CRISPR:从“盲盒”基因编辑到“精准靶向”基因组编辑的未竟之旅

施季森

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 12-14.

PDF(1433 KB)
PDF(1433 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 12-14. DOI: 10.12302/j.issn.1000-2006.202111027
专题短评

CRISPR:从“盲盒”基因编辑到“精准靶向”基因组编辑的未竟之旅

作者信息 +

CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing

Author information +
文章历史 +

引用本文

导出引用
施季森. CRISPR:从“盲盒”基因编辑到“精准靶向”基因组编辑的未竟之旅[J]. 南京林业大学学报(自然科学版). 2021, 45(6): 12-14 https://doi.org/10.12302/j.issn.1000-2006.202111027
SHI Jisen. CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 12-14 https://doi.org/10.12302/j.issn.1000-2006.202111027
中图分类号: Q943.2   

参考文献

[1]
ZHOU X, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
[2]
TSAI C J, XUE L J. CRISPRing into the woods[J]. GM Crops Food, 2015, 6(4):206-215.DOI: 10.1080/21645698.2015.1091553.
[3]
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
[4]
侯静, 毛金燕, 尹佟明, 等. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6):24-30.
HOU J, MAO J Y, ZHAI H, et al. Application of CRISPR/Cas technique in woody plant improvement[J]. J Nanjing For Univ(Nat Sci Ed), 2021, 45(6):24-30.DOI: 10.12302/j.issn.1000-2006.202010017.
[5]
YE S, CHEN G, KOHNEN M V, et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Biotechnol J, 2020, 18(7):1501-1503.DOI: 10.1111/pbi.13320.
[6]
BAHARIAH B, MASANI M Y A, RASID O A, et al. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice:a model genome editing system for oil palm[J]. J Genet Eng Biotechnol, 2021, 19(1):86.DOI: 10.1186/s43141-021-00185-4.
[7]
SATTAR M N, IQBAL Z, AL-KHAYRI J M. CRISPR-cas based precision breeding in date palm:future applications[M]//The Date Palm Genome. Cham:Springer International Publishing, 2021:169-199. DOI: 10.1007/978-3-030-73750-4_9.
[8]
YU J, ZHOU C G, LI D N, et al. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa[J]. Plant Commun, 2021: 100250.DOI: 10.1016/j.xplc.2021.100250.
[9]
DE VRIES L, BROUCKAERT M, CHANOCA A, et al. CRISPR/Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P.alba[J]. Plant Biotechnol J, 2021, 19(11):2221-2234.DOI: 10.1111/pbi.13651.
[10]
JIANG Y, TONG S, CHEN N, et al. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus[J]. Plant J, 2021, 105(5):1258-1273.DOI: 10.1111/tpj.15109.
[11]
HE H, XUE Q S, LU M Z, et al. The novel role of PagSAG101a in the regulation of secondary xylem formation in poplar[J]. J Integrat Plant Bio, 20210439.DOI: 10.1111/j.jipb.13195.
[12]
DAI X M, YANG X F, WANG C, et al. CRISPR/Cas9-mediated genome editing in Hevea brasiliensis[J]. Ind Crops Prod, 2021, 164:113418.DOI: 10.1016/j.indcrop.2021.113418.
[13]
MA W H, KANG X, LIU P, et al. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing[J]. Process Biochem, 2021, 101:304-311.DOI: 10.1016/j.procbio.2021.01.001.
[14]
NANASATO Y, MIKAMI M, FUTAMURA N, et al. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D.Don)[J]. Sci Rep, 2021, 11(1):1-12.DOI: 10.1038/s41598-021-95547-w.
[15]
POOVAIAH C, PHILLIPS L, GEDDES B, et al. Genome editing with CRISPR/Cas9 in Pinus radiata (d.don)[J]. BMC Plant Biol, 2021, 21(1):1-9.DOI: 10.1186/s12870-021-03143-x.
[16]
CUI Y, ZHAO J, ZHANG J F, et al. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca[J]. Front Plant Sci, 2021, 12:751891.DOI: 10.3389/fpls.2021.751891.
[17]
王竹雯, 国艳娇, 李伟, 等. 基于CRISPR/Cas9 的毛果杨PtrHBI1基因功能解析[J]. 南京林业大学学报(自然科学版), 2021, 45(6):31-39.
WANG Z W, GUO Y J, LI S, et al., Functional analysis of PtrHBI1gene in Populus trichocarpa based on CRISPR/Cas9[J]. J. Nanjing For. Univ.(Nat. Sci. Ed.). 2021, 45(6):31-39.DOI: 10.12302/j.issn.1000-2000.20217030.
[18]
孙佳彤, 国艳娇, 李伟, 等. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6)15-23.
SUN J T, GUO Y J., LI S., et al., A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa[J]. 2021, 45(6):15-23. DOI: 10.12302/j.issn.1000-2000.20217031.
[19]
CRISPENS C G. Effect of statolon on lactate dehydrogenase virus infection in mice[J]. Arch Gesamte Virusforsch, 1970, 31(3):191-195.DOI: 10.1007/bf01253751.
[20]
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433.DOI: 10.1128/jb.169.12.5429-5433.1987.
[21]
KOZOVSKA Z, RAJCANIOVA S, MUNTEANU P, et al. CRISPR:History and perspectives to the future[J]. Biomed Pharmacother, 2021, 141:111917.DOI: 10.1016/j.biopha.2021.111917.
[22]
CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.DOI: 10.1126/science.1231143.
[23]
GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J]. Science, 2018, 360(6387):439-444.DOI: 10.1126/science.aaq0179.
[24]
WU Z, ZHANG Y, YU H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nat Chem Biol, 2021, 17(11):1132-1138.DOI: 10.1038/s41589-021-00868-6.
[25]
KOCH L. CRISPR systems go mini[J]. Nat Rev Genet, 2021, 22(11):690.DOI: 10.1038/s41576-021-00419-8.
[26]
AWAN M J A, AMIN I, MANSOOR S. Mini CRISPR-Cas12f1:a new genome editing tool[J]. Trends Plant Sci, 2021 DOI: 10.1016/j.tplants.2021.11.002.
[27]
ALTAE-TRAN H, KANNAN S, ZHANG F, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases[J]. Science, 2021, 374(6563):57-65.DOI: 10.1126/science.abj6856.

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1433 KB)

Accesses

Citation

Detail

段落导航
相关文章

/