Relating forest phenology to temperature and precipitation in the subtropical region of Fujian based on time-series MODIS-NDVI[J]. J Geo Inf Sci, 2015, 17(10):1249-1259.DOI: 10.3724/SP.J.1047.2015.01249.
[27]
尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1):166-175.
YIN S Y, WU W J, LI X W. Analysis of the forest dynamic changes in Southeast Asia based on remote sensing and meteorological data[J]. Remote Sens Technol Appl, 2019, 34(1):166-175.DOI: 10.11873/j.issn.1004-0323.2019.1.0166.
[28]
GE J, GUO W D, PITMAN A J, et al. The nonradiative effect dominates local surface temperature change caused by afforestation in China[J]. J Clim, 2019, 32(14):4445-4471.DOI: 10.1175/jcli-d-18-0772.1.
[29]
LI Y, ZHAO M S, MILDREXLER D J, et al. Potential and actual impacts of deforestation and afforestation on land surface temperature[J]. J Geophys Res Atmos, 2016, 121(24):14372-14386.DOI: 10.1002/2016JD024969.
[30]
张小全, 侯振宏. 森林、造林、再造林和毁林的定义与碳计量问题[J]. 林业科学, 2003(2):145-152.
ZHANG X Q, HOU Z H. Definitions of afforestation,reforestation and deforestation in relations to carbon accounting[J]. Sci Silvae Sin, 2003(2):145-152.
[31]
冯海英, 冯仲科. 基于MODIS LST产品的山东省森林调节温度生态服务价值评估新方法[J]. 林业科学, 2018, 54(2):10-17.
FENG H Y, FENG Z K. A new method of valuating the ecological service of temperature regulation of forests in Shangdong Province based on MODIS LST products[J]. Sci Silvae Sin, 2018, 54(2):10-17.DOI: 10.11707/j.1001-7488.20180202.
[32]
胡茂桂, 王劲峰. 遥感影像混合像元分解及超分辨率重建研究进展[J]. 地理科学进展, 2010, 29(6):747-756.
摘要
随着遥感应用的深入,传统将遥感影像像元当作纯净像元的方式所带来的问题已经被广泛认识到,混合像 元分解的相关理论和技术成为遥感领域的一个热点问题。本文总结了混合像元分解及超分辨率影像重建的主要理 论和方法。根据超分辨率影像重建的主要流程,分别回顾了混合像元端元类型选择、端元丰度分解和超分辨率影像 的重建,并对相关模型和技术给出了总结和评价。端元类型选择是确定在影像范围包含的纯净地物类型,重点介绍 了基于统计学和几何学的两种方法。端元丰度估计是目前该领域研究最多的方向之一,集中了很多新的理论和方 法,可变端元分解和盲源分解作为2 种效果较好的方法在文中作了详细的回顾和评价。空间自相关性是对丰度估 计的结果进行超分辨率重建的主要理论基础,如何在丰度约束条件下最大化空间自相关性是大多数基于混合像元 分解超分辨率重建的目标。最后,文章在总结目前混合像元分解及超分辨率遥感影像理论发展的基础上,给出了一 些意见和展望,指出考虑混合像元形成机理、综合多种模型及先验信息将有助于基于混合像元分解的超分辨率遥 感影像研究。
HU M G, WANG J F. Mixed-pixel decomposition and super-resolution reconstruction of RS image[J]. Prog Geogr, 2010, 29(6):747-756.
[33]
SHIMADA M, ITOH T, MOTOOKA T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007-2010)[J]. Remote Sens Environ,2014, 155:13-31.DOI: 10.1016/j.rse.2014.04.014.
[34]
REICHE J, LUCAS R, MITCHELL A L, et al. Combining satellite data for better tropical forest monitoring[J]. Nature Clim Change, 2016, 6(2):120-122.DOI: 10.1038/nclimate2919.
[35]
SHEN W J, LI M S, HUANG C Q, et al. Mapping annual forest change due to afforestation in Guangdong Province of China using active and passive remote sensing data[J]. Remote Sens, 2019, 11(5):490.DOI: 10.3390/rs11050490.
[36]
刘睿, 王志勇, 高瑞. 时序SAR影像的干旱地区土地利用分类应用[J]. 测绘科学, 2021, 46(10):90-97.
LIU R, WANG Z Y, GAO R. Application of time series SAR image in land use classification in arid area[J]. Sci Surv Mapp, 2021, 46(10):90-97.DOI: 10.16251/j.cnki.1009-2307.2021.10.013.
[37]
LIU Y N, GONG W S, HU X Y, et al. Forest type identification with random forest using sentinel-1A,sentinel-2A,multi-temporal landsat-8 and DEM data[J]. Remote Sens, 2018, 10(6):946.DOI: 10.3390/rs10060946.
[38]
侍昊, 沈文娟, 李杨, 等. 高分系列卫星影像特征及其在太湖生态环境监测中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(6):63-68.
SHI H, SHEN W J, LI Y, et al. Characteristics of GF images and application in eco-environmental monitoring in Taihu Lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):63-68.DOI: 10.3969/j.issn.1000-2006.2016.06.010.
[39]
