响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件

石慧敏, 叶建仁, 王焱, 陆蓝翔, 史纪武

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 209-218.

PDF(14147 KB)
PDF(14147 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 209-218. DOI: 10.12302/j.issn.1000-2006.202111017
研究论文

响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件

作者信息 +

Optimizing spore-producing medium and culture conditions of Bacillus velezensis strain YH-18 by response surface methodology

Author information +
文章历史 +

摘要

【目的】 贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18是优良的抗病促生微生物,其制成的微生物菌剂具有无害、高效、环保等特点。通过优化菌株YH-18的培养基组分和培养条件,提高发酵液中的有效活菌数,以期增加发酵液中的芽孢数,延长储存时间,降低发酵成本,提高其在工业化生产发酵中的质量效益。【方法】 以贝莱斯芽孢杆菌(B. velezensis)菌株YH-18发酵液芽孢数为质量指标,采用单因素分析法对发酵液培养基(碳源、氮源、无机盐及其浓度)和培养条件(温度、转速、初始pH、装液量、接菌量)进行初步筛选。将初筛结果结合响应面试验设计[plackett-burman(PB)、最陡爬坡试验、box-behnken design(BBD)],筛选出对贝莱斯芽孢杆菌菌株YH-18产芽孢影响最为显著的因素进一步验证,建立各显著性因素的二次回归方程模型,完成对菌株YH-18培养基组分和培养条件的系统优化。对比优化前后发酵液产品的去菌体滤液对根癌农杆病菌(Agrobacterium tumefaciens)菌株C58生长的抑制效果。每隔4个月测定优化后发酵液中的活菌数和芽孢数,考察优化发酵液的货架期。【结果】 单因素试验初步筛选后得到培养基组分为1.0%(质量分数,后同)玉米浆干粉、1.0%葡萄糖、0.4%碳酸钙、0.4%磷酸氢二钾、0.2%的硫酸镁,培养条件为装液量50 mL三角瓶的40%、摇床转速200 r/min、培养温度33 ℃、接菌量0.5%、初始pH 7.3。将单因素试验后的结果进行PB试验筛选得到玉米浆干粉质量分数、装液量和接菌量是影响发酵液芽孢数最显著的3个因素。最陡爬坡试验确定了响应面试验因素水平的中心点为0.8%玉米浆干粉、接菌量1.1%、装液量32%。BBD试验最终确定,培养基组分(质量分数)为0.83%玉米浆干粉、1.0%葡萄糖、0.4%碳酸钙、0.4%磷酸氢二钾、0.2%的硫酸镁,培养条件为装液量31.53%、摇床转速200 r/min、培养温度33 ℃、接菌量1.12%、初始pH 7.3时,可获得较高发酵液芽孢产量。在本优化体系下,发酵液产品的芽孢数可达3.25×109 cfu/mL,较LB基础培养基芽孢数提高了9.48倍。菌株优化后发酵液产品的去菌体滤液对根癌农杆病菌菌株菌株C58的抑制能力较未优化的明显增强,能在前16 h使根癌农杆菌菌株C58基本不生长,且在48 h后仍有较好的抑制效果。在50 L发酵罐中使用优化配方发酵得到的发酵液产品储存1 a后有效活菌数和芽孢数仍然分别为初始值的87.50%和89.74%,原始发酵方法的发酵液产品在储存4个月后有效活菌数仅为初始值的0.06%。【结论】 确定了贝莱斯芽孢杆菌菌株YH-18摇瓶发酵产芽孢的最适培养基和培养条件。优化后显著提高了发酵液芽孢数,增强了发酵液去菌体滤液的抑菌能力,延长了产品储存时间,降低了生产成本,为贝莱斯芽孢杆菌菌株YH-18未来的工业化生产和推广应用提供了重要的技术支持。

