基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究

路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 157-165.

PDF(3508 KB)
PDF(3508 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 157-165. DOI: 10.12302/j.issn.1000-2006.202111034
研究论文

基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究

作者信息 +

Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China

Author information +
文章历史 +

摘要

【目的】分析混交林中不同树种组成情况对单木树高-胸径关系的影响,构建大兴安岭地区兴安落叶松和白桦的树高曲线模型,为森林质量精准提升提供理论依据。【方法】以大兴安岭中部地区112块兴安落叶松(Larix gmelinii)-白桦(Betula platypiylla)混交林的样地调查数据为基础,采用多元逐步回归建立包含单木、林分和树种组成信息的兴安落叶松和白桦树高-胸径预测基础模型,并采用层次分割方法量化不同变量对单木树高-胸径关系的影响程度。最后,采用混合模型方法解决样地调查数据中存在的嵌套效应和异方差问题。【结果】大兴安岭地区兴安落叶松-白桦混交林中主要树种(兴安落叶松和白桦)单木树高-胸径关系除受自身胸径大小影响,还受林分特征(优势木树高、林分平均胸径和林分平均树高)和树种组成(兴安落叶松、白桦蓄积比例)信息的共同影响,其对各树种树高-胸径变异的解释能力依次为单木胸径(82%)>林分因子(16%)>树种组成(2%);各树种树高-胸径混合模型均以包含3个随机参数、方差协方差结构pdSymm和异方差校正函数varPower的组合最优,兴安落叶松和白桦单木树高-胸径混合模型的调整决定系数(Radj2)分别较基础模型提升约2.50%和3.44%,达到了0.789 5和0.744 7。【结论】在具体的森林经营实践中,可通过采伐或补植的方式来调整林分的树种组成情况以达到促进林木树高生长的作用。

Abstract

【Objective】An in-depth understanding of how species composition influences the relationship between individual tree height (HT) and diameter at breast height (DBH) in mixed forests is important for effective implementation of forest quality improvements. 【Method】 The functions relating the HT and DBH of individual larch (Larix gmelinii) and birch (Betula platyphylla) were estimated using multiple stepwise regression with tree, stand, and species information extracted from 112 larch-birch mixed forests in the central part of Greater Khingan Mountains. The effects of the different variables on the relationship between HT and DBH were quantified using hierarchical partitioning. Finally, mixed-effects modelling techniques were employed to characterize nesting effects and solve heteroscedasticity problems within the sample survey data. 【Result】 The correlations between HT and DBH of the main tree species in Greater Khingan Mountains were affected simultaneously by the DBHs of the individual trees, stand characteristics (i.e., HT of dominant tree, as well as mean DBH and HT of the stand), and species composition (i.e., the volume percentage of larch and birch). The individual contributions on the HT-DBH relations from the various variables were as follows: DBH of individual tree (82%) > stand characteristics (16%) > species composition (2%). Furthermore, the mixed-effect models of HT-DBH were each optimally combined with three random parameters, as well as variance covariances with pdSymm structure and heteroscedasticity correction with varPower functions, in which the values of Radj both increased by about 2.50% and 3.44% (0.789 5 of larch and 0.744 7 of birch) when compared with that of the basic model. 【Conclusion】 From the perspective of forest management practices, individual tree HT growth can be promoted by adjusting the species composition of forests through suitable cutting or replanting.

关键词

树种组成 / 兴安落叶松 / 白桦 / 树高曲线 / 天然林 / 混合模型

Key words

tree species composition / larch(Larix gmelinii) / birch(Betula platyphylla) / tree height curve / natural forest / mixed model

引用本文

导出引用
路文燕, 董灵波, 田园, . 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版). 2023, 47(4): 157-165 https://doi.org/10.12302/j.issn.1000-2006.202111034
LU Wenyan, DONG Lingbo, TIAN Yuan, et al. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 157-165 https://doi.org/10.12302/j.issn.1000-2006.202111034
中图分类号: S718.5   

