近30年千岛湖流域产水量时空变化及其影响因子分析

朱志洪, 周本智, 王懿祥, 祁军, 李爱博, 黄润霞

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 111-119.

PDF(1896 KB)
PDF(1896 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 111-119. DOI: 10.12302/j.issn.1000-2006.202111028
研究论文

近30年千岛湖流域产水量时空变化及其影响因子分析

作者信息 +

Spatio-temporal variations and influencing factors of water yield in the Thousand-Island Lake basin in the past 30 years

Author information +
文章历史 +

摘要

【目的】千岛湖流域是长江三角洲重要的水源地和生态屏障区,研究其水源供给服务对长江三角洲生态保护和社会经济高质量可持续发展有着重要的意义。【方法】基于InVEST模型对千岛湖流域近30年的产水量进行量化,并通过情景分析法和地理探测器探究其时空变化特征以及空间分异的主要影响因子。【结果】1995-2019年,千岛湖流域产水量与降水量的年际变化具有一致性,表现为前期大幅度减小后明显增大再略微减小的波动变化趋势,空间分布格局变化不大, 产水高值区主要集中在流域西部,低值区则集中在流域东部湖区范围内;不同土地利用类型中,建筑用地的平均产水量最高,草地次之,林地和水体的平均产水量最低;气候变化对产水量的影响较为显著,土地利用变化对产水量的影响较低;实际蒸散量是产水量空间分布格局的主要驱动因子,土地利用类型次之,实际蒸散量与降水的交互作用最为显著。【结论】流域产水量是气候、土地利用类型等多种因子共同作用的结果,在未来的生态建设和环境保护中,需要综合考虑地形、气候和人类活动的变化对千岛湖流域产水服务的影响。

Abstract

【Objective】The Thousand-Island Lake basin is an important water conservation and ecological barrier area in the Yangtze River Delta. Thus, the study of water supply services is of great significance to ecological protection and high-quality sustainable development of the social economy. 【Method】The water yield of the Thousand-Island Lake basin was quantified over a six-year period: 1995, 2000, 2005, 2010, 2015 and 2019 based on the InVEST model, and water yield spatio-temporal variations and influencing factors were explored using the scenario and geodetector analyses.【Result】From 1995 to 2019, water yield inter-annual variations in the Thousand-Island Lake basin was consistent with precipitation trends; that is the water yield decreased significantly from 1995 to 2005, increased significantly from 2005 to 2015, and showed a subsequent marginal decrease from 2015 to 2019. Spatial distribution patterns showed little variation over the study period; however, patterns were high in the west of the basin and low in the basin’s eastern lake. The average water yield of buildings was higher than that of other land use types, followed by grasslands and woodland; water bodies had the lowest average water yield. Precipitation had a stronger effect on water yield than that of land use changes, which was significant. Actual evapotranspiration was the main driving factor of water spatial patterns, followed by land use types. The interaction between actual evapotranspiration and rainfall was the most significant than others. 【Conclusion】The water yield is the result of a combination of factors including climate and land use types. For the future ecological construction and environmental protection, the impact of terrain, climate, and human activities on water yield services must be considered and comprehensively studied.

关键词

产水量 / InVEST模型 / 地理探测器 / 土地利用 / 千岛湖流域

Key words

water yield / InVEST model / geodetector / land use / Thousand-Island Lake basin

引用本文

导出引用
朱志洪, 周本智, 王懿祥, . 近30年千岛湖流域产水量时空变化及其影响因子分析[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 111-119 https://doi.org/10.12302/j.issn.1000-2006.202111028
ZHU Zhihong, ZHOU Benzhi, WANG Yixiang, et al. Spatio-temporal variations and influencing factors of water yield in the Thousand-Island Lake basin in the past 30 years[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 111-119 https://doi.org/10.12302/j.issn.1000-2006.202111028
中图分类号: Q148;S757   