Abstract

【Objective】 Bacillus velezensis strain YH-18 is an excellent disease-resistant, growth-promoting microorganism. This microbial agent is harmless, efficient and environmentally friendly. This study aimed to increase the number of spores in the fermentation broth, prolong the storage time, reduce the fermentation cost, and improve its benefits within the context of industrial fermentation. The viable bacteria count of the fermentation broth was improved by optimizing the culture medium components and culture conditions of strain YH-18.【Method】 Using the spore number of the fermentation broth of B. velezensis strain as the quality index, single factor analysis was used to preliminarily screen the culture medium (i.e., in terms of carbon source, nitrogen source, inorganic salt and its concentration) and the culture conditions (i.e., temperature, rotational speed, initial pH, liquid loading, and inoculation amount). Based on the preliminary screening results and response surface design [plackett-burman (PB), steepest climbing test, and box-behnken design (BBD)], the most significant factors affecting spore production of strain YH-18 were screened for further verification, and the quadratic regression equation model of each significant factor was established. The culture medium components and culture conditions for strain YH-18 were systematically optimized. The inhibitory effects of the bacterial-free filtrate of the fermentation broth before and after optimization on the growth of Agrobacterium tumefaciens strain C58 were compared. The number of bacteria and spores in the optimized fermentation broth was determined every four months, and the shelf life of the optimized fermentation broth was investigated. 【Result】 After single factor screening, the medium components (mass fraction, same as bebw) were 1% dried corn steep liquor powder, 1% glucose, 0.4% CaCO3, 0.4% K2HPO4 and 0.2% MgSO4. The culture conditions were 40% liquid loading, 200 r/min rotation speed, 33 °C, 0.5% inoculation amount, and pH 7.3. The PB test was used to screen for the results of the single-factor test. The results showed that the concentration of dried corn steep liquor powder, liquid loading, and inoculation amount were the three most significant factors that affected the number of spores in the fermentation broth. The steepest climbing test determined that the center points of the response surface test factor level were 0.8% dried corn steep liquor powder, 1.1% inoculation amount, and 32% liquid loading. The box-behnken design (BBD) test determined that the medium was composed of 0.83% dried corn steep liquor powder, 1% glucose, 0.4% CaCO3, 0.4% K2HPO4 and 0.2% MgSO4. In addition, higher spore yields were obtained when the culture conditions were 31.53% liquid loading, 200 r/min rotation speed, pH 7.3, 33 °C culture temperature, and 1.12% inoculation amount. Under the optimized system, the spore concentration of the fermentation broth could reach 3.25×109 cfu/mL, which was 9.48 times higher than that of LB basic medium. The bacteria-free filtrate of the optimized fermentation broth product significantly enhanced the inhibition of A. tumefaciens strain C58 compared to the non-optimized product. It could stop the growth of A. tumefaciens strain C58 in the first 16 h and still had a good inhibitory effect after 48 h. The number of viable bacteria and spores obtained by fermentation with the optimized formula in a 50 L fermenter was 87.5% and 89.74% of the initial value after one year of storage, while the number of viable bacteria in the original fermentation method was only 0.06% of the initial value after four months of storage. 【Conclusion】 The optimum medium and culture conditions for spore production by B. velezensis strain YH-18 in shaker fermentation were determined. After optimization, the number of spores in the fermentation broth was significantly increased; the antibacterial capacity of bacterial-free filtrate in the fermentation broth was enhanced; the product shelf life was prolonged; the production cost was reduced; and important technical support was provided for the industrial production, promotion and application of B. velezensis strain YH-18 in the future.

关键词

贝莱斯芽孢杆菌 / 芽孢 / 培养基 / 培养条件 / 响应面法 / 发酵优化

Key words

Bacillus velezensis / spore / culture medium / culture condition / response surface methodology / optimization of fermentation

引用本文

导出引用
石慧敏, 叶建仁, 王焱, . 响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件[J]. 南京林业大学学报(自然科学版). 2023, 47(1): 209-218 https://doi.org/10.12302/j.issn.1000-2006.202111017
SHI Huimin, YE Jianren, WANG Yan, et al. Optimizing spore-producing medium and culture conditions of Bacillus velezensis strain YH-18 by response surface methodology[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 209-218 https://doi.org/10.12302/j.issn.1000-2006.202111017
中图分类号: TQ920.1;S763   

