南京椴群体遗传多样性和遗传结构分析

王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 145-153.

PDF(14714 KB)
PDF(14714 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 145-153. DOI: 10.12302/j.issn.1000-2006.202110049
研究论文

南京椴群体遗传多样性和遗传结构分析

作者信息 +

Genetic diversity and genetic structure of Tilia miqueliana population

Author information +
文章历史 +

摘要

【目的】 南京椴(Tilia miqueliana)为江苏省重要的乡土树种,野外资源稀缺。南京椴野外群体遗传多样性和遗传结构的探索,可为资源保护、品种选育及遗传改良提供依据。【方法】 以南京椴5个天然群体[江苏宝华山(P1)、牛首山(P2)、安徽皇藏峪(P3)、安徽蜀山(P4)和浙江天台山(P5)]93个体为实验材料,选用15对多态性EST-SSR引物,进行遗传多样性及群体遗传结构分析。【结果】 ①用15对引物共检测等位基因数(A)总和为96,平均值为6.4,四倍体基因型(G)和四倍体特异基因型(Gi)总和分别为441和251,特异基因型比率(R1)和种质鉴别率(R2)均值分别为45.73%和17.99%。②在5个群体中,每个位点等位基因数(Aloc)和四倍体基因型丰富度均值(Gloc)分别为5.50±2.43和9.41±4.29;平均观测杂合度(Ho)和平均期望杂合度(He)为0.61±1.43和0.62±0.14。参考各群体GlocHe值,确定遗传多样性较高的群体为P1和P3。③群体间遗传分化较小,遗传分化系数(Gst)仅为0.030;AMOVA分子变异分析显示,群体多样性水平变异来自于群体内(96%)。④聚类和遗传结构Structure分析显示,5个群体可划分为2组(组1包括P1、P2和P5;组2包括P3和P4)。Mental检验结果表明遗传距离与地理距离之间无显著相关。【结论】 南京椴群体均具有丰富的遗传多样性,其中宝华山群体和皇藏峪群体多样性较高,群体扩张可能是以这两个种群为中心,经人类活动迁移至其他区域。但南京椴群体间未形成明显分化,主要是由于植株寿命长,群体缺乏自然更新,加之群体间存在人为种子传播。因此,本研究提出通过建立隔离区,明确优先保护群体、加大植株异交,并采用人工繁育及种质回迁的方式保护南京椴野外群体。

Abstract

【Objective】 Tilia miqueliana is an important native tree species in Jiangsu Province, and its wild germplasm resources are particularly scarce. Exploration of the genetic diversity and the genetic structure of T. miqueliana in the field population provides the scientific basis for its resource protection, variety breeding and genetic improvement.【Method】 Fifteen polymorphic EST-SSR primers were used to analyze the genetic diversity and population structure of 93 individuals from five natural populations of T. miqueliana located on Baohua Mountain (Jiangsu Province, P1), Niushou Mountain (Jiangsu Province, P2), Huangcangyu Nature Reserve (Anhui Province, P3), Shu Mountain (Anhui Province, P4) and Tiantai Mountain (Zhejiang Province, P5). 【Result】 (1) A total of 96 alleles (A) were detected using 15 EST-SSR primer pairs. The average allelic richness at a locus was 6.4. The total number of tetraploid genotypic richness (G) and tetraploid specific genotypes (Gi) were 441 and 251, respectively. The average of the specific genotype ratio (R1) and the germplasm identification rate (R2) were 45.73% and 17.99%, respectively. (2) In the five populations, the mean number of alleles per locus (Aloc) and the tetraploid genotypic richness (Gloc) were 5.50 ± 2.43 and 9.41 ± 4.29, respectively. The mean observed heterozygosity (Ho) and the mean expected heterozygosity (He) were 0.61 ± 1.43 and 0.62 ± 0.14, respectively. Based on the values for Gloc and He, the P1 and P3 populations were identified as having high genetic diversity. (3) The genetic differentiation coefficient (Gst) was 0.030, indicating a low genetic differentiation among the five populations. Analysis of molecular variance (AMOVA) showed that the variation in genetic diversity predominantly came from within the population (96%). (4) Cluster analysis and genetic structure analysis by structure showed that the five tested populations could be divided into two groups (Group1. P1, P2 and P5; Group2. P3 and P4). The Mantel test results showed that there was no significant correlation between the genetic differentiation and the geographic distance. 【Conclusion】 High levels of genetic diversity were found within the five populations of T. miqueliana, among which Baohua Mountain population and Huangcangyu Nature Reserve population showed considerably higher genetic diversity than that the other populations showed. Combined with the results from the clustering and genetic structure analysis, we can infer that population expansion may have been centered on these two populations and migrated to other regions through human activities. There was no pronounced genetic differentiation among the different geographic populations, which may be due to the long life of individuals, the lack of natural regeneration of populations, and seed dispersal among populations through human activities. Therefore, we propose to establish isolation areas, identify priority populations for protection, increase plant outcrossing, and use artificial breeding and germplasm regeneration to protect the wild populations.