参考文献

[1]
COSTANZA R, D’ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Ecol Econ, 1998, 25(1):3-15.DOI: 10.1016/S0921-8009(98)00020-2.
[2]
LANG Y Q, SONG W, DENG X Z. Projected land use changes impacts on water yields in the Karst mountain areas of China[J]. Phys Chem Earth Parts A/B/C, 2018, 104:66-75.DOI:10.1016/j.pce.2017.11.001.
[3]
钱彩云, 巩杰, 张金茜, 等. 甘肃白龙江流域生态系统服务变化及权衡与协同关系[J]. 地理学报, 2018, 73(5):868-879.
QIAN C Y, GONG J, ZHANG J X, et al. Change and tradeoffs-synergies analysis on watershed ecosystem services:a case study of Bailongjiang watershed,Gansu[J]. Acta Geogr Sin, 2018, 73(5):868-879.DOI: 10.11821/dlxb201805007
[4]
LEH M D K, MATLOCK M D, CUMMINGS E C, et al. Quantifying and mapping multiple ecosystem services change in west Africa[J]. Agric Ecosyst Environ, 2013, 165:6-18.DOI: 10.1016/j.agee.2012.12.001.
[5]
周彬, 余新晓, 陈丽华, 等. 基于InVEST模型的北京山区土壤侵蚀模拟[J]. 水土保持研究, 2010, 17(6):9-13,19.
ZHOU B, YU X X, CHEN L H, et al. Soil erosion simulation in mountain areas of Beijing based on InVEST model[J]. Res Soil Water Conserv, 2010, 17(6):9-13,19.
[6]
REDHEAD J W, STRATFORD C, SHARPS K, et al. Empirical validation of the InVEST water yield ecosystem service model at a national scale[J]. Sci Total Environ, 2016, 569/570:1418-1426.DOI: 10.1016/j.scitotenv.2016.06.227.
[7]
YOHANNES H, SOROMESSA T, ARGAW M, et al. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile basin in Ethiopia[J]. Sci Total Environ, 2021, 793:148559.DOI: 10.1016/j.scitotenv.2021.148559.
[8]
MARQUÈS M, BANGASH R F, KUMAR V, et al. The impact of climate change on water provision under a low flow regime: a case study of the ecosystems services in the Francoli River basin[J]. J Hazard Mater, 2013, 263:224-232.DOI: 10.1016/j.jhazmat.2013.07.049.
[9]
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报, 2020, 31(8):2731-2739.
YANG J, XIE B P, ZHANG D G. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River basin based on InVEST model[J]. Chin J Appl Ecol, 2020, 31(8):2731-2739.DOI: 10.13287/j.1001-9332.202008.015.
[10]
戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3):607-619.
DAI E F, WANG Y H. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region[J]. Acta Geogr Sin, 2020, 75(3):607-619.DOI: 10.11821/dlxb202003012.
[11]
王晓峰, 符鑫鑫, 楚冰洋, 等. 秦岭生态屏障产水服务时空演变特征及驱动要素[J]. 自然资源学报, 2021, 36(10):2507-2521.
WANG X F, FU X X, CHU B Y, et al. Spatio-temporal variation of water yield and its driving factors in Qinling Mountains barrier region[J]. J Nat Resour, 2021, 36(10):2507-2521.DOI: 10.31497/zrzyxb.20211005.
[12]
笪文怡. 千岛湖水环境时空变化特征及其影响因素[D]. 南充: 西华师范大学, 2019.
DA W Y. Study on spatio-temporal dynamics and influencing factors of aquatic environment in Lake Qiandaohu[D]. Nanchong: China West Normal University, 2019.
[13]
徐鹏飞, 程乾, 金平斌. 基于神经网络模型的千岛湖清洁水体叶绿素a遥感反演研究[J]. 长江流域资源与环境, 2021, 30(7):1670-1679.
XU P F, CHENG Q, JIN P B. Inversion of chlorophyll-a of clean water in Qiandao Lake with remote sensing data using the neural network[J]. Resour Environ Yangtze Basin, 2021, 30(7):1670-1679. DOI: 10.11870/cjlyzyyhj202107014.
[14]
