南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 1-12.doi: 10.12302/j.issn.1000-2006.202111029
熊燕飞(), 陈跃锋, 毛志强, 曹杏红, 叶语涵, 张建坤()
收稿日期:
2021-11-16
修回日期:
2022-03-24
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 张建坤(作者简介:
熊燕飞(基金资助:
XIONG Yanfei(), CHEN Yuefeng, MAO Zhiqiang, CAO Xinghong, YE Yuhan, ZHANG Jiankun()
Received:
2021-11-16
Revised:
2022-03-24
Online:
2023-07-30
Published:
2023-07-20
摘要:
基于植物的生理代谢特性和环境适应性,植物修复是空气甲醛清除最为节能环保和有效的方法。对大量室内观赏植物、部分小型野生植物和农作物及基因改造植物的甲醛清除作用的调查研究可知,植物对甲醛的清除过程涉及甲醛的吸收、转运和代谢3个阶段,植物通过叶片(主要是气孔、保卫细胞、叶表角质膜扩散)和根毛吸收甲醛,植物吸收的甲醛大部分在吸收部位的组织细胞中代谢,小部分转运至根际或者从根部转运至叶,植物代谢甲醛的途径主要为卡尔文循环、C1代谢和乙醛酸代谢,不同代谢途径的作用和特点不同。基于此,关于空气甲醛污染进行植物修复的进一步研究提出3点建议:①开发甲醛清除能力强的植物种类;②探索植物代谢甲醛的新途径;③深入分析甲醛代谢对植物正常光合作用及生物质产生的影响。
中图分类号:
熊燕飞,陈跃锋,毛志强,等. 空气甲醛污染的植物修复机制[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 1-12.
XIONG Yanfei, CHEN Yuefeng, MAO Zhiqiang, CAO Xinghong, YE Yuhan, ZHANG Jiankun. Phytoremediation mechanisms of air formaldehyde pollution[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 1-12.DOI: 10.12302/j.issn.1000-2006.202111029.
表1
室内空气甲醛去除方法及优缺点分析"
去除方法 removal method | 去除材料 removal material | 去除机制 removal mechanism | 缺点 disadvantage | 优点 advantage |
---|---|---|---|---|
通风换气法 ventilation method | 自然或机械通风 | 通风换气 | 受室内甲醛浓度、季节等条件的限制较多 | 成本低,操作简便,短时去除效果好 |
物理吸附法 physical adsorption method | 活性炭、分子筛、硅胶等多孔物质 | 表面吸附 | 材料吸附容量有限,当吸附量达到饱和时需及时更换 | 实际操作相对简单,价格较为低廉 |
等离子体技术 plasma technology | 低温等离子体和高温等离子体 | 利用产生的高能电子与污染气体分子发生非弹性碰撞,使气体发生激发、离解、电离等活化反应,进而实现污染去除的目的 | 会产生臭氧等副产物导致二次污染 | 降解速率快、效果好 |
光催化氧化法 photocatalytic oxidation method | TiO2及其掺杂改性物或其他金属氧化物及其复合氧化物 | 利用光照使光催化材料表面生成光电子(e-)和空穴(h+),通过电子和空穴的氧化还原性产生高活性的自由基,去除污染物 | 需光源照射,存在二次污染风险,投资造价较高,不适用于解决生活中的甲醛污染问题 | 反应条件温和、能耗低、降解效率高、适用范围广,可清除多种有机污染物,常温常压下实施 |
化学吸收法 chemical absorption method | 以氨、胺的衍生物为代表、可与醛基作用的化学物质 | 利用氨、胺衍生物的氨基与甲醛的亲核加成反应吸收甲醛 | 有些吸附化学试剂毒性较大,存在二次污染,且合成工艺较复杂,影响材料性能 | 作用快,效率高,可直接喷涂在甲醛发生源等材料上 |
植物净化法 phytoremediation | 盆栽植物或植物提取物 | 植物体吸收并经多种反应代谢为无害物质;或植物提取物吸收转化为无害物质 | 净化速率较慢且受季节影响,可能引起花粉过敏 | 效果稳定、无二次污染、安全环保,具有高观赏性和湿度调节功能 |
图1
植物对甲醛的清除机制 甲醛吸收与转运absorption and transport of HCHD:HCHO.甲醛formaldehyde;GSH.谷胱甘肽glutathione;GS-CHO.S-甲酰谷胱甘肽S-formylglutathione;HCOOH.甲酸formic acid;Arg.精氨酸arginine;Lys.赖氨酸;methyl/formyl lysine.甲酰/甲基赖氨酸Lysine;HMA.S-羟甲基精氨酸S-hydroxymethylarginine;N5-CH3-THF.N5-甲基四氢叶酸N5-methylene-tetrahydrofolate;N-5,10-CH2-THF.N-5,10-亚甲基四氢叶酸N-5,10-CH2-THF;N10-CHO-THF.N10-甲酰基四氢叶酸N10-formyltetrahydrofolate;THF.四氢叶酸tetrahydrofolate;FALDH.甲醛脱氢酶formaldehyde dehydrogenase;FGH.S-甲酰基谷胱甘肽水解酶S-formylglutathione hydrolase;FDH.甲酸脱氢酶formate dehydrogenase。 卡尔文循环途径calvin cycle:RuBP.核酮糖-1,5-二磷酸ribulose-1,5-bisphosphate;PGA.3-磷酸甘油酯3-phosphoglycerate;BPGA.二磷酸甘油酸diphosphoglycerate;GAP.甘油醛-3磷酸酯glyceraldehyde-3-phosphate;DHAP.磷酸二羟基丙酮dihydroxyacetone phosphate;FBP.果糖-1,6-二磷酸fructose-1, 6-diphosphate;F6P.果糖-6-磷酸fructose-6-phosphate;E4P.赤藓糖4-磷酸盐erythrose 4-phosphate;SBP.庚酮糖-1,7-二磷酸sedoheptulose 1,7-bisphosphate;S7P.庚酮糖-7-磷酸sedoheptulose -7-phosphate;R5P.核糖5-磷酸ribose 5-phosphate;Ru5P.核酮糖5-磷酸ribulose 5-phosphate;Xu5P.木酮糖-5-磷酸xylulose 5-phosphate;TPP-C2.焦磷酸硫胺素-羟基乙醛thiamine pyrophosphate-glycolaldehyde;Rubisco.