山柰酚及其环糊精包合物作为荧光探针对铜离子识别作用的研究

杨世龙, 蒋国斌, 徐莉, 孙露, 贾韵玄, 吴宇

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 209-218.

PDF(2220 KB)
PDF(2220 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 209-218. DOI: 10.12302/j.issn.1000-2006.202111045
研究论文

山柰酚及其环糊精包合物作为荧光探针对铜离子识别作用的研究

作者信息 +

Fluorescent properties and application for recognizing copper ions based on kaempferol and kaempferol-cyclodextrin inclusion

Author information +
文章历史 +

摘要

【目的】山柰酚(kaempferol,Kae)是一种广泛存在于植物中的黄酮类化合物,分析Kae的荧光性能,揭示Kae作为荧光探针识别金属离子的机理,为进一步开发黄酮资源提供参考。【方法】实验通过调节pH、制备环糊精包合物等方法,优化Kae的荧光发射条件,探索Kae荧光性能及其应用。【结果】Kae在CH3OH-PBS缓冲溶液(体积比1∶99,pH为7.40)中具有荧光发射现象,但荧光强度较弱、稳定性较差。与2-羟丙基-β-环糊精[(2-hydroxypropyl)-β-cyclodextrin,CD]形成包合物后,包合物(Kae-CD)的最大荧光发射峰由538 nm红移至552 nm,Stokes位移增大;同时,荧光强度提高,荧光稳定性显著提高,Kae的荧光性能得到明显改善。Kae可以作为荧光探针对水溶液中的铜离子进行定量检测,定量方程为y = -10.61 x + 225.8(R2=0.998),线性范围为1.0 × 10-8~1.7 × 10-6 mol/L,检测限可达4.2 × 10-9 mol/L。但是Fe2+对Kae检测铜离子的过程有一定的干扰,而Kae-CD可以有效避免Fe2+的干扰,对铜离子具有更高的选择性,定量方程为y = -8.54 x + 708.55(R2=0.997),线性范围为5.0 × 10-8~5.0 × 10-6 mol/L,检测限可达1.5 × 10-8 mol/L。紫外-可见光吸收光谱、Job曲线、红外光谱等研究表明,Kae和Kae-CD与铜离子形成化学计量比为2∶1的配合物,促使Kae分子发生分子内电荷转移,从而引起荧光猝灭。【结论】Kae-CD比Kae的荧光性能更加优越,二者均可以作为荧光探针对河水中微量铜离子进行检测,检测结果与ICP-MS或ICP-OES法相比,结果更准确、稳定。

Abstract

【Objective】Kaempferol (Kae) is a flavonoid that is widely present in plants. By investigating the fluorescence properties and applications of Kae, this study seeks to reveal the recognition mechanisms of metal ions and provide a basis for the development of flavonoid resources. 【Method】 Kae was extracted from ginkgo leaves. The experimental conditions for obtaining the fluorescence emission spectra of Kae were optimized by adjusting the pH and preparing the inclusion complex with (2-hydroxypropyl)-β-cyclodextrin (CD). The responses of Kae and Kae-CD on different metal ions were explored by studying the change of fluorescence. 【Result】 Interestingly, the fluorescent emission of Kae was observed in the CH3OH-PBS buffer solution (volume ratio 1∶99, pH 7.40), however, the fluorescence intensity and stability were poor. When the inclusion complex was formed with Kae and CD, the maximum emission peak shifted from 538 nm to 552 nm, and the Stokes shift increased. Moreover, the fluorescence intensity was greater than that of Kae and more stable. The results of selectivity experiments indicated that fluorescence of Kae was quenched after adding Cu2+, fluorescence intensity of Kae decreased in some degree after adding Fe2+. And other metal ions had no obvious influence on fluorescence intensity of Kae. Fluorescence titration experiments demonstrated fluorescence intensity of Kae was inversely proportional to Cu2+ concentrations. The calibration curve between fluorescence intensity (y) and Cu2+ concentration (x) was defined as y = -10.61x + 225.8 (R2 = 0.998) with a linear range from 1.0× 10-8 to 1.7 × 10-6 mol/L. The detection limit was estimated to be 4.2 × 10-9 mol/L. In the Kae-CD solution, fluorescence quenching occurred after adding Cu2+, and the other metal ions had no obvious effect on fluorescence intensity, which indicated that the Kae-CD solution had a higher selectivity for Cu2+. Fluorescence titration experiments demonstrated that the linear relationship between fluorescence intensity (y) of Kae-CD solution and Cu2+ concentration (x) was defined as y= -8.54 x + 708.55 (R2 = 0.997) with a linear range from 5.0 × 10-8 to 5.0 × 10-6 mol/L and detection limit was 1.5 × 10-8 mol/L. UV-Vis spectra, FT-IR spectra, and Job's plots were used to characterize the mechanisms of Cu2+ recognition. These experiments demonstrated that Kae and Kae-CD formed complexes with Cu2+ in a stoichiometric ratio of 2∶1. When the complex was formed, intramolecular charge transfer (ICT) occurred due to the extension of the conjugated system, thereby causing fluorescence quenching. 【Conclusion】As shown by the present study, this method can be successfully applied to determine the concentration of Cu2+ in rivers or lakes. Compared with the ICP-MS or ICP-OES methods, the results obtained using Kae and Kae-CD were more accurate and stable, thereby providing a novel, fast and convenient method to quantify Cu2+ presence.