LIANG S L, CHENG J, JIA K, et al. The global land surface satellite (GLASS) product suite[J]. Bull Am Meteorol Soc, 2021, 102(2):323-337.DOI: 10.1175/bams-d-18-0341.1.
[40]
梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6):618-671.
LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. J Remote Sens, 2020, 24(6):618-671.
[41]
SILVESTRI M, ROMANIELLO V, HOOK S, et al. First comparisons of surface temperature estimations between ECOSTRESS,ASTER and Landsat 8 over Italian volcanic and geothermal areas[J]. Remote Sens, 2020, 12(1):184.DOI: 10.3390/rs12010184.
[42]
GENG L Y, MA M G, YU W P, et al. Validation of the MODIS NDVI products in different land-use types using in situ measurements in the Heihe River basin[J]. IEEE Geosci Remote Sens Lett, 2014, 11(9):1649-1653.DOI: 10.1109/LGRS.2014.2314134.
[43]
SONG Z J, LI R H, QIU R Y, et al. Global land surface temperature influenced by vegetation cover and PM2.5 from 2001 to 2016[J]. Remote Sens, 2018, 10(12):2034.DOI: 10.3390/rs10122034.
[44]
JUSTICE C O, TOWNSHEND J R G, VERMOTE E F, et al. An overview of MODIS land data processing and product status[J]. Remote Sens Environ, 2002, 83(1/2):3-15.DOI: 10.1016/S0034-4257(02)00084-6.
[45]
徐辉, 潘萍, 杨武, 等. 基于多源遥感影像的森林资源分类及精度评价[J]. 江西农业大学学报, 2019, 41(4):751-760.
XU H, PAN P, YANG W, et al. Classification and accuracy evaluation of forest resources based on multi-source remote sensing images[J]. Acta Agric Univ Jiangxiensis, 2019, 41(4):751-760.DOI: 10.13836/j.jjau.2019087.
[46]
BRIGHT R M, DAVIN E, O’HALLORAN T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nat Clim Chang, 2017, 7(4):296-302.DOI: 10.1038/nclimate3250.
[47]
HUANG C Q, GOWARD S N, MASEK J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sens Environ, 2010, 114(1):183-198.DOI: 10.1016/j.rse.2009.08.017.
[48]
KENNEDY R E, YANG Z Q, COHEN W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.Land Trendr: temporal segmentation algorithms[J]. Remote Sens Environ, 2010, 114(12):2897-2910.DOI: 10.1016/j.rse.2010.07.008.
[49]
沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5):1438-1449.
SHEN W J, LI M S. Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations[J]. Acta Ecol Sin, 2017, 37(5):1438-1449.DOI: 10.5846/stxb201510142074.
[50]
ZHU Z, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sens Environ, 2014, 144:152-171.DOI: 10.1016/j.rse.2014.01.011.
[51]
DEVRIES B, VERBESSELT J, KOOISTRA L, et al. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J]. Remote Sens Environ, 2015, 161:107-121.DOI: 10.1016/j.rse.2015.02.012.
[52]
BELGIU M, STEIN A. Spatiotemporal image fusion in remote sensing[J]. Remote Sens, 2019, 11(7):818.DOI: 10.3390/rs11070818.
[53]
任冲, 鞠洪波, 张怀清, 等. 多源数据林地类型的精细分类方法[J]. 林业科学, 2016, 52(6):54-65.
REN C, JU H B, ZHANG H Q, et al. Multi-source data for forest land type precise classification[J]. Sci Silvae Sin, 2016, 52(6):54-65.DOI: 10.11707/j.1001-7488.20160607.
[54]
张晓羽, 李凤日, 甄贞, 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016, 44(6):53-57,74.
ZHANG X Y, LI F R, ZHEN Z, et al. Forest vegetation classification of Landsat 8 remote sensing image based on random forests model[J]. J Northeast For Univ, 2016, 44(6):53-57,74.DOI: 10.13759/j.cnki.dlxb.2016.06.005.
[55]
LIU L Y, TANG H, CACCETTA P, et al. Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series stacks in Yulin District,a key region of the Three-North Shelter region,China[J]. Environ Monit Assess, 2013, 185(12):9949-9965.DOI: 10.1007/s10661-013-3304-2.
[56]
ZHAO F, SUN R, ZHONG L H, et al. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning[J]. Remote Sens Environ, 2022, 269:112822.DOI: 10.1016/j.rse.2021.112822.