核酮糖二磷酸羧化酶/加氧酶ribulose diphosphatecarboxylase/oxygenase;PGAK.磷酸甘油酸激酶phosphoglycerate kinase;GAPD.甘油醛-3-磷酸脱氢酶glyceraldehyde-3-phosphate dehydrogenase;TPI.磷酸丙糖异构酶Triose-phosphate isomerase;Aldolase.醛缩酶;FBPase.果糖-1,6-二磷酸酶fructose-1, 6-bisphosphatase;transketolase.转酮酶;SBPase.景天庚糖-1,7-二磷酸酶sedum heptose-1,7-bisphosphatase;RPI.磷酸戊糖异构酶phosphopentose isomerase;Ru5PK.核酮糖-5-磷酸激酶ribulose-5-phosphate kinase;RPE.核酮糖-5-磷酸差向异构酶ribulose-5-phosphate epimerase。 乙醛酸循环途径glyoxylate cycle:EMP.糖酵解途径glycolytic pathway;GNG.糖异生gluconeogenesis;PA.丙酮酸pyruvate acid;GA.乙醛酸glyoxylic acid;PEP.磷酸烯醇丙酮酸phosphoenolpyruvic acid;OA.草酸盐oxalate;OAA.草酰乙酸oxaloacetic acid;Mal.苹果酸malate;PGP.磷酸乙醇酸磷酸酶phosphoglycolate phosphatase;GXS.乙醛酸合成酶glyoxylate synthase;GXO.乙醛酸氧化酶glyoxylate oxidase;GGT.乙醛酸谷氨酸转氨酶glyoxylate glutamic acid transaminase;MS.苹果酸合成酶malate synthase;PEPC.磷酸烯醇丙酮酸羧化酶phosphoenolpyruvate carboxylase;GOT.谷氨酸草酰乙酸转氨酶glutamate oxalic acid transaminase;PDH.丙酮酸脱氢酶pyruvate dehydrogenase;KGA. 酮戊二酸ketoglu-taric acid;CH3CO-CoA. 乙酰辅酶A Acetyl-CoA。 C1代谢途径C1 metabolic pathway:Met.蛋氨酸methionine;SAM.S-腺苷甲硫氨酸S-adenosyl methionine;AdoHCY.腺苷同型半胱氨酸S-adenosyl homocysteine;R.底物substrate;CH3-R.甲基化底物methylated substrate;HCY.同型半胱氨酸homocysteine。 其他others:Glu.葡萄糖glucose;Fru.果糖fructose;TCA cycle. 三羧酸循环tricarboxylic acid cycle。"
[1] | SALONEN H, PASANEN A L, LAPPALAINEN S, et al. Volatile organic compounds and formaldehyde as explaining factors for sensory irritation in office environments[J]. J Occup Environ Hyg, 2009, 6(4):239-247.DOI:10.1080/15459620902735892. |
[2] | LADEIRA C, VIEGAS S. Formaldehyde: exposure and genotoxicity assessments and potential health effects[M]. New York: NOVA Science Publishers, Inc., 2015. |
[3] | LU N, PEI J J, ZHAO Y X, et al. Performance of a biological degradation method for indoor formaldehyde removal[J]. Build Environ, 2012, 57:253-258.DOI:10.1016/j.buildenv.2012.05.007. |
[4] | CUI W, XUE D, YUAN X, et al. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions[J]. Appl Surf Sci, 2017, 411(31):105-112. DOI:10.1016/j.apsusc.2017.03.169. |
[5] | CHEN D, QU Z P, SUN Y H, et al. Adsorption-desorption behavior of gaseous formaldehyde on different porous Al2O3 materials[J]. Colloids Surf A Physicochem Eng Aspects, 2014, 441:433-440.DOI:10.1016/j.colsurfa.2013.10.006. |
[6] | KIM K J, KHALEKUZZAMAN M, SUH J N, et al. Phytoremediation of volatile organic compounds by indoor plants:a review[J]. Hortic Environ Biotechnol, 2018, 59(2):143-157.DOI:10.1007/s13580-018-0032-0. |
[7] | SHAO Y H, WANG Y X, ZHAO R, et al. Biotechnology progress for removal of indoor gaseous formaldehyde[J]. Appl Microbiol Biotechnol, 2020, 104(9):3715-3727.DOI:10.1007/s00253-020-10514-1. |
[8] | GUIEYSSE B, HORT C, PLATEL V, et al. Biological treatment of indoor air for VOC removal:potential and challenges[J]. Biotechnol Adv, 2008, 26(5):398-410.DOI:10.1016/j.biotechadv.2008.03.005. |
[9] | HAN K T, RUAN L W. Effects of indoor plants on air quality:a systematic review[J]. Environ Sci Pollut Res Int, 2020, 27(14):16019-16051.DOI:10.1007/s11356-020-08174-9. |