关键词

南京椴 / SSR标记 / 遗传结构 / 遗传多样性

Key words

Tilia miqueliana / SSR marker / genetic structure / genetic diversity

引用本文

导出引用
王欢利, 严灵君, 黄犀, . 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版). 2023, 47(1): 145-153 https://doi.org/10.12302/j.issn.1000-2006.202110049
WANG Huanli, YAN Lingjun, HUANG Xi, et al. Genetic diversity and genetic structure of Tilia miqueliana population[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 145-153 https://doi.org/10.12302/j.issn.1000-2006.202110049
中图分类号: S722   

参考文献

[1]
史锋厚. 椴树属分子系统学与南京椴保育遗传学研究[D]. 南京: 南京林业大学, 2009.
SHI F H. Study on molecular phylogenetic of genus Tilia L. and conservation genetics of Tilia miqueliana Maxim[D]. Nanjing: Nanjing Forestry University, 2009.
[2]
汤诗杰, 郑玉红, 汤庚国. 基于ISSR标记的5个南京椴种群的遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2009, 33(5):51-54.
TANG S J, ZHENG Y H, TANG G G. Study on genetic diversity of five populations of Tilia miqueliana Maxim.by using ISSR marker[J]. J Nanjing For Univ(Nat Sci Ed), 2009, 33(5):51-54.
[3]
汤诗杰, 郑玉红, 汤庚国. 基于RAPD标记的5个南京椴居群遗传多样性分析[J]. 植物资源与环境学报, 2013, 22(3):70-74.
TANG S J, ZHENG Y H, TANG G G. Genetic diversity analysis on five populations of Tilia miqueliana based on RAPD marker[J]. J Plant Resour Environ, 2013, 22(3):70-74.DOI:10.3969/j.issn.1674-7895.2013.03.11.
[4]
PONCET V, RONDEAU M, TRANCHANT C, et al. SSR mining in coffee tree EST databases:potential use of EST-SSRs as markers for the Coffea genus[J]. Mol Genet Genomics, 2006, 276(5):436-449.DOI:10.1007/s00438-006-0153-5.
[5]
杨梦婷, 黄洲, 干建平, 等. SSR分子标记的研究进展[J]. 杭州师范大学学报(自然科学版), 2019, 18(4):429-436.
YANG M T, HUANG Z, GAN J P, et al. Research progress of SSR molecular markers[J]. J Hangzhou Norm Univ(Nat Sci Ed), 2019, 18(4):429-436.DOI:10.3969/j.issn.1674-232X.2019.04.013.
[6]
陈思, 吴广文, 吴建忠, 等. 植物EST-SSR研究进展[J]. 黑龙江农业科学, 2018(12):148-152.
CHEN S, WU G W, WU J Z, et al. Research progress of EST-SSR in plants[J]. Heilongjiang Agric Sci, 2018(12):148-152.DOI:10.11942/j.issn1002-2767.2018.12.0148.
[7]
LI Y C, KOROL A B, FAHIMA T, et al. Microsatellites within genes:structure,function,and evolution[J]. Mol Biol Evol, 2004, 21(6):991-1007.DOI:10.1093/molbev/msh073.
[8]
FAVILLE M J, VECCHIES A C, SCHREIBER M, et al. Functionally associated molecular genetic marker map construction in perennial ryegrass(Lolium perenne L.)[J]. Theor Appl Genet, 2004, 110(1):12-32.DOI:10.1007/s00122-004-1785-7.
[9]
KOTA R, VARSHNEY R K, THIEL T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley(Hordeum vulgare L.)[J]. Hereditas, 2001, 135(2/3):145-151.DOI:10.1111/j.1601-5223.2001.00145.x.
[10]
杨翠, 刘凯, 谈红艳, 等. 贵州地方红米品种的遗传多样性分析[J]. 种子, 2021, 40(3):15-22.
YANG C, LIU K, TAN H Y, et al. Genetic diversity analysis of local red rice varieties in Guizhou[J]. Seed, 2021, 40(3):15-22.DOI:10.16590/j.cnki.1001-4705.2021.03.015.
[11]
刘红云, 周强, 李淑梅, 等. 豫南地区野生大豆种质资源的SSR遗传多样性分析[J]. 种子, 2021, 40(3):64-67.
LIU H Y, ZHOU Q, LI S M, et al. Genetic diversity analysis of wild soybean germplasms in southern He’nan by SSR markers[J]. Seed, 2021, 40(3):64-67.DOI:10.16590/j.cnki.1001-4705.2021.03.064.
