南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 148-156.doi: 10.12302/j.issn.1000-2006.202111041
王云霓1,2(), 曹恭祥1, 徐丽宏2,*(), 陈胜楠3
收稿日期:
2021-11-25
修回日期:
2022-04-08
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 徐丽宏(作者简介:
王云霓(基金资助:
WANG Yunni1,2(), CAO Gongxiang1, XU Lihong2,*(), CHEN Shengnan3
Received:
2021-11-25
Revised:
2022-04-08
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】水分是半干旱区森林植被持续稳定的主要限制因子,通过对内蒙古大青山北侧华北落叶松(Larix principis-rupprechtii)林分蒸散及其组分的研究,分析山地人工林的蒸散耗水规律,为基于林水关系的森林植被精细化经营管理提供基础。【方法】利用热扩散探针等常规森林水文监测方法,同步监测树干液流、林冠截留、林地蒸散及气象因子和土壤体积含水量(土壤水分),分析林分蒸散及其组分的变化规律及与环境因子的关系。【结果】在季节尺度上,2016年、2017年华北落叶松林分蒸散量分别为522.57 和583.67 mm,占同期降水量的120.13%、167.34%,年际差异主要受温度、土壤水分的影响;林冠蒸腾占林分总蒸散的比例平均为45.44%、林地蒸散占40.28%、林冠截留占14.28%。在月尺度上,林冠蒸腾占林分总蒸散的37.30%~52.43%,林冠截留占8.61%~21.81%,林地蒸散占31.52%~48.15%;林分蒸散和林冠蒸腾主要受温度、风速和水分条件的影响,林冠截留主要受降水和大气湿度的影响,而太阳辐射、饱和气压差和土壤水分是影响林地蒸散主要因素;2016年7月的林分蒸散小于降水量28.06 mm,其他月份的降水与林分蒸散比例为0.55~0.92。【结论】在半干旱区典型水源涵养林业的山地人工林生态系统,降水的输入量不能满足人工林的需水量,今后研究中需重视降水类型及其时间格局对蒸散耗水的影响。
中图分类号:
王云霓,曹恭祥,徐丽宏,等. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156.
WANG Yunni, CAO Gongxiang, XU Lihong, CHEN Shengnan. Evapotranspiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the Daqing Mountains of Inner Mongolia[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 148-156.DOI: 10.12302/j.issn.1000-2006.202111041.
表1
样树的基本特征"
项目 item | 编号 mumber | 胸径/ cm DBH | 边材 面积/ cm2 sapwood area | 树高/m height | 活枝 下高/m high under living branch | 死枝 下高/m high under dead branch | 冠幅/m crown diameter |
---|---|---|---|---|---|---|---|
树干 液流 sap flow | 1 | 8.45 | 35.37 | 7.70 | 7.70 | 3.20 | 1.15 |
2 | 10.30 | 50.11 | 10.30 | 5.60 | 3.40 | 2.65 | |
3 | 11.50 | 60.84 | 11.10 | 5.70 | 3.60 | 2.41 | |
4 | 12.30 | 68.48 | 13.40 | 5.80 | 4.80 | 1.57 | |
5 | 11.90 | 64.61 | 11.90 | 6.60 | 4.20 | 2.21 | |
6 | 13.40 | 79.63 | 12.10 | 5.20 | 3.40 | 2.01 | |
7 | 14.40 | 90.38 | 13.90 | 8.10 | 4.40 | 1.87 | |
8 | 14.50 | 91.49 | 13.60 | 6.30 | 4.30 | 3.70 | |
9 | 15.60 | 104.05 | 13.30 | 5.10 | 2.50 | 3.60 | |
10 | 17.90 | 132.55 | 14.30 | 6.40 | 3.80 | 3.05 | |
树干 茎流 stem flow | 11 | 9.40 | 42.66 | 5.50 | 3.60 | 2.40 | 1.83 |
12 | 10.30 | 50.11 | 13.40 | 8.20 | 3.50 | 1.39 | |
13 | 12.70 | 72.45 | 12.70 | 5.80 | 4.00 | 1.72 | |
14 | 13.40 | 79.63 | 12.10 | 5.20 | 3.40 | 2.01 | |
15 | 14.90 | 95.97 | 12.90 | 5.30 | 2.30 | 3.21 | |
16 | 15.05 | 97.68 | 13.80 | 4.90 | 4.10 | 2.95 | |
17 | 16.48 | 114.60 | 14.30 | 6.10 | 3.30 | 2.91 | |
18 | 16.10 | 109.99 | 14.90 | 8.70 | 2.80 | 2.55 | |
19 | 17.50 | 127.38 | 14.00 | 7.30 | 3.60 | 2.77 | |
20 | 18.40 | 139.13 | 14.00 | 6.20 | 3.30 | 3.29 |
表3
林分蒸散及其组分与环境因子的相关性分析"
指标 index | 年份 year | 气温 temperature | 太阳辐射 solar radiation | 大气相对湿度 air relative humidity | 风速 wind speed | 饱和气压差 saturated vapor pressure deficit | 降水量 precipitation | 土壤水分 soil water content |