参考文献

[1]
BRONICK C J, LAL R. Soil structure and management: a review[J]. Geoderma, 2005, 124(1/2): 3-22. DOI: 10.1016/j.geoderma.2004.03.005.
[2]
倪铭, 高振洲, 吴文, 等. 不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4):107-113.
NI M, GAO Z Z, WU W, et al. Effects of different nitrogen fertilization methods on growth and non-structure carbohhydrate accumulation of Quercus nuttallii seedings[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 107-113. DOI:10.12302/j.issn.1000-2006.202005040.
[3]
FERNANDO W G D, NAKKEERAN S, ZHANG Y, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals[J]. Crop Prot, 2007, 26(2): 100-107. DOI:10.1016/j.cropro.2006.04.007.
[4]
陈慧君. 微生物肥料菌种应用与效果分析[D]. 北京: 中国农业科学院, 2013.
CHEN H J. Application of functional species and effect evaluation in microbal fertilizers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[5]
NICHOLSON W L, MUNAKATA N, HORNECK G, et al. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments[J]. Microbiol Mol Biol Rev, 2000, 64(3): 548-572. DOI: 10.1128/MMBR.64.3.548-572.2000.
[6]
HANCOCK R E W, LEHRER R. Cationic peptides: a new source of antibiotics[J]. Trends Biotechnol 1998, 16(2): 82-88. DOI: 10.1016/S0167-7799(97)01156-6.
Antimicrobial cationic peptides are an important component of the innate defenses of all species of life. Different peptides may have antibacterial, antiendotoxic, antibiotic-potentiating or antifungal properties, and so they are being developed for use as a novel class of antimicrobial agents and as the basis for making transgenic disease-resistant plants and animals.
[7]
VARDHARAJULA S, ALI S Z, GROVER M, et al. Drought-tolerant plant growth promoting Bacillus spp.:effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. J Plant Interact, 2011, 6(1): 1-14. DOI: 10.1080/17429145.2010.535178.
[8]
CHOWDHURY S P, HARTMANN A, GAO X W, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42:a review[J]. Front Microbiol, 2015, 6(780): 780. DOI: 10.3389/fmicb.2015.00780.
[9]
FU L, PENTON C R, RUAN Y Z, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biol Biochem, 2017, 104: 39-48. DOI: 10.1016/j.soilbio.2016.10.008.
[10]
YE M, TANG X F, YANG R, et al. Characteristics and application of a novel species of Bacillus: Bacillus velezensis[J]. ACS Chem Biol, 2018, 13(3):500-505. DOI: 10.1021/acschembio.7b00874.
[11]
江明明. 几株优良内生菌的分离及鉴定[D]. 南京: 南京林业大学, 2016.
JIANG M M. Isolation and identification about several strains of endophytic bacteria[D]. Nanjing: Nanjing Forestry University, 2016.
[12]
魏丹萍, 叶建仁, 梁茂金, 等. 瓦莱氏芽孢杆菌YH-18发酵液的喷雾干燥工艺[J]. 南京林业大学学报(自然科学版), 2020, 44(5):209-214.
WEI D P, YE J R, LIANG M J, et al. Spray drying processes of Bacillus valeriana YH-18[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):209-214. DOI: 10.3969/j.issn.1000-2006.201903012.