[12]
彭丽娟, 牟柯澴, 张健伟, 等. 基于SSR及ISSR标记的菜豆遗传多样性分析[J] .分子植物育种, 2022, 20(21):7161-7173.
PENG L J, MOU K X, ZHANG J W, et al. Genetic diversity analysis of Phaseolus Vulgaris based on SSR and ISSR markers[J]. Mol Plant Breed, 2022, 220(21):7161-7173. DOI:10.13271/j.mpb.020.007161.
[13]
陈春艳, 马杰, 屈雯, 等. 基于转录组序列的胡萝卜EST-SSR标记开发及遗传多样性分析[J/OL]. 分子植物育种, 2021:1-12 [2021-03-18].
CHEN C Y, MA J, QU W, et al. Development of EST-SSR markers based on transcriptome sequencing and genetic diversity analysis of carrot[J/OL]. Mol Plant Breed, 2021:1-12 [2021-03-18].
[14]
FINESCHI S, SALVINI D, TAURCHINI D, et al. Chloroplast DNA variation of Tilia cordata(Tiliaceae)[J]. Can J For Res, 2003, 33(12):2503-2508.DOI:10.1139/x03-179.
[15]
LIESEBACH H, SINKÓ Z. A contribution to the systematics of the genus Tilia with respect to some hybrids by RAPD analysis[J]. Dendrobiology, 2008, 59:13-22.DOI:10.1007/978-1-4020-8476-8_13.
[16]
FILIZ E, BIRBILENER S, OZYIGIT I I, et al. Assessment of genetic variations of silver lime(Tilia tomentosa Moench.) by RAPD markers in urban and forest ecosystems[J]. Biotechnol Biotechnol Equip, 2015, 29(4):631-636.DOI:10.1080/13102818.2015.1042049.
[17]
COLAGAR A H, YUSEFI M, ZAREI M, et al. Assessment of genetic diversity of Tilia rubra DC. by RAPD analysis in the Hyrcanian forests,north of Iran[J]. Pol J Ecol, 2013, 61(2):341-348.DOI:10.3354/mesp10346.
[18]
王欢利, 汤诗杰, 王仲伟, 等. 基于转录组的椴树属EST-SSR引物及其筛选方法和应用: 201911380003.1[P]. 2020-10-23.
WANG H L, TANG S J, WANG Z W, et al. Screening methods and applications of EST-SSR primers in Tilia miqueliana based on transcriptome:201911380003.1[P]. 2020-10-23.
[19]
ESSELINK G D, NYBOM H, VOSMAN B. Assignment of allelic configuration in polyploids using the MAC-PR(microsatellite DNA allele counting-peak ratios) method[J]. Theor Appl Genet, 2004, 109(2):402-408.DOI:10.1007/s00122-004-1645-5.
[20]
THRALL P H, YOUNG A. AUTOTET:a program for analysis of autotetraploid genotypic data[J]. J Hered, 2000, 91(4):348-349.DOI:10.1093/jhered/91.4.348.
[21]
梁玉琴. 河南省柿种质资源遗传多样性研究[D]. 北京: 中国林业科学研究院, 2015.
LIANG Y Q. Study on genetic diversity of persimmon germplasms in Henan Province[D]. Beijing: Chinese Academy of Forestry, 2015.
[22]
范英明, 张登荣, 于大德, 等. 河北省华北落叶松天然群体遗传多样性分析[J]. 植物遗传资源学报, 2014, 15(3):465-471.
FAN Y M, ZHANG D R, YU D D, et al. Genetic diversity and population structure of Larix principis-rupprechtii Mayr. in Hebei province[J]. J Plant Genet Resour, 2014, 15(3):465-471.DOI:10.13430/j.cnki.jpgr.2014.03.002.
[23]
PEAKALL R, SMOUSE P E. GenAlEx 6.5:genetic analysis in Excel.population genetic software for teaching and research:an update[J]. Bioinformatics, 2012, 28(19):2537-2539.DOI:10.1093/bioinformatics/bts460.
[24]
ROHLF F J, JENSEN R J. NTSYS-pc[J]. Q Rev Biol, 1989, 64(2):250-252.DOI: 10.1086/416356.
[25]
GOWER J C. Some distance properties of latent root and vector methods used in multivariate analysis[J]. Biometrika, 1966, 53(3/4):325-338.DOI:10.1093/biomet/53.3-4.325.
[26]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI:10.1111/j.1365-294X.2005.02553.x.