---|---|---|---|---|---|---|---|---|
林分蒸散forest evapotranspiration | 2016 | 0.875* | 0.491 | 0.378 | -0.658* | 0.419 | 0.250 | 0.853* |
2017 | 0.679* | -0.38 | 0.929** | -0.843* | -0.329 | 0.660* | 0.625* | |
林冠蒸腾canopy transpiration | 2016 | 0.945** | 0.457 | 0.438 | -0.597* | 0.398 | 0.526* | 0.932** |
2017 | 0.942** | 0.397 | 0.494 | -0.741* | 0.546 | 0.762* | 0.405 | |
林冠截留 canopy interception | 2016 | 0.223 | -0.420 | 0.621* | -0.314 | -0.598 | 0.757* | 0.078 |
2017 | 0.831* | -0.258 | 0.931** | -0.812* | -0.166 | 0.644* | -0.570 | |
林地蒸散forest floor evapotranspiration | 2016 | 0.554* | 0.560* | 0.023 | -0.431 | 0.564* | -0.257 | 0.587* |
2017 | 0.040 | 0.699* | 0.656* | -0.445 | 0.764* | 0.236 | 0.611* |
[1] | O'BRIEN J J, OBERBAUER S F, CLARK D B. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest[J]. Plant Cell Environ, 2004, 27(5), 551-567. DOI: 10.1111/j.1365-3040.2003.01160.x. |
[2] | 熊伟, 王彦辉, 于澎涛, 等. 华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J]. 林业科学, 2008, 44(1): 34-40. |
XIONG W, WANG Y H, YU P T, et al. Variation of sap flow among individual trees and scaling up for estimations estimation of transpiration of Larix principis-rupprechtii stand[J]. Sci Silvae Sin, 2008, 44(1): 34-40. DOI: 10.3321/j.issn:1001-7488. 2008. 01. 006. | |
[3] | 王彦辉, 熊伟, 于澎涛, 等. 干旱缺水地区森林植被蒸散耗水研究[J]. 中国水土保持科学, 2006, 4(4): 19-25, 32. |
WANG Y H, XIONG W, YU P T, et al. Study on the evapotranspiration of forest and vegetation in dryland[J]. Sci Soil Water Conserv, 2006, 4(4): 19-25, 32. DOI: 10.16843/j.sswc.2006.04.004. | |
[4] | 王宇超, 陈逸飞, 林晨蕾, 等. 森林抚育间伐对杉木人工林温湿度的影响研究[J]. 森林工程, 2022, 38(1): 9-14, 26. |
WANG Y C, CHEN Y F, LIN C L, et al. Effects of forest tending and thinning on temperature and humidity of Chinese fir plantation[J]. Forest Engineering, 2022, 38(1): 9-14, 26. | |
[5] | 路倩倩, 何洪林, 朱先进, 等. 中国东部典型森林生态系统蒸散及其组分变异规律研究[J]. 自然资源学报, 2015, 30(9): 1436-1448. |
LU Q Q, HE H L, ZHU X J, et al. Study on the variations of forest evapotranspiration and its components in eastern China[J]. J Nat Resour, 2015, 30(9): 1436-1448. DOI: 10.11849/zrzyxb.2015.09.002. | |
[6] | 王云霓, 曹恭祥, 王彦辉, 等. 六盘山南侧华北落叶松人工林冠层蒸腾及其影响因子的坡位差异[J]. 应用生态学报, 2018, 29(5): 1503-1514. |
WANG Y N, CAO G X, WANG Y H, et al. Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in different slope locations at the south side of Liupan Mountains, China.[J]. Chin J Appl Ecol, 2018, 29(5): 1503-1514. DOI: 10.13287/j.1001-9332.201805. 006. | |
[7] | 陈胜楠, 孔喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子[J]. 生态学报, 2020, 40(4):1269-1280. |
CHEN S N, KONG Z, CHEN L X, et al. The stand transpiration characteristics of Pinus tabulaeformis and its influential factors in a semi-arid urban environment[J]. Acta Ecol Sin, 2020, 40(4):1269-1280. DOI: 10.5846/stxb201811262571. | |
[8] | LAGERGREN F, LINDROTH A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agric For Meteorol, 2002, 112(2): 67-85. DOI: 10.1016/S0168- 1923(02)00060-6. |