周浩楠, 赵郁豪, 曾頔, 等. 千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素[J]. 生物多样性, 2019, 27(10):1101-1111.
ZHOU H N, ZHAO Y H, ZENG D, et al. Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China[J]. Biodivers Sci, 2019, 27(10):1101-1111.DOI: 10.17520/biods.2019213.
[15]
徐高福, 卢刚, 张建和, 等. 千岛湖风化基岩消落带植被的垂直分布特征[J]. 南京林业大学学报(自然科学版), 2017, 41(3):86-94.
XU G F, LU G, ZHANG J H, et al. The characteristics of vertical vegetation distribution in hydro-fluctuation zone based on weathered bedrock in the Thousand Island Lake region[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(3):86-94.DOI: 10.3969/j.issn.1000-2006.201605055.
[16]
刘世勤, 丰炳财, 汪建敏, 等. 千岛湖库区防火林带结构与组成及其优化选择[J]. 南京林业大学学报(自然科学版), 2010, 34(5): 153-156.
LIU S Q, FENG B C, WANG J M, et al. Study on optimization of structure and component selection of fire-resistant forest belt in Thousand-island Lake reservoir district[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(5):153-156.
[17]
相晨, 严力蛟, 韩轶才, 等. 千岛湖生态系统服务价值评估[J]. 应用生态学报, 2019, 30(11):3875-3884.
XIANG C, YAN L J, HAN Y C, et al. Evaluation of ecosystem services of the Thousand-island lake, Zhejiang, China[J]. Chin J Appl Ecol, 2019, 30(11):3875-3884.DOI: 10.13287/j.1001-9332.201911.031.
[18]
汤旭光, 李恒鹏, 聂小飞, 等. 应用MODIS数据监测千岛湖流域植被覆盖动态(2001-2013年)[J]. 湖泊科学, 2015, 27(3):511-518.
TANG X G, LI H P, NIE X F, et al. Vegetation dynamical status in the Lake Qiandao drainage basin using time-series MO-DIS data (2001-2013)[J]. J Lake Sci, 2015, 27(3):511-518.
[19]
PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: past and future[J]. Agric Water Manag, 2015, 147:4-20.DOI: 10.1016/j.agwat.2014.07.031.
[20]
周文佐. 基于GIS的我国主要土壤类型土壤有效含水量研究[D]. 南京: 南京农业大学, 2003.
ZHOU W Z. A study on available water capacity of main soil types in China based on geographic information system[D]. Nanjing: Nanjing Agricultural University, 2003.
[21]
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
WANG J F, XU C D. Geodetector:principle and prospective[J]. Acta Geogr Sin, 2017, 72(1):116-134.DOI: 10.11821/dlxb201701010.
[22]
DONOHUE R J, RODERICK M L, MCVICAR T R. Roots, storms and soil pores:incorporating key ecohydrological processes into Budyko’s hydrological model[J]. J Hydrol, 2012, 436/437:35-50.DOI: 10.1016/j.jhydrol.2012.02.033.
[23]
顾晋饴, 李一平, 杜薇. 基于InVEST模型的太湖流域水源涵养能力评价及其变化特征分析[J]. 水资源保护, 2018, 34(3):62-67,84.
GU J Y, LI Y P, DU W. Evaluation on water source conservation capacity and analysis of its variation characteristics of Taihu Lake basin based on InVEST model[J]. Water Resour Prot, 2018, 34(3):62-67,84.DOI: 10.3880/j.issn.1004-6933.2018.03.10.
[24]
欧维新, 刘翠, 陶宇. 太湖流域水供给服务供需时空演变分析[J]. 长江流域资源与环境, 2020, 29(3):623-633.
OU W X, LIU C, TAO Y. An analysis of spatio-temporal evolution of water supply and demand in Taihu basin[J]. Resour Environ Yangtze Basin, 2020, 29(3):623-633.DOI: 10.11870/cjlyzyyhj202003009.
[25]
余国庆, 李文明. 千岛湖水资源保护与管理对策研究[J]. 水资源开发与管理, 2016, 14(2): 11-14.
YU G Q, LI W M. Research on Qiandao Lake water resources protection and management countermeasures[J]. Water Resour Dev Manag, 2016, 14(2):11-14.DOI: 10.16616/j.cnki.10-1326/TV.2016.02.004.