关键词

山柰酚 / 2-羟丙基-β-环糊精 / 荧光探针

Key words

kaempferol / (2-hydroxypropyl)-β-cyclodextrin / fluorescent probe

引用本文

导出引用
杨世龙, 蒋国斌, 徐莉, . 山柰酚及其环糊精包合物作为荧光探针对铜离子识别作用的研究[J]. 南京林业大学学报(自然科学版). 2023, 47(4): 209-218 https://doi.org/10.12302/j.issn.1000-2006.202111045
YANG Shilong, JIANG Guobin, XU Li, et al. Fluorescent properties and application for recognizing copper ions based on kaempferol and kaempferol-cyclodextrin inclusion[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 209-218 https://doi.org/10.12302/j.issn.1000-2006.202111045
中图分类号: S789.1   

参考文献

[1]
张明光, 李明新, 杨益琴, 等. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3):1168-1176.
ZHANG M G, LI M X, YANG Y Q, et al. Synthesis of nopinone-based quinazolin-2-amine fluorescent probe for detection of Cu and its application research[J]. Chin J Org Chem, 2021, 41(3): 1168-1176. DOI: 10.6023/cjoc202008049.
[2]
姜倩, 王忠龙, 李明新, 等. 具有聚集诱导发光效应的诺蒎烷基β-二酮氟化硼络合物的合成及溶剂化显色效应的研究[J]. 有机化学, 2020, 40(12):4290-4297.
JIANG Q, WANG Z L, LI M X, et al. Nopinone-based difluoroboron β-diketonate complex: aggregation-induced emission and solvatochromism[J]. Chin J Org Chem, 2020, 40(12): 4290-4297. DOI: 10.6023/cjoc202005049.
[3]
张晶晶, 严鸣, 卢雯, 等. 基于香豆素-肟的次氯酸根探针的设计、合成及荧光成像应用[J]. 无机化学学报, 2021, 37(6):1071-1079.
ZHANG J J, YAN M, LU W, et al. Design, synthesis and fluorescence imaging application of hypochlorite probe based on coumarin-oxime[J]. Chin J Inorg Chem, 2021, 37(6): 1071-1079. DOI:10.11862/CJIC.2021.133.
[4]
PARVEEN S D S, KUMAR B S, KUMAR S R R, et al. Isolation of biochanin A, an isoflavone, and its selective sensing of copper(Ⅱ) ion[J]. Sens Actuat B Chem, 2015, 221: 75-80. DOI: 10.1016/j.snb.2015.06.060.
[5]
LIU P, ZHAO L L, WU X, et al. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 122: 238-245. DOI: 10.1016/j.saa.2013.11.055.
[6]
YANG S L, YIN B, XU L, et al. A natural quercetin-based fluorescent sensor for highly sensitive and selective detection of copper ions[J]. Anal Methods, 2015, 7(11): 4546-4551. DOI: 10.1039/C5AY00375j.
[7]
SUN L, WANG X Q, SHI J Z, et al. Kaempferol as an AIE-active natural product probe for selective Al3+ detection in Arabidopsis thaliana[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2021, 249: 119303. DOI: 10.1016/j.saa.2020.119303.
[8]
ZHONG Y Y, LI W H, RAN L D, et al. Inclusion complexes of tea polyphenols with HP-β-cyclodextrin: preparation, characterization, molecular docking, and antioxidant activity[J]. J Food Sci, 2020, 85(4): 1105-1113. DOI: 10.1111/1750-3841.15083.
[9]
YAO Q, LIN M T, LAN Q H, et al. In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity[J]. Drug Deliv, 2020, 27(1): 54-65. DOI: 10.1080/10717544.2019.1704941.
[10]