参考文献

[1]
KRUMLAND B E, WENSEL L C. A generalized height-diameter equation for coastal California species[J]. West J Appl For, 1988, 3(4):113-115. DOI:10.1093/wjaf/3.4.113.
[2]
曾翀, 雷相东, 刘宪钊, 等. 落叶松云冷杉林单木树高曲线的研究[J]. 林业科学研究, 2009, 22(2):182-189.
ZENG Z, LEI X D, LIU X Z, et al. Individual tree height-diameter curves of larch-spruce-fir forests[J]. For Res, 2009, 22(2):182-189. DOI:10.3321/j.issn:1001-1498.2009.02.006.
[3]
SHARMA R P, VACEK Z, VACEK S. Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic[J]. Trees, 2016, 30(6):1969-1982. DOI: 10.1007/s00468-016-1425-2.
[4]
王怡, 汤景明, 孙拥康. 青冈栎人工林树高曲线模型研究[J]. 森林工程, 2021, 37(1):1-5.
WANG Y, TANG J M, SUN Y K. Study on height-diameter curves models of Cyclobalanopsis glauca plantation[J]. For Eng, 2021, 37(1):1-5. DOI:10.16270/j.cnki.slgc.2021.01.001.
[5]
RIOFRÍO J, MIREN R, MAGUIRE DA, et al. Species mixing effects on height-diameter and basal area increment models for Scots pine and Maritime pine[J]. Forests, 2019, 10:249. DOI:10.3390/f10030249.
[6]
陈浩, 罗扬. 马尾松树高-胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4):439-448.
CHEN H, LUO Y. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana[J]. J For Environ, 2021, 41(4):439-448. DOI:10.13324/j.cnki.jfcf.2021.04.015.
[7]
代忠迪, 姜立春. 大兴安岭不同生态区域兴安落叶松树高曲线的研究[J]. 植物研究, 2015, 35(4):583-589.
DAI Z D, JIANG L C. Ecoregion based height-diameter models for Larix gmelinii Rupr. in Daxing'an Mountains[J]. Bull Bot Res, 2015, 35(4):583-589. DOI:10.7525/j.issn.1673-5102.2015.04.017.
[8]
臧颢, 雷相东, 张会儒, 等. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6):8-16.
ZANG H, LEI X D, ZHANG H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. J Beijing For Univ, 2016, 38(6):8-16. DOI:10.13332/j.1000-1522.20160008.
[9]
LIANG J J, CROWTHER T W, PICARD N, et al. Positive biodiversity-productivity relationship predominant in global forests[J]. Science, 2016, 354(6309):aaf8957. DOI:10.1126/science.
[10]
车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241-2248.
CHE Y, JIN G Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chin J Appl Ecol, 2019, 30(7):2241-2248. DOI:10.13287/j.1001-9332.201907.010.
[11]
VANNOPPEN A, KINT V, PONETTE Q, et al. Tree species diversity impacts average radial growth of beech and oak trees in Belgium, not their long-term growth trend[J]. For Ecosyst, 2019, 6(1):10. DOI:10.1186/s40663-019-0169-z.
[12]
PUKKALA T, LHDE E, LAIHO O. Growth and yield models for uneven-sized forest stands in Finland[J]. For Ecol Manag, 2009, 258(3):207-216. DOI:10.1016/j.foreco.2009.03.052.
[13]
PINHEIRO J C, BATES D M. Mixed-effects models in S and SPLUS[M]. New York: Springer, 2001.
[14]
SUBEDI N, SHARMA M. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario[J]. For Ecol Manag, 2011, 261(11):2140-2148. DOI:10.1016/j.foreco.2011.03.010.
[15]
吴旭平, 吕勇, 张雄清, 等. 基于立地因子的杉木人工林断面积生长混合效应模型研究[J]. 林业资源管理, 2021(2):75-82.