[9] | UNGAR E D, ROTENBERG E, RAZ-YASEEF N, et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management[J]. For Ecol Manag, 2013, 298(15): 39-51. DOI: 10.1016/j.foreco.2013.03.003. |
[10] | 李振华, 王彦辉, 于澎涛, 等. 六盘山半干旱区华北落叶松林的生长季蒸散量和组分特征[J]. 生态环境学报, 2013, 22(2): 222-228. |
LI Z H, WANG Y H, YU P T, et al. The evapotranspiration and its partition in growing season for a stand of Larix principis-rupprechtii plantation in the semi-arid region of Liupan Mountains, NW China[J]. Ecol Environ Sci, 2013, 22(2): 222-228. DOI: 10.16258/j.cnki.1674-5906.2013.02.013. | |
[11] | RAZ-YASEEF N, YAKIR D, SCHILLER G, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns[J]. Agric For Meteorol, 2012, 157: 77-85. DOI: 10.1016/j.agrformet.2012.01.015. |
[12] | EWERS B E, GOWER S T, BOND-LAMBERTY B, et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant Cell Environ, 2005, 28(5): 660-678. DOI: 10.1111/j.1365-3040.2005.01312.x. |
[13] | DU S, WANG Y L, KUME T, et al. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China[J]. Agric For Meteorol, 2011, 151(1): 1-10. DOI: 10.1016/j.agrformet.2010.08.011. |
[14] | BRINKMANN N, EUGSTER W, ZWEIFEL R, et al. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying[J]. Tree Physiol, 2016, 36(12): 1508-1519. DOI: 10.1093/treephys/tpw062. |
[15] | 杨洁, 吕金林, 何秋月, 等. 黄土丘陵区辽东栎和刺槐树干液流时滞效应与蒸腾特征的关联性[J]. 应用生态学报, 2019, 30(8): 2607-2613. |
YANG J, LYU J L, HE Q Y, et al. Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacacia in the loess hilly region, China[J]. Chin J Appl Ecol, 2019, 30(8): 2607-2613. DOI: 10.13287/j.1001-9332.201908.013. | |
[16] | XU L H, CAO G X, WANG Y N, et al. Components of stand water balance of a larch plantation after thinning during the extremely wet and dry years in the Loess Plateau, China[J]. Glob Ecol Conserv, 2020, 24: e01307. DOI: 10.1016/j.gecco.2020.e01307. |
[17] | DELZON S, LOUSTAU D. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence[J]. Agric For Meteorol, 2005, 129(3/4): 105-119. DOI: 10.1016/j.agrformet.2005.01.002. |
[18] | 曹恭祥, 王云霓, 郭中, 等. 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应[J]. 应用生态学报, 2020, 31(10): 3376-3384. |
CAO G X, WANG Y N, GUO Z, et al. Responses of transpiration to variation in evaporative demands and soil water in a larch plantation at the south side of Liupan Mountains, China[J]. Chin J Appl Ecol, 2020, 31(10): 3376-3384. DOI: 10.13287/j.1001-9332.202010.015. | |
[19] | 王渝淞, 贾国栋, 张永娥, 等. 北京山区侧柏林蒸散拆分研究[J]. 水土保持学报, 2019, 33(2): 272-278. |
WANG Y S, JIA G D, ZHANG Y E, et al. Study on the separation of evapotranspiration of Platycladus orientalis forest in Beijing mountains area[J]. J Soil Water Conserv, 2019, 33(2): 272-278. DOI: 10.13870/j.cnki.stbcxb.2019.02.042. | |