[10] | SISWANTO D, PERMANA B H, TREESUBSUNTORN C, et al. Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytoremediation in a pilot-scale experiment: evaluation of multi-pollutant removal efficiency and CO2 emission[J]. Air Qual Atmos Health, 2020, 13(1):109-117. DOI:10.1007/s11869-019-00775-9. |
[11] | 何刘洁, 张贝妮, 杨文洁, 等. 几种室内甲醛去除方法的对比研究[J]. 广州化工, 2020, 48(23):52-54. |
HE L J, ZHANG B N, YANG W J, et al. Comparative study on several indoor formaldehyde removal methods[J]. Guangzhou Chem Ind, 2020, 48(23):52-54.DOI:10.3969/j.issn.1001-9677.2020.23.020. | |
[12] | CHEN W H, ZHANG J S, ZHANG Z B. Performance of air cleaners for removing multiple volatile organic compounds in indoor air[J]. ASHRAE Trans, 2005, 111(1):1101-1114. |
[13] | 金晓东, 陈志坤, 曾利辉, 等. 甲醛催化氧化技术与其他净化技术的比较[J]. 工业催化, 2018, 26(7):6-10. |
JIN X D, CHEN Z K, ZENG L H, et al. Comparison of formaldehyde catalytic oxidation with other purification technologies[J]. IND CATAL, 2018, 26(7):6-10. DOI:10.3969/j.issn.1008-1143.2018.07.002. | |
[14] | LIU H M, YE X J, LIAN Z W, et al. Experimental study of photocatalytic oxidation of formaldehyde and its by-products[J]. Res Chem Intermed, 2006, 32(1):9-16. DOI:10.1163/156856706775012978. |
[15] | KIM K J, JEONG M I, LEE D W, et al. Variation in formaldehyde removal efficiency among indoor plant species[J]. Hort Science, 2010, 45(10):1489-1495. DOI:10.1590/S0102-05362010000400020. |
[16] | DELA CRUZ M, CHRISTENSEN J H, THOMSEN J D, et al. Can ornamental potted plants remove volatile organic compounds from indoor air? a review[J]. Environ Sci Pollut Res Int, 2014, 21(24):13909-13928.DOI:10.1007/s11356-014-3240-x. |
[17] | ZHANG S, HUANG Y, XIE Z, et al. Screening of the indoor plants for removing formaldehyde[J]. Met Environ Res, 2013, 4(2-3):40-45. |
[18] | XU Z J, WANG L, HOU H P. Formaldehyde removal by potted plant-soil systems[J]. J Hazard Mater, 2011, 192(1):314-318.DOI:10.1016/j.jhazmat.2011.05.020. |
[19] | 钟娇婵, 李剑, 占婷, 等. 全绿吊兰茎叶系统净化室内甲醛及其生理指标变化[J]. 环境科学研究, 2020, 33(2):341-348. |
ZHONG J C, LI J, ZHAN T, et al. Indoor formaldehyde removal by stem-leaf system of green Chlorophytum and variation of corresponding physiological characteristics[J]. Res Environ Sci, 2020, 33(2):341-348.DOI:10.13198/j.issn.1001-6929.2019.04.18. | |
[20] | 贺辉, 彭其安. 室内观赏植物对甲醛的吸收及抗逆效果研究[J]. 广西植物, 2019, 39(6):737-742. |
HE H, PENG Q A. Absorption and resistance to formaldehyde of indoor ornamental plants[J]. Guihaia, 2019, 39(6):737-742.DOI:10.11931/guihaia.gxzw201806030. | |
[21] | AYDOGAN A, MONTOYA L D. Formaldehyde removal by common indoor plant species and various growing media[J]. Atmos Environ, 2011, 45(16):2675-2682.DOI:10.1016/j.atmosenv.2011.02.062. |
[22] | PANYAMETHEEKUL S, RATTANAPUN T, MORRIS J, et al. Foliage houseplant responses to low formaldehyde levels[J]. Build Environ, 2019, 147:67-76.DOI:10.1016/j.buildenv.2018.09.053. |
[23] | SRIPRAPAT W, THIRAVETYAN P. Efficacy of ornamental plants for benzene removal from contaminated air and water:effect of plant associated bacteria[J]. Int Biodeterior Biodegrad, 2016, 113:262-268.DOI:10.1016/j.ibiod.2016.03.001. |