[57]
QIN Y, XIAO X, DONG J, et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000-2017 [J]. Nat Sustain,2019, 2 (8):764-772.DOI: 10.1038/s41893-019-0336-9.
[58]
MIZUOCHI H, HAYASHI M, TADONO T. Development of an operational algorithm for automated deforestation mapping via the Bayesian integration of long-term optical and microwave satellite data[J]. Remote Sens, 2019, 11(17):2038.DOI: 10.3390/rs11172038.
[59]
CHEN L, DIRMEYER P A. Reconciling the disagreement between observed and simulated temperature responses to deforestation[J]. Nat Commun, 2020, 11(1):202.DOI: 10.1038/s41467-019-14017-0.
[60]
赵彩杉, 曾刚, 张丽娟, 等. 基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响:以长江中下游及毗邻地区为例[J]. 地理科学进展, 2019, 38(5):698-708.
摘要
揭示耕地与林地转换对地表温度的影响对于认识人类活动的气候与环境效应具有重要意义。基于卫星遥感数据的统计分析是揭示土地利用/覆盖变化对地表温度影响的重要手段。但是,在景观破碎度较高地区,混合像元问题成为使用这一技术手段的主要限制性因素,中国南方长江流域尤为典型。为突破这一限制,论文基于Google Earth高清影像,在1 km尺度上辨识了200对耕地与林地纯像元,进而利用MODIS陆地数据产品,对比分析了耕地与林地的地表温度(LST)、叶面积指数(LAI)、地表反照率(Albedo)之差。结果表明:耕地的LST高于林地,白天和夜间温度分别约偏高2.75 ℃和1.15 ℃,并且温差因季节而异,白昼温差呈双峰(分别是5月和10月,温差约3.18 ℃和3.33 ℃),夜间温差为单峰(7月,约2.46 ℃)。同时,温差因地而异,总体表现为西高东低,陕甘交界处的白昼温差最大,年平均约为3.83 ℃;安徽中南部温差最小,约为1.1 ℃。耕地与林地的LST之差主要由蒸散发的差异所致。林地的LAI较大,蒸散发较强,地表向大气的潜热通量较大,用于直接加热地表的感热相对偏少,因而LST相对偏低。上述结果表明近年来长江流域及毗邻地区的耕地转为林地通过增加蒸发产生了一定的致冷效应。
ZHAO C S, ZENG G, ZHANG L J, et al. Effects of cropland and woodland conversion on land surface temperature based on Google Earth and MODIS land data: a case study of the middle and lower reaches of the Yangtze River Basin and its adjacent areas[J]. Prog Geogr, 2019, 38(5):698-708.
[61]
孙云, 于德永, 曹茜, 等. 土地利用/土地覆盖变化对区域气候影响的生物地球物理途径研究进展[J]. 北京师范大学学报(自然科学版), 2015, 51(2):189-196.
SUN Y, YU D Y, CAO Q, et al. Review on the biogeophysical effects of changes in land use and land cover on regional climate: research progress[J]. J Beijing Norm Univ (Nat Sci),2015, 51(2):189-196.DOI: 10.16360/j.cnki.jbnuns.2015.02.016.
[62]
HE T, SHAO Q Q, CAO W, et al. Satellite-observed energy budget change of deforestation in northeastern China and its climate implications[J]. Remote Sens, 2015, 7(9):11586-11601.DOI: 10.3390/rs70911586.
[63]
PITMAN A J, DE NOBLET-DUCOUDRÉ N, CRUZ F T, et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study[J]. Geophys Res Lett, 2009, 36(14):L14814.DOI: 10.1029/2009GL039076.
[64]
YU L X, ZHANG S W, TANG J M, et al. The effect of deforestation on the regional temperature in northeastern China[J]. Theor Appl Climatol, 2015, 120(3/4):761-771.DOI: 10.1007/s00704-014-1186-z.
[65]
LEE X H, GOULDEN M L, HOLLINGER D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373):384-387.DOI: 10.1038/nature10588.
[66]
DE NOBLET-DUCOUDRÉ N, BOISIER J P, PITMAN A, et al. Determining robust impacts of land-use-induced land cover changes on surface climate over north America and Eurasia: results from the first set of LUCID experiments[J]. J Climate, 2012, 25(9):3261-3281.DOI: 10.1175/jcli-d-11-00338.1.
[67]
BAIDYA ROY S, HURTT G C, WEAVER C P, et al. Impact of historical land cover change on the July climate of the United States[J]. J Geophys Res Atmos, 2003, 108(D24):4793.DOI: 10.1029/2003JD003565.
[68]
COOLEY H S, RILEY W J, TORN M S, et al. Impact of agricultural practice on regional climate in a coupled land surface mesoscale model[J]. J Geophys Res Atmos, 2005, 110(D3):D03113.DOI: 10.1029/2004JD005160.
[69]
COLLINS W D, BITZ C M, BLACKMON M L, et al. The community climate system model Version 3 (CCSM3)[J]. J Clim, 2006, 19(11):2122-2143.DOI: 10.1175/jcli3761.1.
[70]