[20] | YEPEZ E A, WILLIAMS D G, SCOTT R L, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agric For Meteorol, 2003, 119(1/2): 53-68. DOI: 10.1016 /S0168- 1923(03)00116-3. |
[21] | 魏焕奇, 何洪林, 刘敏, 等. 基于遥感的千烟洲人工林蒸散及其组分模拟研究[J]. 自然资源学报, 2012, 27(5): 778-789. |
WEI H Q, HE H L, LIU M, et al. Modeling evapotranspiration and its components in Qianyanzhou plantation based on remote sensing data[J]. J Nat Resour, 2012, 27(5): 778-789. DOI: 10.11849/zrzyxb.2012.05.007. | |
[22] | 孙守家, 孟平, 张劲松, 等. 华北低丘山区栓皮栎生态系统氧同位素日变化及蒸散定量区分[J]. 生态学报, 2015, 35(8): 2592-2601. |
SUN S J, MENG P, ZHANG J S, et al. Variation of vapor oxygen isotopic composition and partitioning evapotranspiration of oak woodland in the low hilly area of north China[J]. Acta Ecol Sin, 2015, 35(8): 2592-2601. DOI: 10.5846/stxb201306091514. | |
[23] | 夏永秋, 邵明安. 黄土高原半干旱区柠条(Caragana korshinskii)树干液流动态及其影响因子[J]. 生态学报, 2008, 28(4): 1376-1382. |
XIA Y Q, SHAO M A. The sap flow dynamics of Caragana korshinskii and the influence of environmental factors in semi-arid region of the Loess Plateau[J]. Acta Ecol Sin, 2008, 28(4): 1376-1382.DOI:10.3321/j.issn:1000-0933.2008.04.004. | |
[24] | 吕瑜良, 刘世荣, 孙鹏森, 等. 川西亚高山不同暗针叶林群落类型的冠层降水截留特征[J]. 应用生态学报, 2007, 18(11), 2398-2405. |
LÜ Y L, LIU S R, SUN P S, et al. Canopy interception of sub-alpine dark coniferous communities in western Sichun, China[J]. Chin J Appl Ecol, 2007, 18(11): 2398-2405. | |
[25] | 孟广涛, 郎南军, 方向京, 等. 滇中华山松人工林的水文特征及水量平衡[J]. 林业科学研究, 2001, 14(1): 78-84. |
MENG G T, LANG N J, FANG X J, et al. Hydrological properties and water balance of Pinus armandii plantation in central Dian Plateau, Yunnan Province[J]. For Res, 2001, 14(1): 78-84. DOI: 10.3321/j.issn:1001-1498.2001.01.014. | |
[26] | 孙浩, 杨民益, 余杨春, 等. 宁夏六盘山几种典型水源涵养林林分结构与水文功能的关系[J]. 中国水土保持科学, 2014, 12(1): 10-18. |
SUN H, YANG M Y, YU Y C, et al. Relationship between stand structure and hydrological functions of typical water conservation forests in Liupan Mountains of Ningxia[J]. Sci Soil Water Conserv, 2014, 12(1): 10-18. DOI: 10.16843/j.sswc.2014.01.002. | |
[27] | 曾德慧, 裴铁璠, 范志平, 等. 樟子松林冠截留模拟实验研究[J]. 应用生态学报, 1996, 7(2): 134-138. |
ZENG D H, PEI T F, FAN Z P, et al. Simulation of canopy interception by Mongolian pine[J]. Chin J Appl Ecol, 1996, 7(2): 134-138. | |
[28] | 徐丽宏, 时忠杰, 王彦辉, 等. 六盘山主要植被类型冠层截留特征[J]. 应用生态学报, 2010, 21(10): 2487-2493. |
XU L H, SHI Z J, WANG Y H, et al. Canopy interception characteristics of main vegetation types in Liupan Mountains of China[J]. Chin J Appl Ecol, 2010, 21(10): 2487-2493. DOI: 10.13287/j.1001-9332.2010.0387. | |
[29] | 谭俊磊, 马明国, 车涛, 等. 基于不同郁闭度的青海云杉冠层截留特征研究[J]. 地球科学进展, 2009, 24(7): 825-833. |
TAN J L, MA M G, CHE T, et al. A study of interception of Picea crassifolia based on different canopy closure[J]. Adv Earth Sci, 2009, 24(7): 825-833. DOI: 10.3321/j.issn:1001-8166.2009.07.017. | |
[30] | 曾杰, 郭景唐. 太岳山油松人工林生态系统降雨的第一次分配[J]. 北京林业大学学报, 1997, 19(3): 21-27. |