[26]
窦攀烽, 左舒翟, 任引, 等. 气候和土地利用/覆被变化对宁波地区生态系统产水服务的影响[J]. 环境科学学报, 2019, 39(7):2398-2409.
DOU P F, ZUO S D, REN Y, et al. The impacts of climate and land use/land cover changes on water yield service in Ningbo region[J]. Acta Sci Circumstantiae, 2019, 39(7):2398-2409.DOI: 10.13671/j.hjkxxb.2019.0122.
[27]
胡砚霞, 于兴修, 廖雯, 等. 汉江流域产水量时空格局及影响因素研究[J]. 长江流域资源与环境, 2022, 31(1):73-82.
HU Y X, YU X X, LIAO W, et al. Spatio-temporal patterns of water yield and its influencing factors in the Han River basin[J]. Resour Environ Yangtze Basin, 2022, 31(1):73-82.DOI: 10.11870/cjlyzyyhj202201007.
[28]
吴健, 李英花, 黄利亚, 等. 东北地区产水量时空分布格局及其驱动因素[J]. 生态学杂志, 2017, 36(11):3216-3223.
WU J, LI Y H, HUANG L Y, et al. Spatio temporal variation of water yield and its driving factors in northeast China[J]. Chin J Ecol, 2017, 36(11):3216-3223.DOI: 10.13292/j.1000-4890.201711.032.
[29]
白路遥, 荣艳淑. 气候变化对长江、黄河源区水资源的影响[J]. 水资源保护, 2012, 28(1):46-50,70.
BAI L Y, RONG Y S. Impacts of climate change on water resources in source regions of Yangtze River and Yellow River[J]. Water Resour Prot, 2012, 28(1):46-50,70.DOI: 10.3969/j.issn.1004-6933.2012.01.011.
[30]
徐洁, 肖玉, 谢高地, 等. 东江湖流域水供给服务时空格局分析[J]. 生态学报, 2016, 36(15):4892-4906.
XU J, XIAO Y, XIE G D, et al. Spatiotemporal analysis of water supply service in the Dongjiang Lake basin[J]. Acta Ecol Sin, 2016, 36(15):4892-4906.DOI: 10.1007/s11430-014-5045-7.
[31]
赵晓松, 刘元波, 吴桂平. 基于遥感的2000-2009年鄱阳湖流域蒸散特征及影响因子研究[J]. 长江流域资源与环境, 2013, 22(3):369-378.
ZHAO X S, LIU Y B, WU G P. A satellite-based study on spatiotemporal variation in evapotranspiration and its controlling factors over the Poyang Lake basin of China during 2000-2009[J]. Resour Environ Yangtze Basin, 2013, 22(3):369-378.
[32]
柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素[J]. 自然资源学报, 2020, 35(7):1728-1743.
LIU D Q, CAO E J, ZHANG J X, et al. Spatiotemporal pattern of water conservation and its influencing factors in Bailongjiang watershed of Gansu[J]. J Nat Resour, 2020, 35(7): 1728-1743.DOI: 10.31497/zrzyxb.20200716.
[33]
黄治化, 赵军, 肖涵余, 等. 石羊河流域水服务供需状况及驱动因素[J]. 水土保持学报, 2021, 35(3):228-235.
HUANG Z H, ZHAO J, XIAO H Y, et al. Water service supply and demand situation and driving factors in Shiyang River basin[J]. J Soil Water Conserv, 2021, 35(3):228-235. DOI: 10.13870/j.cnki.stbcxb.2021.03.032.
[34]
郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析:以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6):1477-1485.
ZHENG X, WEI L M, GUO J J, et al. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: a case of the Shule River[J]. Arid Land Geogr, 2020, 43(6):1477-1485. DOI: 10.12118/j.issn.1000-6060.2020.06.08.
[35]
代鹏超, 牛苏娟, 毋兆鹏, 等. 新疆精河流域实际蒸散发时空变化特征[J]. 生态与农村环境学报, 2017, 33(7):600-606.
DAI P C, NIU S J, WU Z P, et al. Temporal and spatial characteristics of actual evapotranspiration in Jinghe watershed, Xinjiang[J]. J Ecol Rural Environ, 2017, 33(7):600-606.DOI: 10.11934/j.issn.1673-4831.2017.07.004.

基金

中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2019ZD001)

编辑: 郑琰燚 , 孟苗婧
PDF(1896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/