GUAN M Y, SHI R, ZHENG Y Y, et al. Characterization, in vitro and in vivo evaluation of naringenin-hydroxypropyl-beta-cyclodextrin inclusion for pulmonary delivery[J]. Molecules, 2020, 25(3): 554. DOI: 10.3390/molecules25030554.
[11]
XU T, ZHAO S J, WU X L, et al. Beta-cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols[J]. ACS Sustain Chem Eng, 2020, 8(16): 6413-6421. DOI: 10.1021/acssuschemeng.0c00766.
[12]
VAN BEEK T A, MONTORO P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals[J]. J Chromatogr A, 2009, 1216(11): 2002-2032. DOI: 10.1016/j.chroma.2009.01.013.
[13]
QIU Y X, HE D, YANG J X, et al. Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application[J]. Eur Food Res Technol, 2020, 246(12): 2383-2397. DOI: 10.1007/s00217-020-03582-0.
[14]
YANG S L, SUN L, SONG Z W, et al. Extraction and application of natural rutin from Sophora japonica to prepare the novel fluorescent sensor for detection of copper ions[J]. Front Bioeng Biotechnol, 2021, 9: 642138. DOI: 10.3389/fbioe.2021.642138.
[15]
FACCHIANOA A, RAGONE R. Modification of Job's method for determining the stoichiometry of protein-protein complexes[J]. Anal Biochem, 2003, 313(1): 170-172. DOI: 10.1016/S0003-2697(02)00562-6.
[16]
HAFUKA A, YOSHIKAWA H, YAMADA K, et al. Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff[J]. Water Res, 2014, 54: 12-20. DOI:10.1016/j.watres.2014.01.040.
[17]
LEI R, XU X, YU F, et al. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation[J]. Talanta, 2008, 75(4): 1068-1074. DOI: 10.1016/j.talanta.2008.01.010.
[18]
MARKOVIC J M D, MARKOVIC Z S, BRDARIC T P, et al. Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity[J]. Food Chem, 2011, 129(4): 1567-1577. DOI: 10.1016/j.foodchem.2011.06.008.
[19]
BUKHARI S B, MEMON S, MAHROOF-TAHIR M, et al. Synthesis, characterization and antioxidant activity copper-quercetin complex[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2009, 71(5): 1901-1906. DOI: 10.1016/j.saa.2008.07.030.
[20]
SAVIC I M, NIKOLIC V D, SAVIC-GAJIC I, et al. Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin[J]. J Incl Phenom Macrocycl Chem, 2015, 82(3): 383-394. DOI: 10.1007/s10847-015-0500-4.
[21]
LIU B G, ZENG J, CHEN C, et al. Interaction of cinnamic acid derivatives with beta-cyclodextrin in water: experimental and molecular modeling studies[J]. Food Chem, 2015, 194: 1156-1163. DOI: 10.1016/j.foodchem.2015.09.001.
[22]
迟绍明, 杨松霖, 晋文, 等. 花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性[J]. 分析化学, 2020, 48(2):215-223.
CHI S M, YANG S L, JIN W, et al. Inclusion and antioxidant properties of taxifolin,quercetin and morin hydrate with diaminopropane bridged bis(β-cyclodextrin)s[J]. Chin J Anal Chem, 2020, 48(2): 215-223. DOI: 10.19756/j.issn.0253-3820.191554.