ZENG J, GUO J T. Study on the first distribution of precipitation by Pinus tabulaeformis plantation in the Taiyue forest region[J]. J Beijing For Univ, 1997, 19(3): 21-27. DOI: 10.1007/BF02951625. | |
[31] | 曹恭祥, 王绪芳, 熊伟, 等. 宁夏六盘山人工林和天然林生长季的蒸散特征[J]. 应用生态学报, 2013, 24(8): 2089-2096. |
CAO G X, WANG X F, XIONG W, et al. Evapotranspiration characteristics of artificial and natural forests in Liupan Mountains of Ningxia, China during growth season[J]. Chin J Appl Ecol, 2013, 24(8): 2089-2096. DOI: 10.13287/j.1001-9332.2013.0365. | |
[32] | 杨晓勤, 李良. 不同林龄华北落叶松人工林土壤蒸发特征及地表径流研究[J]. 山东林业科技, 2013, 43(1): 48-50. |
YANG X Q, LI L. Research on surface runoff and soil evaporation characteristics of Larix principis-rupprechtii with different stand ages[J]. J Shandong For Sci Technol, 2013, 43(1): 48-50. | |
[33] | GRANIER A, BRÉDA N. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements[J]. Ann For Sci, 1996, 53(2/3): 537-546. DOI: 10.1051/forest:19960233. |
[34] | 黄辉, 孟平, 张劲松, 等. 华北低丘山地人工林蒸散的季节变化及环境影响要素[J]. 生态学报, 2011, 31(13): 3569-3580. |
HUANG H, MENG P, ZHANG J S, et al. Seasonal variations and environmental control impacts of evapotranspiration in a hilly plantation in the mountain areas of north China[J]. Acta Ecol Sin, 2011, 31(13): 3569-3580. | |
[35] | 王石言, 王力, 韩雪, 等. 黄土塬区盛果期苹果园的蒸散特征[J]. 林业科学, 2016, 52(1): 128-135. |
WANG S Y, WANG L, HAN X, et al. Evapotranspiration characteristics of apple orchard at peak period of fruiting in Loess tableland[J]. Sci Silvae Sin, 2016, 52(1):128-135. DOI:10.11707/j.1001-7488.20160115. | |
[36] | 范晓梅, 刘光生, 王一博, 等. 长江源区高寒草甸植被覆盖变化对蒸散过程的影响[J]. 水土保持通报, 2010, 30(6): 17-21, 26. |
FAN X M, LIU G S, WANG Y B, et al. Influence of vegetation coverage on evapotranspiration of alpine meadow in headwaters of the Yangtze River[J]. Bull Soil Water Conserv, 2010, 30(6): 17-21, 26. DOI: 10.13961/j.cnki.stbctb.2010.06.045. | |
[37] | KUMAGAI T, AOKI S, SHIMIZU T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed[J]. Tree Physiol, 2007, 27(2): 161-168. DOI: 10.1093/treephys/27.2.161. |
[38] | KUMAGAI T, TATEISHI M, SHIMIZU T, et al. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed[J]. Agric For Meteorol, 2008, 148(10): 1444-1455. DOI: 10.1016/j.agrformet.2008.04.010. |
[39] | BRÉDA N, GRANIER A, BARATAUD F, et al. Soil water dynamics in an oak stand[J]. Plant Soil, 1995, 172(1): 17-27. DOI: 10.1007/bf00020856. |
[40] | 张静, 王力. 黄土塬区苹果园蒸散与环境因素的关系[J]. 林业科学, 2018, 54(3): 29-38. |
ZHANG J, WANG L. The relationship between the evapotranspiration and the environmental factors in the apple orchards in the Loess tableland area[J]. Sci Silvae Sin, 2018, 54(3): 29-38. DOI: 10.11707/j.1001-7488.20180304. | |
[41] | 魏新光, 陈滇豫, 汪星, 等. 山地枣林蒸腾主要影响因子的时间尺度效应[J]. 农业工程学报, 2014, 30(17): 149-156. |
WEI X G, CHEN D Y, WANG X, et al. Time scale effect on main factors that influence jujube transpiration in hillside jujube orchard[J]. Trans Chin Soc Agric Eng, 2014, 30(17): 149-156. | |
