[1] |
KRUMLAND B E, WENSEL L C. A generalized height-diameter equation for coastal California species[J]. West J Appl For, 1988, 3(4):113-115. DOI:10.1093/wjaf/3.4.113.
|
[2] |
曾翀, 雷相东, 刘宪钊, 等. 落叶松云冷杉林单木树高曲线的研究[J]. 林业科学研究, 2009, 22(2):182-189.
|
|
ZENG Z, LEI X D, LIU X Z, et al. Individual tree height-diameter curves of larch-spruce-fir forests[J]. For Res, 2009, 22(2):182-189. DOI:10.3321/j.issn:1001-1498.2009.02.006.
|
[3] |
SHARMA R P, VACEK Z, VACEK S. Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic[J]. Trees, 2016, 30(6):1969-1982. DOI: 10.1007/s00468-016-1425-2.
|
[4] |
王怡, 汤景明, 孙拥康. 青冈栎人工林树高曲线模型研究[J]. 森林工程, 2021, 37(1):1-5.
|
|
WANG Y, TANG J M, SUN Y K. Study on height-diameter curves models of Cyclobalanopsis glauca plantation[J]. For Eng, 2021, 37(1):1-5. DOI:10.16270/j.cnki.slgc.2021.01.001.
|
[5] |
RIOFRÍO J, MIREN R, MAGUIRE DA, et al. Species mixing effects on height-diameter and basal area increment models for Scots pine and Maritime pine[J]. Forests, 2019, 10:249. DOI:10.3390/f10030249.
|
[6] |
陈浩, 罗扬. 马尾松树高-胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4):439-448.
|
|
CHEN H, LUO Y. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana[J]. J For Environ, 2021, 41(4):439-448. DOI:10.13324/j.cnki.jfcf.2021.04.015.
|
[7] |
代忠迪, 姜立春. 大兴安岭不同生态区域兴安落叶松树高曲线的研究[J]. 植物研究, 2015, 35(4):583-589.
|
|
DAI Z D, JIANG L C. Ecoregion based height-diameter models for Larix gmelinii Rupr. in Daxing'an Mountains[J]. Bull Bot Res, 2015, 35(4):583-589. DOI:10.7525/j.issn.1673-5102.2015.04.017.
|
[8] |
臧颢, 雷相东, 张会儒, 等. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6):8-16.
|
|
ZANG H, LEI X D, ZHANG H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. J Beijing For Univ, 2016, 38(6):8-16. DOI:10.13332/j.1000-1522.20160008.
|
[9] |
LIANG J J, CROWTHER T W, PICARD N, et al. Positive biodiversity-productivity relationship predominant in global forests[J]. Science, 2016, 354(6309):aaf8957. DOI:10.1126/science.
|
[10] |
车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241-2248.
|
|
CHE Y, JIN G Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chin J Appl Ecol, 2019, 30(7):2241-2248. DOI:10.13287/j.1001-9332.201907.010.
|
[11] |
VANNOPPEN A, KINT V, PONETTE Q, et al. Tree species diversity impacts average radial growth of beech and oak trees in Belgium, not their long-term growth trend[J]. For Ecosyst, 2019, 6(1):10. DOI:10.1186/s40663-019-0169-z.
|
[12] |
PUKKALA T, LHDE E, LAIHO O. Growth and yield models for uneven-sized forest stands in Finland[J]. For Ecol Manag, 2009, 258(3):207-216. DOI:10.1016/j.foreco.2009.03.052.
|
[13] |
PINHEIRO J C, BATES D M. Mixed-effects models in S and SPLUS[M]. New York: Springer, 2001.
|
[14] |
SUBEDI N, SHARMA M. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario[J]. For Ecol Manag, 2011, 261(11):2140-2148. DOI:10.1016/j.foreco.2011.03.010.
|
[15] |
吴旭平, 吕勇, 张雄清, 等. 基于立地因子的杉木人工林断面积生长混合效应模型研究[J]. 林业资源管理, 2021(2):75-82.
