
空气甲醛污染的植物修复机制
Phytoremediation mechanisms of air formaldehyde pollution
基于植物的生理代谢特性和环境适应性,植物修复是空气甲醛清除最为节能环保和有效的方法。对大量室内观赏植物、部分小型野生植物和农作物及基因改造植物的甲醛清除作用的调查研究可知,植物对甲醛的清除过程涉及甲醛的吸收、转运和代谢3个阶段,植物通过叶片(主要是气孔、保卫细胞、叶表角质膜扩散)和根毛吸收甲醛,植物吸收的甲醛大部分在吸收部位的组织细胞中代谢,小部分转运至根际或者从根部转运至叶,植物代谢甲醛的途径主要为卡尔文循环、C1代谢和乙醛酸代谢,不同代谢途径的作用和特点不同。基于此,关于空气甲醛污染进行植物修复的进一步研究提出3点建议:①开发甲醛清除能力强的植物种类;②探索植物代谢甲醛的新途径;③深入分析甲醛代谢对植物正常光合作用及生物质产生的影响。
Phytoremediation is the most energy-saving, environmentally friendly, and effective method for the air formaldehyde removal based on the physiological and metabolic characteristics and environmental adaptability of plants. The formaldehyde removal efficiencies of many indoor ornamental plants and some small wild plants, crops and genetically modified plants have been investigated. Plant formaldehyde scavenging involves three stages: absorption, transport and metabolism. Formaldehyde is absorbed by plants mainly through the leaves (stomata, guard cells, and leaf surface cuticle diffusion) and root hair. Most of the formaldehyde absorbed by plants was metabolized in tissue cells at the absorption site, and a small portion is transported to the rhizosphere or from the roots to the leaves. Formaldehyde is metabolized primarily through the Calvin cycle, C1 metabolism and glyoxylate pathway. Different metabolic pathways have distinct roles and characteristics. Based on this, the following suggestions are proposed:(1) Development of plant species with a strong formaldehyde-scavenging ability. (2) Exploring new ways for plants to metabolize formaldehyde. (3) It is necessary to make a profound study on the effects of formaldehyde metabolisms on normal photosynthesis and biomass production in plants.
空气甲醛污染 / 植物修复 / 清除机制 / 卡尔文循环 / C1代谢
air formaldehyde pollution / phytoremediation / removal mechanism / Calvin cycle / C1 metabolism
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
何刘洁, 张贝妮, 杨文洁, 等. 几种室内甲醛去除方法的对比研究[J]. 广州化工, 2020, 48(23):52-54.
|
[12] |
|
[13] |
金晓东, 陈志坤, 曾利辉, 等. 甲醛催化氧化技术与其他净化技术的比较[J]. 工业催化, 2018, 26(7):6-10.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
钟娇婵, 李剑, 占婷, 等. 全绿吊兰茎叶系统净化室内甲醛及其生理指标变化[J]. 环境科学研究, 2020, 33(2):341-348.
|
[20] |
贺辉, 彭其安. 室内观赏植物对甲醛的吸收及抗逆效果研究[J]. 广西植物, 2019, 39(6):737-742.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
鲁敏, 刘功生, 陈强, 等. 9种耐荫观赏植物对室内甲醛污染生理抗性比较研究[J]. 山东建筑大学学报, 2014, 29(2):111-117.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
安雪, 李霞, 潘会堂, 等. 16种室内观赏植物对甲醛净化效果及生理生化变化[J]. 生态环境学报,2 010, 19(2):379-384.
|
[30] |
柏梦焱, 朱琼洁, 赵泽清, 等. 大理苍山5种野生植物对甲醛净化能力比较研究[J]. 大理大学学报, 2016, 1(12):75-81.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
陈悦, 谭浩, 郭红霞, 等. 黑大豆根系对溶液甲醛的吸收及其代谢产物分析[J]. 植物生理学报, 2018, 54(5):845-854.
|
[40] |
|
[41] |
刘延宾, 金幼菊. 观赏植物净化甲醛能力与其叶片形态和光合特性的关系[J]. 安全与环境学报, 2009, 9(3):48-52.
|
[42] |
孙慧群, 周升恩, 吴怀胜, 等. 气体甲醛胁迫对蚕豆保卫细胞中过氧化氢的积累和气孔导度及开度的影响[J]. 植物生理学报, 2015, 51(2):246-252.
|
[43] |
|
[44] |
|
[45] |
张永福, 莫丽玲, 牛燕芬, 等. 常春藤对甲醛和弱光胁迫的解剖结构及生理特征响应[J]. 浙江农林大学学报, 2016, 33(6):1017-1024.
|
[46] |
刘雄飞. 绿化植物叶解剖结构特征及其对城市空气环境的响应[D]. 西安: 西安建筑科技大学, 2015.
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
王丽萍, 王俊, 王冬梅, 等. 不同水培植物对室内甲醛污染吸收能力的研究[J]. 中南林业科技大学学报, 2020, 40(1):160-168.
|
[52] |
|
[53] |
|
[54] |
熊芸. 大豆乙醛酸途径关键酶应答甲醛胁迫的模式及在甲醛代谢中的作用研究[D]. 昆明: 昆明理工大学, 2017.
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
谭浩. 黑大豆根系吸收和代谢甲醛的机理与应用研究[D]. 昆明: 昆明理工大学, 2017.
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
KHAKSAR, GHOLAMREZA, TREESUBSUNTORN, et al. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels[J]. Plant Physiology & Biochemistry, 2017, 111:284-294.DOI:10.1016/j.plaphy.2016.12.011.
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
周升恩, 肖素勤, 韩双, 等. 转DAS/DAK基因天竺葵甲醛代谢途径与吸收能力研究[J]. 西北植物学报, 2015, 35(4):773-779.
|
[86] |
|
[87] |
|
[88] |
|
/
〈 |
|
〉 |