[42] | HAN C, CHEN N, ZHANG C K, et al. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong Mountain, northwestern China[J]. Forest Ecology and Management, 2019, 451:117519.DOI:10.3969/j.issn.1002-6819.2014.17.020. |
[43] | 于松平, 刘泽彬, 郭建斌, 等. 六盘山华北落叶松林分蒸腾特征及其影响因素[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 131-140. |
YU S P, LIU Z B, GUO J B, et al. Stand transpiration characteristics of Larix principis-rupprechtii plantation and their influencing factors in Liupan Mountain[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1): 131-140. DOI: 10.12302/j.issn.1000-2006.202001025. | |
[44] | 王力, 邵明安, 王全九, 等. 黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比[J]. 西北植物学报, 2005, 25(7): 1279-1286. |
WANG L, SHAO M A, WANG Q J, et al. Comparison of soil desiccations in natural and acacia forests in the Ziwuling Mountain of the Loess Plateau[J]. Acta Bot Boreali Occidentalia Sin, 2005, 25(7):1279-1286.DOI:10.3321/j.issn:1000-4025.2005.07.001. | |
[45] | 程娟, 丁访军, 谭正洪, 等. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 125-132. |
CHENG J, DING F J, TAN Z H, et al. Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area, Guizhou Province[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(5):125-132.DOI:10.12302/j.issn.1000-2006.202010005. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 陈建坤, 牟凤云, 张用川, 田甜, 王俊秀. 基于多机器学习模型的逐小时PM2.5浓度预测对比[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 152-160. |
[3] | 侯秀娟, 闫晓云, 王波, 李心愿, 包红光. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 212-220. |
[4] | 罗凤敏, 高君亮, 辛智鸣, 郝玉光, 李新乐, 段瑞兵. 乌兰布和沙漠绿洲防护林体系小气候效应研究[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 143-152. |
[5] | 刘子宣, 贾存, 秦志强, 李永宁. 华北落叶松林下光环境对白扦幼树生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 111-117. |
[6] | 黄雅茹, 辛智鸣, 李永华, 马迎宾, 董雪, 罗凤敏, 李新乐, 段瑞兵. 乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 131-139. |
[7] | 冀盼盼, 张健飞, 张玉珍, 黄选瑞, 张志东. 不同林龄华北落叶松人工林生态化学计量特征[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 126-132. |
[8] | 周泽宇, 杨绕华, 张玉珍, 黄选瑞, 张志东, 王冬至, 李大勇. 华北落叶松人工林直径分布预测模型构建[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 117-124. |
[9] | 段光爽,李学东,冯岩,符利勇. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 163-169. |
[10] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
[11] | 刘宪钊,李卫珍,王金龙,陆元昌,谢阳生. 两种不同起源华北落叶松林空间点格局及植物多样性[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 102-108. |
[12] | 黄良帅,韩海荣,牛树奎,程小琴,周文嵩. 华北落叶松冠层光合生理特性的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 193-197. |
[13] | 石磊,盛后财,满秀玲,蔡体久. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 90-96. |
[14] | 万芳芳,刘勇,李国雷,孙巧玉,蒋乐,史文辉,滕飞,张劲. 底部渗灌下缓释肥对华北落叶松容器苗生长和氮积累的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(01): 75-81. |
[15] | 刘玉杰,满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 81-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||