|
|
WU X P, LV Y, ZHANG X Q, et al. Research on growth mixed effect model for basal area of Cunninghamia lanceolata plantation based on site factors[J]. For Resour Manag, 2021(2):75-82. DOI:10.13466/j.cnki.lyzygl.2021.02.011.
|
[16] |
董利虎, 李凤日, 贾炜玮. 基于线性混合效应的红松人工林枝条生物量模型[J]. 应用生态学报, 2013, 24(12):3391-3398.
|
|
DONG L H, LI F R, JIA W W. Linear mixed modeling of branch biomass for Korean pine plantation[J]. Chin J Appl Ecol, 2013, 24(12):3391-3398. DOI:10.13287/j.1001-9332.2013.0571.
|
[17] |
DONG L, LIU Z, BETTINGER P. Nonlinear mixed-effects branch diameter and length models for natural Dahurian larch (Larix gmelini) forest in northeast China[J]. Trees, 2016, 30(4):1191-1206. DOI:10.1007/s00468-016-1356-y.
|
[18] |
赵喆, 刘延文, 纪福利, 等. 华北落叶松-白桦凋落物混合分解研究[J]. 中南林业科技大学学报, 2016, 36(12):74-78,84.
|
|
ZHAO Z, LIU Y W, JI F L, et al. Mixed litter decomposition of Larix principis-rupprechtii and Betula platyphylla[J]. J Central South Univ For Technol, 2016, 36(12):74-78, 84. DOI:10.14067/j.cnki.1673-923x.2016.12.013.
|
[19] |
刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3):28-35.
|
|
LIU Y, WANG J, YANG Y C, et al. Relationship between crown width and DBH, tree height or volume of Juglans mandshurica in stands of different density[J]. Forest Engineering, 2021, 37(3):28-35.
|
[20] |
李菁, 骆有庆, 石娟. 基于生物多样性保护的兴安落叶松与白桦最佳混交比例——以阿尔山林区为例[J]. 生态学报, 2012, 32(16): 4943-4949.
|
|
LI J, LUO Y Q, SHI J. The optimum mixture ratio of larch and birch in terms of biodiversity conservation: a case study in Aershan forest area[J]. Acta Ecol Sin, 2012, 32(16):4943-4949. DOI:10.5846/stxb201112211948.
|
[21] |
夏成财, 刘忠玲, 王庆成, 等. 16年生落叶松白桦纯林与混交林林分生长量及生物量对比[J]. 东北林业大学学报, 2012, 40(10):1-3.
|
|
XIA C C, LIU Z L, WANG Q C, et al. Comparison of the growth and biomass production of monoculture and mixed stands of Larix gmelinii and Betula platyphylla[J]. J Northeast For Univ, 2012, 40(10):1-3. DOI:10.13759/j.cnki.dlxb.2012.10.021.
|
[22] |
CHEVAN A, SUTHERLAND M. Hierarchical partitioning[J]. Am Stat, 1991, 45(2):90-96. DOI:10.1080/00031305.1991.10475776.
|
[23] |
GUYLAIN E Y, 辛士冬, 姜立春. 落叶松立木材积方程和非线性和对数转换的对比[J]. 东北林业大学学报, 2019, 47(4):43-48.
|
|
GUYLAIN E Y, XIN S D, JIANG L C. Comparison of log-transformed linear and nonlinear regression of volume model for Larix gmelinii[J]. J Northeast For Univ, 2019, 47(4):43-48. DOI:10.13759/j.cnki.dlxb.2019.04.009.
|
[24] |
TEMESGEN H, GADOW K. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. Eur J Forest Res, 2004, 123(1):45-51. DOI:10.1007/s10342-004-0020-z.
|
[25] |
TRINCADO G, VANDERSCHAAF C L, BURKHART H E. Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations[J]. Eur J Forest Res, 2007, 126(2):253-262. DOI:10.1007/s10342-006-0141-7.
|
[26] |
娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径-树高模型[J]. 林业科学, 2017, 53(6):67-76.
|
|
LOU M H, ZHANG H R, LEI X D, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation[J]. Sci Silvae Sin, 2017, 53(6):67-76. DOI:10.11707/j.1001-7488.20170608.
|