[24] | LEE J, KANG H. The effect of improving indoor air quality using some C3 plants and CAM plants[J]. Indian J Sci Technol, 2015, 8(26):21-36.DOI:10.17485/ijst/2015/v8i26/80693. |
[25] | 鲁敏, 刘功生, 陈强, 等. 9种耐荫观赏植物对室内甲醛污染生理抗性比较研究[J]. 山东建筑大学学报, 2014, 29(2):111-117. |
LU M, LIU G S, CHEN Q, et al. Comparative research on physiological resistance of nine kinds of shade tolerant ornamental plant to indoor formaldehyde pollution[J]. J Shandong Jianzhu Univ, 2014, 29(2):111-117. | |
[26] | TEIRI H, POURZAMZNI H, HAJIZADEH Y. Phytoremediation of formaldehyde from indoor environment by ornamental plants:an approach to promote occupants health[J]. Int J Prev Med, 2018, 9:70.DOI:10.4103/ijpvm.IJPVM_269_16. |
[27] | TEIRI H, POURZAMANI H, HAJIZADEH Y. Phytoremediation of VOCs from indoor air by ornamental potted plants:a pilot study using a palm species under the controlled environment[J]. Che-mosphere, 2018, 197:375-381.DOI:10.1016/j.chemosphere.2018.01.078. |
[28] | XIE C J, LI J, YAN L S, et al. Characteristic of C1-C5 carbonyls removal by indoor plants under the laboratory condition of different light intensities[C]// Proceedings of the 2017 2nd International Symposium on Advances in Electrical,Electronics and Computer Engineering (ISAEECE 2017).March 25-26,2017.Guangzhou City,China.Paris, France: Atlantis Press, 2017:121-132.DOI:10.2991/isaeece-17.2017.35. |
[29] | 安雪, 李霞, 潘会堂, 等. 16种室内观赏植物对甲醛净化效果及生理生化变化[J]. 生态环境学报,2 010, 19(2):379-384. |
AN X, LI X, PAN H T, et al. The capacity of 16 ornamental plants on purifying indoor formaldehyde pollution and their physio-logical response to formaldehyde stress[J]. Ecol Environ Sci, 2010, 19(2):379-384. DOI:10.3969/j.issn.1674-5906.2010.02.023. | |
[30] | 柏梦焱, 朱琼洁, 赵泽清, 等. 大理苍山5种野生植物对甲醛净化能力比较研究[J]. 大理大学学报, 2016, 1(12):75-81. |
BAI M Y, ZHU Q J, ZHAO Z Q, et al. Study on the formaldehyde purifying effect of five wild plants of the Cangshan Mountain in Dali[J]. J Dali Univ, 2016, 1(12):75-81.DOI:10.3969/j.issn.2096-2266.2016.12.017. | |
[31] | ZHAO S Y, SU Y H, LIANG H X. Efficiency and mechanism of formaldehyde removal from air by two wild plants;Plantago asiatica L.and Taraxacum mongolicum Hand.-Mazz[J]. J Environ Health Sci Eng, 2019, 17(1):141-150.DOI:10.1007/s40201-018-00335-w. |
[32] | SU Y H, LIANG H X, ZHAO S Y, et al. Removal efficiency and mechanisms of formaldehyde by five species of plants in air-plant-water system[J]. Hum Ecol Risk Assess Int J, 2019, 25(4):1059-1071.DOI:10.1080/10807039.2018.1474432. |
[33] | GONG Y, ZHOU X R, MA X M, et al. Sustainable removal of formaldehyde using controllable water hyacinth[J]. J Clean Prod, 2018, 181:1-7.DOI:10.1016/j.jclepro.2018.01.220. |
[34] | PARK S, KIM J, JANG Y K, et al. A study on potential of aquatic plants to remove indoor air pollutants[J]. The Korea Society of Environmental Restoration Technology, 2005, 8(5):1-9. |
[35] | ZHAO S Y, ZHAO Y Y, LIANG H X, et al. Formaldehyde removal in the air by six plant systems with or without rhizosphere microorganisms[J]. Int J Phytoremediation, 2019, 21(13):1296-1304.DOI:10.1080/15226514.2019.1586036. |
[36] | LIANG H X, ZHAO S Y, LIU K Y, et al. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2019, 54(3):193-201.DOI:10.1080/10934529.2018.1544477. |