[13]
龚军辉, 王晶. 稀释涂布平板法计数活菌的方法简介[J]. 生物学教学, 2018, 43(2):70-71.
GONG J H, WANG J. Introduction to the dilution smear plate method for counting live bacteria[J]. Biol Teach Univ (Electron Ed), 2018, 43(2):70-71. DOI:10.3969/j.issn.1004-7549.2018.02.036.
[14]
郑双凤, 谭武贵, 丰来, 等. 枯草芽孢杆菌NTGB-178高产芽孢发酵工艺优化[J]. 南京农业大学学报, 2017, 40(6): 1031-1040.
ZHENG S F, TAN W G, FENG L, et al. Optimization of sporulation fermentation process of Bacillus subtilis NTGB-178[J]. J Nanjing Agric Univ, 2017, 40(6): 1031-1040. DOI: 10.7685/jnau.201702023.
[15]
洪鹏, 安国栋, 胡美英, 等. 解淀粉芽孢杆菌HF-01发酵条件优化[J]. 中国生物防治学报, 2013, 29(4): 569-578.
HONG P, AN G D, HU M Y, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens HF-01[J]. Chin J Biol Control, 2013, 29(4): 569-578. DOI:10.16409/j.cnki.2095-039x.2013.04.002.
[16]
叶云峰, 黎起秦, 袁高庆, 等. 枯草芽孢杆菌B47菌株高产抗菌物质的培养基及发酵条件优化[J]. 微生物学通报, 2011, 38(9): 1339-1346.
YE Y F, LI Q Q, YUAN G Q, et al. Optimization of culture medium and fermentation conditions for high production of antimicrobial substance by Bacillus subtilis strain B47[J]. Microbiol China, 2011, 38(9): 1339-1346. DOI:10.13344/j.microbiol.china.2011.09.003.
[17]
胡升, 梅乐和, 姚善泾. 响应面法优化纳豆激酶液体发酵[J]. 食品与发酵工业, 2003, 29(1): 13-17.
HU S, MEI L H, YAO S J. Optimization of submerged fermentation of nattokinase production by Bacillus subtilis with response surface metho-dology[J]. Food Ferment Ind, 2003, 29(1): 13-17. DOI: 10.3321/j.issn:0253-990X.2003.01.004.
[18]
张丽霞. 枯草芽孢杆菌B908发酵工艺优化研究[D]. 呼和浩特: 内蒙古农业大学, 2006.
ZHANG L X. Optimization of fermentation technology for Bacillus subtilis B908[D]. Hohhot: Inner Mongolia Agricultural University, 2006.
[19]
罗立新. 微生物发酵生理学[M]. 北京: 化学工业出版社, 2010.
LUO L X. Physiology of microbial fermentation[M]. Beijing: Chemical Industry Press, 2010.
[20]
王继雯, 刘莹莹, 李冠杰, 等. 巨大芽孢杆菌C2产芽孢培养条件的优化[J]. 中国农学通报, 2014, 30(36): 155-160.
WANG J W, LIU Y Y, LI G J, et al. Optimization of spore culture conditions for Bacillus megaterium C2[J]. Chin Agric Sci Bull, 2014, 30(36): 155-160. DOI: CNKI:SUN:ZNTB.0.2014-36-027.
[21]
魏奇. 几株优良内生细菌在上海生态林上的应用研究[D]. 南京: 南京林业大学, 2017.
WEI Q. Application and research of several excellent endophytic bacteria in Shanghai ecological forest[D]. Nanjing: Nanjing Forestry University, 2017.
[22]
TOURATIER F, LEGENDRE L, VÉZINA A. Model of bacterial growth influenced by substrate C:N ratio and concentration[J]. Aquat Microb Ecol, 1999, 19(2): 105-118. DOI: 10.3354/ame019105.
[23]
刘春红. 5株有益芽胞杆菌工业化生产发酵工艺优化研究[D]. 北京: 中国农业大学, 2016.
LIU C H. Optimization of fermentation technology for industrial production of five beneficial Bacillus strains[D]. Beijing: China Agricultural University, 2016.
[24]