WU X P, LV Y, ZHANG X Q, et al. Research on growth mixed effect model for basal area of Cunninghamia lanceolata plantation based on site factors[J]. For Resour Manag, 2021(2):75-82. DOI:10.13466/j.cnki.lyzygl.2021.02.011.
[16]
董利虎, 李凤日, 贾炜玮. 基于线性混合效应的红松人工林枝条生物量模型[J]. 应用生态学报, 2013, 24(12):3391-3398.
DONG L H, LI F R, JIA W W. Linear mixed modeling of branch biomass for Korean pine plantation[J]. Chin J Appl Ecol, 2013, 24(12):3391-3398. DOI:10.13287/j.1001-9332.2013.0571.
[17]
DONG L, LIU Z, BETTINGER P. Nonlinear mixed-effects branch diameter and length models for natural Dahurian larch (Larix gmelini) forest in northeast China[J]. Trees, 2016, 30(4):1191-1206. DOI:10.1007/s00468-016-1356-y.
[18]
赵喆, 刘延文, 纪福利, 等. 华北落叶松-白桦凋落物混合分解研究[J]. 中南林业科技大学学报, 2016, 36(12):74-78,84.
ZHAO Z, LIU Y W, JI F L, et al. Mixed litter decomposition of Larix principis-rupprechtii and Betula platyphylla[J]. J Central South Univ For Technol, 2016, 36(12):74-78, 84. DOI:10.14067/j.cnki.1673-923x.2016.12.013.
[19]
刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3):28-35.
LIU Y, WANG J, YANG Y C, et al. Relationship between crown width and DBH, tree height or volume of Juglans mandshurica in stands of different density[J]. Forest Engineering, 2021, 37(3):28-35.
[20]
李菁, 骆有庆, 石娟. 基于生物多样性保护的兴安落叶松与白桦最佳混交比例——以阿尔山林区为例[J]. 生态学报, 2012, 32(16): 4943-4949.
LI J, LUO Y Q, SHI J. The optimum mixture ratio of larch and birch in terms of biodiversity conservation: a case study in Aershan forest area[J]. Acta Ecol Sin, 2012, 32(16):4943-4949. DOI:10.5846/stxb201112211948.
[21]
夏成财, 刘忠玲, 王庆成, 等. 16年生落叶松白桦纯林与混交林林分生长量及生物量对比[J]. 东北林业大学学报, 2012, 40(10):1-3.
XIA C C, LIU Z L, WANG Q C, et al. Comparison of the growth and biomass production of monoculture and mixed stands of Larix gmelinii and Betula platyphylla[J]. J Northeast For Univ, 2012, 40(10):1-3. DOI:10.13759/j.cnki.dlxb.2012.10.021.
[22]
CHEVAN A, SUTHERLAND M. Hierarchical partitioning[J]. Am Stat, 1991, 45(2):90-96. DOI:10.1080/00031305.1991.10475776.
[23]
GUYLAIN E Y, 辛士冬, 姜立春. 落叶松立木材积方程和非线性和对数转换的对比[J]. 东北林业大学学报, 2019, 47(4):43-48.
GUYLAIN E Y, XIN S D, JIANG L C. Comparison of log-transformed linear and nonlinear regression of volume model for Larix gmelinii[J]. J Northeast For Univ, 2019, 47(4):43-48. DOI:10.13759/j.cnki.dlxb.2019.04.009.
[24]
TEMESGEN H, GADOW K. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. Eur J Forest Res, 2004, 123(1):45-51. DOI:10.1007/s10342-004-0020-z.
[25]
TRINCADO G, VANDERSCHAAF C L, BURKHART H E. Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations[J]. Eur J Forest Res, 2007, 126(2):253-262. DOI:10.1007/s10342-006-0141-7.
[26]
娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径-树高模型[J]. 林业科学, 2017, 53(6):67-76.
LOU M H, ZHANG H R, LEI X D, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation[J]. Sci Silvae Sin, 2017, 53(6):67-76. DOI:10.11707/j.1001-7488.20170608.

基金

国家重点研发计划(2022YFD2200502)
中央高校基本科研业务费专项资金项目(2572021DT07)
东北林业大学大学生创新创业训练项目(202010225166)

编辑: 李燕文
PDF(3508 KB)

Accesses

Citation

Detail

段落导航
相关文章

/