[37] | YANG Y X, SU Y H, ZHAO S Y. An efficient plant-microbe phytoremediation method to remove formaldehyde from air[J]. Environ Chem Lett, 2020, 18(1):197-206.DOI:10.1007/s10311-019-00922-9. |
[38] | TAN H, XIONG Y, LI K Z, et al. Methanol-enhanced removal and metabolic conversion of formaldehyde by a black soybean from formaldehyde solutions[J]. Environ Sci Pollut Res Int, 2017, 24(5):4765-4777.DOI:10.1007/s11356-016-8212-x. |
[39] | 陈悦, 谭浩, 郭红霞, 等. 黑大豆根系对溶液甲醛的吸收及其代谢产物分析[J]. 植物生理学报, 2018, 54(5):845-854. |
CHEN Y, TAN H, GUO H X, et al. Absorption of formaldehyde by black soybean roots and products of formaldehyde metabolism[J]. Plant Physiol J, 2018, 54(5):845-854.DOI:10.13592/j.cnki.ppj.2017.0460. | |
[40] | SAWADA A, OYABU T, CHEN L M, et al. Purification capability of tobacco transformed with enzymes from a methylotrophic bacterium for formaldehyde[J]. Int J Phytoremediation, 2007, 9(6):487-496.DOI:10.1080/15226510701709630. |
[41] | 刘延宾, 金幼菊. 观赏植物净化甲醛能力与其叶片形态和光合特性的关系[J]. 安全与环境学报, 2009, 9(3):48-52. |
LIU Y B, JIN Y J. Relations between the abilities of ornamental plants for formaldehyde purification and the morphology & photosynthetic characteristics of leaves[J]. J Saf Environ, 2009, 9(3):48-52.DOI:10.3969/j.issn.1009-6094.2009.03.013. | |
[42] | 孙慧群, 周升恩, 吴怀胜, 等. 气体甲醛胁迫对蚕豆保卫细胞中过氧化氢的积累和气孔导度及开度的影响[J]. 植物生理学报, 2015, 51(2):246-252. |
SUN H Q, ZHOU S E, WU H S, et al. Effects of gaseous formaldehyde stress on the accumulation of hydrogen peroxide in guard cells and the stomata conductance and aperture of Vicia faba[J]. Plant Physiol Commun, 2015, 51(2):246-252.DOI:10.13592/j.cnki.ppj.2014.0432. | |
[43] | SINGH H, SAVITA, SHARMA R, et al. Physiological functioning of Lagerstroemia speciosa L.under heavy roadside traffic:an approach to screen potential species for abatement of urban air pollution[J]. 3 Biotech, 2017, 7(1):61.DOI:10.1007/s13205-017-0690-0. |
[44] | ULLAH H, TREESUBSUNTORN C, THIRAVETYAN P. Application of exogenous indole-3-acetic acid on shoots of Zamio-culcas zamiifolia for enhancing toluene and formaldehyde removal[J]. Air Qual Atmos Heal, 2020, 13(5):575-583.DOI:10.1007/s11869-020-00820-y. |
[45] | 张永福, 莫丽玲, 牛燕芬, 等. 常春藤对甲醛和弱光胁迫的解剖结构及生理特征响应[J]. 浙江农林大学学报, 2016, 33(6):1017-1024. |
ZHANG Y F, MO L L, NIU Y F, et al. Anatomical structure and physiological characteristics of ivy with formaldehyde and weak light stress[J]. J Zhejiang A&F Univ, 2016, 33(6):1017-1024.DOI:10.11833/j.issn.2095-0756.2016.06.013. | |
[46] | 刘雄飞. 绿化植物叶解剖结构特征及其对城市空气环境的响应[D]. 西安: 西安建筑科技大学, 2015. |
LIU X F. The leaf anatomical structure characteristics of greening plants and its response to air pollution[D]. Xi'an: Xi'an University of Architecture and Technology, 2015.DOI:10.7666/d.D714135. | |
[47] | PETTIT T, BETTES M, CHAPMAN A R, et al. The botanical biofiltration of VOCs with active airflow:Is removal efficiency related to chemical properties?[J]. Atmos Environ, 2019, 214:116839.DOI:10.1016/j.atmosenv.2019.116839. |
[48] | ZHANG C, FENG Y, LIU Y W, et al. Uptake and translocation of organic pollutants in plants:a review[J]. J Integr Agric, 2017, 16(8):1659-1668.DOI:10.1016/S2095-3119(16)61590-3. |