DUFRESNE J L, FOUJOLS M A, DENVIL S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Clim Dyn, 2013, 40(9/10):2123-2165.DOI: 10.1007/s00382-012-1636-1.
[71]
ZENG X M, WU Z H, XIONG S Y, et al. Sensitivity of simulated short-range high-temperature weather to land surface schemes by WRF[J]. Sci China Earth Sci, 2011, 54(4):581-590.DOI: 10.1007/s11430-011-4181-6.
[72]
LIANG X Z, XU M, YUAN X, et al. Regional climate-weather research and forecasting model[J]. Bull Am Meteorol Soc, 2012, 93(9):1363-1387.DOI: 10.1175/bams-d-11-00180.1.
[73]
RIGDEN A J, LI D. Attribution of surface temperature anomalies induced by land use and land cover changes[J]. Geophys Res Lett, 2017, 44(13):6814-6822.DOI: 10.1002/2017GL073811.
[74]
JUANG J Y, KATUL G, SIQUEIRA M, et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States[J]. Geophys Res Lett, 2007, 34(21):L21408.DOI: 10.1029/2007GL031296.
[75]
LUYSSAERT S, JAMMET M, STOY P C, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nat Clim Chang, 2014, 4(5):389-393.DOI: 10.1038/nclimate2196.
[76]
ZHAO K G, JACKSON R B. Biophysical forcings of land-use changes from potential forestry activities in north America[J]. Ecol Monogr, 2014, 84(2):329-353.DOI: 10.1890/12-1705.1.
[77]
DUVEILLER G, HOOKER J, CESCATTI A. The mark of vegetation change on Earth’s surface energy balance[J]. Nat Commun, 2018, 9(1):679.DOI: 10.1038/s41467-017-02810-8.
[78]
PENG S S, PIAO S L, ZENG Z Z, et al. Afforestation in China cools local land surface temperature[J]. PNAS, 2014, 111(8):2915-2919.DOI: 10.1073/pnas.1315126111.
[79]
TANG B J, ZHAO X, ZHAO W Q. Local effects of forests on temperatures across Europe[J]. Remote Sens, 2018, 10(4):529.DOI: 10.3390/rs10040529.
[80]
LI Y, PIAO S L, CHEN A P, et al. Local and teleconnected temperature effects of afforestation and vegetation greening in China[J]. Natl Sci Rev, 2019, 7(5):897-912.DOI: 10.1093/nsr/nwz132.
[81]
LIAO W L, LIU X P, BURAKOWSKI E, et al. Sensitivities and responses of land surface temperature to deforestation-induced biophysical changes in two global earth system models[J]. J Clim, 2020, 33(19):8381-8399.DOI: 10.1175/jcli-d-19-0725.1.
[82]
WICKHAM J D, WADE T G, RIITTERS K H. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States[J]. Glob Ecol Biogeogr, 2013, 22(5):620-629.DOI: 10.1111/geb.12013.
[83]
ANDERSON R G, CANADELL J G, RANDERSON J T, et al. Biophysical considerations in forestry for climate protection[J]. Front Ecol Environ, 2011, 9(3):174-182.DOI: 10.1890/090179.
[84]
黄麟, 翟俊, 宁佳. 不同气候带退耕还林对区域气温的影响差异分析[J]. 自然资源学报, 2017, 32(11):1832-1843.
HUANG L, ZHAI J, NING J. Impacts of returning farmland to forest on regional air temperature in different climatic zones[J]. J Nat Resour, 2017, 32(11):1832-1843.DOI: 10.11849/zrzyxb.20161061.
[85]
WANG L M, TIAN F Q, WANG X F, et al. Attribution of the land surface temperature response to land-use conversions from bare land[J]. Glob Planet Change, 2020, 193:103268.DOI: 10.1016/j.gloplacha.2020.103268.
[86]
LIAO W L, RIGDEN A J, LI D. Attribution of local temperature response to deforestation[J]. J Geophys Res Biogeosci, 2018, 123(5):1572-1587.DOI: 10.1029/2018JG004401.
[87]
JACH L, WARRACH-SAGI K, INGWERSEN J, et al. Land cover impacts on land-atmosphere coupling strength in climate simulations with WRF over Europe[J]. J Geophys Res Atmos, 2020, 125(18):e2019JD031989.DOI: 10.1029/2019JD031989.

基金

国家自然科学基金项目(32001251)
江苏省基础研究计划(自然科学基金)(BK20200781)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 吴祝华
PDF(1541 KB)

Accesses

Citation

Detail

段落导航
相关文章

/