[27]
BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3):314-331.DOI:10.1016/0165-1161(81)90274-0.
We describe a new basis for the construction of a genetic linkage map of the human genome. The basic principle of the mapping scheme is to develop, by recombinant DNA techniques, random single-copy DNA probes capable of detecting DNA sequence polymorphisms, when hybridized to restriction digests of an individual's DNA. Each of these probes will define a locus. Loci can be expanded or contracted to include more or less polymorphism by further application of recombinant DNA technology. Suitably polymorphic loci can be tested for linkage relationships in human pedigrees by established methods; and loci can be arranged into linkage groups to form a true genetic map of "DNA marker loci." Pedigrees in which inherited traits are known to be segregating can then be analyzed, making possible the mapping of the gene(s) responsible for the trait with respect to the DNA marker loci, without requiring direct access to a specified gene's DNA. For inherited diseases mapped in this way, linked DNA marker loci can be used predictively for genetic counseling.
[28]
WRIGHT S. The interpretation of population structure by F-statistics with special regard to systems of mating[J]. Evolution, 1965, 19(3):395-420.DOI:10.1111/j.1558-5646.1965.tb01731.x.
[29]
HAO L, ZHAI Y G, ZHANG G S, et al. Efficient fingerprinting of the tetraploid Salix psammophila using SSR markers[J]. Forests, 2020, 11(2):176.DOI:10.3390/f11020176.
[30]
HAMRICK J L, GODT M J W, SHERMAN-BROYLES S L. Factors influencing levels of genetic diversity in woody plant species[J]. New Forest, 1992, 6:95-124.DOI:10.1007/BF00120641.
[31]
汤诗杰, 汤庚国. 安徽皇藏峪自然保护区南京椴种群结构分析[J]. 植物资源与环境学报, 2007, 16(3):58-63.
TANG S J, TANG G G. Analysis on structure of Tilia miqueliana population in Huangcangyu Nature Reserve of Anhui Province[J]. J Plant Resour Environ, 2007, 16(3):58-63.DOI:10.3969/j.issn.1674-7895.2007.03.011.
[32]
汤诗杰, 彭志, 汤庚国. 宝华山南京椴群落的特征分析[J]. 扬州大学学报(农业与生命科学版), 2008, 29(1):90-94.
TANG S J, PENG Z, TANG G G. A community characteristics analysis on Tilia miqueliana in Baohua Mt.[J]. J Yangzhou Univ(Agric Life Sci Ed), 2008, 29(1):90-94.DOI:10.16872/j.cnki.1671-4652.2008.01.022.
[33]
KOLE C. Wild crop relatives:genomic and breeding resources[M]. Berlin:Springer, 2011.DOI:10.1007/978-3-642-21250-5.
[34]
程庭峰, 王环, 周党卫, 等. 秦艽的遗传多样性研究进展[J]. 中草药, 2019, 50(15):3720-3728.
CHENG T F, WANG H, ZHOU D W, et al. Research advance of genetic diversity of Chinese traditional herb Gentianae macrophyllae Radix[J]. Chin Tradit herb drugs, 2019, 50(15):3720-3728.DOI:10.7501/j.issn.0253-2670.2019.15.031.
[35]
李乃伟, 束晓春, 何树兰, 等. 南方红豆杉的ISSR遗传多样性分析[J]. 西北植物学报, 2010, 30(12):2536-2541.
LI N W, SHU X C, HE S L, et al. ISSR analysis of genetic diversity of Taxus chinensis var.mairei[J]. Acta Bot Boreali Occident Sin, 2010, 30(12):2536-2541.

基金

国家自然科学基金青年基金项目(31700477)
江苏省科技项目基础研究计划(自然科学基金)青年基金项目(BK20170619)
江苏省林业科技创新与推广项目(LYKJ[2019]06)

编辑: 吴祝华
PDF(14714 KB)

Accesses

Citation

Detail

段落导航
相关文章

/