[49] | TANI A, HEWITT C N. Uptake of aldehydes and ketones at typical indoor concentrations by houseplants[J]. Environ Sci Technol, 2009, 43(21):8338-8343.DOI:10.1021/es9020316. |
[50] | LI J, ZHONG J C, ZHAN T, et al. Indoor formaldehyde removal by three species of Chlorphytum comosum under the long-term dynamic fumigation system[J]. Environ Sci Pollut Res Int, 2019, 26(36):36857-36868.DOI:10.1007/s11356-019-06701-x. |
[51] | 王丽萍, 王俊, 王冬梅, 等. 不同水培植物对室内甲醛污染吸收能力的研究[J]. 中南林业科技大学学报, 2020, 40(1):160-168. |
WANG L P, WANG J, WANG D M, et al. A study on absorptive capacity of different hydroponic plants to indoor formaldehyde pollution[J]. J Central South Univ For Technol, 2020, 40(1):160-168.DOI:10.14067/j.cnki.1673-923x.2020.01.020. | |
[52] | SIRPRAPAT W, SUKSABYE P, AREEPHAK S, et al. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants[J]. Ecotoxicol Environ Saf, 2014, 102:147-151. DOI: 10.1016/j.ecoenv.2014.01.032. |
[53] | LI P, PEMBERTON R, ZHENG G L. Foliar trichome-aided forma-ldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution[J]. Chemosphere, 2015, 119:662-667.DOI:10.1016/j.chemosphere.2014.07.079. |
[54] | 熊芸. 大豆乙醛酸途径关键酶应答甲醛胁迫的模式及在甲醛代谢中的作用研究[D]. 昆明: 昆明理工大学, 2017. |
XIONG Y. Study on the key mechanisms of soybean glycolic acid pathway in response to formaldehyde stress and its role in formaldehyde metabolism[D]. Kunming: Kunming University of Science and Technology, 2017. | |
[55] | IRGA P J, PETTIT T, IRGA R F, et al. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?[J]. Environ Sci Pollut Res Int, 2019, 26(13):12851-12858.DOI:10.1007/s11356-019-04719-9. |
[56] | SU Y H, LIANG Y C. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum)[J]. J Hazard Mater, 2015, 291:120-128.DOI:10.1016/j.jhazmat.2015.03.001. |
[57] | GIESE M, BAUER-DORANTH U, LANGEBARTELS C, et al. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures[J]. Plant Physiol, 1994, 104(4):1301-1309.DOI:10.1104/pp.104.4.1301. |
[58] | SCHMITZ H, HILGERS U, WEIDNER M. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification[J]. New Phytol, 2000, 147(2):307-315.DOI:10.1046/j.1469-8137.2000.00701.x. |
[59] | SUN H Q, ZHANG W, TANG L J, et al. Investigation of the role of the Calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated Petunia under light and dark conditions using 13C-NMR[J]. Phytochem Anal, 2015, 26(3):226-235.DOI:10.1002/pca.2556. |
[60] | ZHANG W, TANG L J, SUN H Q, et al. C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress[J]. Plant Physiol Biochem, 2014, 83:327-336.DOI:10.1016/j.plaphy.2014.08.017. |
[61] | SONG Z B, XIAO S Q, YOU L, et al. C1 metabolism and the Calvin cycle function simultaneously and independently during HCHO metabolism and detoxification in Arabidopsis thaliana treated with HCHO solutions[J]. Plant Cell Environ, 2013, 36(8):1490-1506.DOI:10.1111/pce.12079. |
[62] | WANG R, ZENG Z D, LIU T, et al. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid for-maldehyde stress[J]. Plant Physiol Biochem, 2016, 105:233-241.DOI:10.1016/j.plaphy.2016.04.028. |