POSADA-URIBE L F, ROMERO-TABAREZ M, VILLEGAS-ESCOBAR V. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production[J]. Bioprocess Biosyst Eng, 2015, 38(10): 1879-1888. DOI: 10.1007/s00449-015-1428-1.
[25]
YOUSTEN A A, WALLIS D A, SINGER S. Effect of oxygen on growth, sporulation, and mosquito larval toxin formation by Bacillus sphaericus 1593[J]. Curr Microbiol, 1984, 11(3): 175-178. DOI: 10.1007/BF01567345.
[26]
周向平, 舒翠华, 滕凯, 等. 内生解淀粉芽孢杆菌Xe01的鉴定及其发酵条件优化[J]. 中国烟草科学, 2020, 41(6): 58-67.
ZHOU X P, SHU C H, TENG K, et al. Identification and fermentation optimization of antagonistic Bacillus amyloliquefaciens Xe01[J]. Chin Tob Sci, 2020, 41(6): 58-67. DOI: 10.13496/j.issn.1007-5119.2020.00.153.
[27]
王朝恩, 刘婉慧, 陆蓝翔, 等. 短小芽孢杆菌HR10产孢培养基及发酵条件优化[J]. 微生物学杂志, 2021, 41(2): 37-45.
WANG C E, LIU W H, LU L X, et al. Optimization of spo-rulation medium and fermentation conditions for Bacillus pumilus HR10.[J]. J Microbiol, 2021, 41(2): 37-45. DOI: 10.3969/j.issn.1005-7021.2021.02.005.
[28]
胡永红. 益生芽孢杆菌生产与应用[M]. 北京: 化学工业出版社, 2015.
HU Y H. Probiotic Bacillus production and applications[M]. Beijing: Chemical Industry Press, 2015.
[29]
许睿娉. 枯草芽孢杆菌HG-15菌体发酵全可溶培养基配方与条件优化[D]. 泰安: 山东农业大学, 2020.
XU R P. Optimization of fermentation conditions and the formulation of fully soluble medium for Bacillus subtilis HG-15[D]. Tai’an: Shandong Agricultural University, 2020.
[30]
郭建军, 熊大维, 曾静, 等. 饲用枯草芽孢杆菌SR096产孢培养基及培养条件的优化[J]. 饲料研究, 2020, 43(3): 56-60.
GUO J J, XIONG D W, ZENG J, et al. Optimization of spore production medium and culture conditions of Bacillus subtilis SR096[J]. Feed Res, 2020, 43(3): 56-60. DOI: 10.13557/j.cnki.issn1002-2813.2020.03.015.
[31]
杨求华. 渔源解淀粉芽孢杆菌CQN-2菌株培养基及发酵条件优化[J]. 渔业研究, 2020, 42(4): 339-347.
摘要
CQN-2是一株具有抗病、促生长等多种功能的肠道内源性解淀粉芽孢杆菌。为研究其最佳培养条件,从而为规模化生产发酵提供依据,本文以菌体生物量为指标,采用单因素试验和正交试验对CQN-2菌株的最适培养基及发酵条件进行优化。结果表明,CQN-2菌株的最适碳源为可溶性淀粉,最适氮源为细菌学蛋白胨,经优化后的最佳培养基配方为可溶性淀粉20 g/L、细菌学蛋白胨30 g/L、糖蜜50 g/L、KH2PO4 0.5 g/L、MgSO4 0.5 g/L、NaCl 0.3 g/L、Mn2+ 5 mmol/L、Al3+ 1 mmol/L;最佳发酵培养条件:初始pH值7.0,接种量为3%、装液量25 mL/250 mL;使用优化后的培养基将CQN-2接种于5 L发酵罐进行高密度发酵培养36 h后的活菌数为3.03×1012 CFU/mL。
YANG Q H. Optimization of culture medium and fermentation conditions of Bacillus amyloliquefaciens CQN-2 isolated from aquatic animal[J]. J Fish Res, 2020, 42 (4): 339-347. DOI: 10.14012/j.cnki.fjsc.2020.04.005.
[32]
彭雯杰, 詹伊婧, 雷鹏, 等. 阿斯青霉菌XK-12产铁载体特性及其抑菌活性[J]. 江苏农业学报, 2022, 38(1):73-80.
PENG W J, ZHAN Y J, LEI P, et al. Characteristics of siderophores production by Penicilium asturianum XK-12 and its effect on antibacterial activity[J]. Jiangsu J Agr Sci, 2022, 38(1):73-80.DOI:10.3969/j.issn.1000-4440.2022.01.008.

基金

上海市绿化和市容管理局科学技术项目(G191208)
上海市科技计划项目(22N51900400)

编辑: 王国栋
PDF(14147 KB)

Accesses

Citation

Detail

段落导航
相关文章

/