[63] | 谭浩. 黑大豆根系吸收和代谢甲醛的机理与应用研究[D]. 昆明: 昆明理工大学, 2017. |
TAN H. Study on mechanism and application of absorption and metabolism of formaldehyde in black soybean roots[D]. Kunming: Kunming University of Science and Technology, 2017. | |
[64] | TADA Y, KIDU Y. Glutathione-dependent formaldehyde dehydrogenase from golden pothos (Epipremnum aureum) and the production of formaldehyde detoxifying plants[J]. Plant Biotechnol, 2011, 28(4):373-378.DOI:10.5511/plantbiotechnology.11.0620a. |
[65] | ACHKOR H, DÍAZ M, FERNÁNDEZ M R, et al. Enhanced formal-dehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis[J]. Plant Physiol, 2003, 132(4):2248-2255.DOI:10.1104/pp.103.022277. |
[66] | LI L, TIAN S L, JIANG J, et al. Differences in purifying and resis-tance tolerance ability of Scindapsus and Chlorophytum to formaldehyde pollution[J]. Air Qual Atmos Heal, 2020, 13(4):501-507.DOI:10.1007/s11869-020-00814-w. |
[67] | XU Z J, HOU H P. Effect of benzene on formaldehyde removal by shoots of three indoor plant species[J]. Environ Eng Manag J, 2015, 14(12):2849-2854.DOI:10.30638/eemj.2015.301. |
[68] | CHOUDHURY S, PANDA P, SAHOO L, et al. Reactive oxygen species signaling in plants under abiotic stress[J]. Plant Signal Behav, 2013, 8(4):e23681.DOI:10.4161/psb.23681. |
[69] | O'DELL R A, TAHERI M, KABEL R L. A model for uptake of pollutants by vegetation[J]. J Air Pollut Control Assoc, 1977, 27(11):1104-1109.DOI:10.1080/00022470.1977.10470533. |
[70] | DEONIKAR P, KOTHANDARAM S, MOHAN M, et al. Discovery of key molecular pathways of C1 metabolism and formal-dehyde detoxification in maize through a systematic bioinformatics literature review[J]. Agric Sci, 2015, 6(5):571-585.DOI:10.4236/as.2015.65056. |
[71] | MOHAN M, KOTHANDARAM S, VENUGOPAL V, et al. Integrative modeling of oxidative stress and C1 metabolism reveals upregulation of formaldehyde and downregulation of glutathione[J]. Am J Plant Sci, 2015, 6(9):1527-1542.DOI:10.4236/ajps.2015.69152. |
[72] | TRÉZL L, HULLÁN L, SZARVAS T, et al. Determination of endogenous formaldehyde in plants (fruits) bound to L-arginine and its relation to the folate cycle,photosynthesis and apoptosis[J]. Acta Biol Hung, 1998, 49(2/3/4):253-263. |
[73] | TRÉZL L, HULLÁN L, JÁSZAY Z M, et al. Antagonistic reactions of arginine and lysine against formaldehyde and their relation to cell proliferation,apoptosis,folate cycle and photosynthesis[J]. Mol Cell Biochem, 2003, 244(1/2):167-176. |
[74] | HASLAM R, RUST S, PALLETT K, et al. Cloning and characterisation of S-formylglutathione hydrolase from Arabidopsis thaliana:a pathway for formaldehyde detoxification[J]. Plant Physiol Biochem, 2002, 40(4):281-288.DOI:10.1016/S0981-9428(02)01378-5. |
[75] | KHAKSAR G, TREESUBSUNTORN C, THIRAVETYAN P. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions[J]. Plant Physiol Biochem, 2017, 114:1-9. DOI:10.1016/j.plaphy.2017.02.016. |
[76] | KHAKSAR, GHOLAMREZA, TREESUBSUNTORN, et al. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels[J]. Plant Physiology & Biochemistry, 2017, 111:284-294.DOI:10.1016/j.plaphy.2016.12.011. |
[77] | HANSON A D, ROJE S. One-carbon metabolism in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:119-137.DOI:10.1146/annurev.arplant.52.1.119. |
[78] | GOUT E, AUBERT S, BLIGNY R, et al. Metabolism of methanol in plant cells: carbon-13 nuclear magnetic resonance studies[J]. Plant Physiol, 2000, 123(1):287-296. DOI:10.1104/pp.123.1.287. |
[79] | KVESITADZE E, SADUNISHVILI T, KVESITADZE G. Mechanisms of organic contaminants uptake and degradation in plants[J]. World Acad Sci Eng Technol Int J Biol Biomol Agric Food Biotechnol Eng, 2009, 3:361-371. |
[80] | WANG R, ZENG Z D, GUO H X, et al. Over-expression of the Arabidopsis formate dehydrogenase in chloroplasts enhances formal-dehyde uptake and metabolism in transgenic tobacco leaves[J]. Planta, 2018, 247(2):339-354.DOI:10.1007/s00425-017-2790-9. |
[81] | LEE S Y, LEE J L, KIM J H, et al. Enhanced removal of exogenous formaldehyde gas by AtFALDH-transgenic Petunia[J]. Hortic Environ Biotechnol, 2015, 56(2):247-254.DOI:10.1007/s13580-015-0087-0. |
[82] | CHEN L M, YURIMOTO H, LI K Z, et al. Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes[J]. Biosci Biotechnol Biochem, 2010, 74(3):627-635.DOI:10.1271/bbb.90847. |
[83] | SONG Z B, ORITA I, YIN F, et al. Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde[J]. Biotechnology Letters, 2010, 32(10):1541-1548. DOI:10.1007/s10529-010-0324-7. |
[84] | TAN H, XIAO S Q, HAN S, et al. The function of an installed photosynthetic formaldehyde-assimilation pathway containing dihydroxyacetone synthase and dihydroxyacetone kinase enhanced formaldehyde removal from solution in transgenic geranium leaves[J]. Int Biodeterior Biodegrad, 2016, 106:127-132.DOI:10.1016/j.ibiod.2015.10.012. |
[85] | 周升恩, 肖素勤, 韩双, 等. 转DAS/DAK基因天竺葵甲醛代谢途径与吸收能力研究[J]. 西北植物学报, 2015, 35(4):773-779. |
ZHOU S E, XIAO S Q, HAN S, et al. Metabolic pathways and absorptive capacity of formaldehyde in Geranium introduced DAS/DAK genes[J]. Acta Bot Boreali Occidentalia Sin, 2015, 35(4):773-779.DOI:10.7606/j.issn.1000-4025.2015.04.0773. | |
[86] | ZHANG D X, XIANG T H, LI P H, et al. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde[J]. Genet Mol Biol, 2011, 34(4):634-639.DOI:10.1590/S1415-47572011005000036. |
[87] | WANG M, XIANG T H, SONG Y L, et al. The physiological mecha-nism of improved formaldehyde resistance in Petunia hybrida harboring a mammalian cyp2e1 gene[J]. Hortic Plant J, 2015, 1(1):48-54.DOI:10.16420/j.issn.2095-9885.2015-0005. |
[88] | ZHANG L, ROUTSONG R, STRAND S E. Greatly enhanced removal of volatile organic carcinogens by a genetically modified houseplant,pothos ivy (Epipremnum aureum) expressing the mammalian cytochrome P450 2e1 gene[J]. Environ Sci Technol, 2019, 53(1):325-331.DOI:10.1021/acs.est.8b04811. |
[1] | 石文广, 李靖, 张玉红, 雷静品, 罗志斌. 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 61-70. |
[2] | 魏树和,徐雷,韩冉,窦薛楷,杨微. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 154-160. |
[3] | 杨卫东,陈益泰. 垂柳对镉吸收、积累与耐性的特点分析[J]. 南京林业大学学报(自然科学版), 2009, 33(05): 17-. |
[4] | 张炜鹏1,陈金林2*,黄全能1,王擎运2,赵好2,薛丹2. 南方主要绿化树种对重金属的积累特性[J]. 南京林业大学学报(自然科学版), 2007, 31(05): 125-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||