[23]
刘雪芬, 李培武, 张文, 等. 环糊精对花生黄曲霉毒素B1荧光增强作用与应用研究[J]. 中国油料作物学报, 2010, 32(4):546-550.
LIU X F, LI P W, ZHANG W, et al. Development and application of cyclodextrin fluorescence enhancement for aflatoxin B1 test in peanuts[J]. Chin J Oil Crop Sci, 2010, 32(4): 546-550.
[24]
UZASCI S, ERIM F B. Enhancement of native fluorescence intensity of berberine by (2-hydroxypropy1)-beta-cyclodextrin in capillary electrophoresis coupled by laser-induced fluorescence detection: application to quality control of medicinal plants[J]. J Chromatogr A, 2014, 1338:184-187. DOI: 10.1016/j.chroma.2014.02.068.
[25]
张敏, 张宇昊, 马良. β-环糊精及其衍生物、金属离子协同增敏黄曲霉毒素B1的荧光光谱分析及应用研究[J]. 分析化学, 2011, 39(12):1907-1911.
ZHANG M, ZHANG Y H, MA L. Studies and application of fluorescence of aflatoxin B1 enhanced by synergetic effect of β-cyclodextin and its derivatives and metalions[J]. Chin J Anal Chem. 2011, 39(12): 1907-1911. DOI: 10.3724/SP.J.1096.2011.01907.
[26]
周叶红, 武宏娟, 樊丽, 等. 荧光光谱法研究姜黄素与β-环糊精及其衍生物包合作用[J]. 分析科学学报, 2013, 29(5):673-676.
ZHOU Y H, WU H J, FAN L, et al. Study on the inclusion interaction of curcumin and β-cyclodextrin and its derivatives by fluorescence spectrometry[J]. J Anal Sci. 2013, 29(5): 673-676.
[27]
郑鑫程, 王剑凯, 曾晓莹, 等. 不同扩散条件对道路环境重金属含量的影响研究及污染评价[J]. 森林工程, 2021, 37(6):118-125.
ZHENG X C, WANG J K, ZENG X Y, et al. Study on the influence of heavy metal content and pollution assessment in road environment under different diffusion conditions[J]. Forest Engineering, 2021, 37(6):118-125.
[28]
GU L Q, WAN X J, LIU H Y, et al. A novel ratiometric fluorescence sensor for Zn2+ detection[J]. Anal Methods, 2014, 6(21): 8460-8463. DOI: 10.1039/C4AY01483A.
[29]
ZHOU A L, SADIK O A. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study[J]. J Agric Food Chem, 2008, 56(24): 12081-12091. DOI: 10.1021/jf802413v.
[30]
LE NEST G, CAILLE O, WOUDSTRA M, et al. Zn-polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: I optical and NMR studies[J]. Inorg Chim Acta, 2004, 357(3): 775-784. DOI: 10.1016/j.ica.2003.09.014.
[31]
CORNARD J P, MERLIN J C. Spectroscopic and structural study of complexes of quercetin with Al(ⅡI)[J]. J Inorg Biochem, 2002, 92(1):19-27. DOI: 10.1016/S0162-0134(02)00469-5.
[32]
YANG S L, JIANG W N, ZHAO F Y, et al. A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural isorhamnetin from ginkgo leaves[J]. Sens Actuat B Chem, 2016, 236: 386-391. DOI: 10.1016/j.snb.2016.06.003.
[33]
GU Z Y, LEI W, SHI W Y, et al. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: spectroscopic and theoretical calculation approach[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 132: 361-368. DOI: 10.1016/j.saa.2014.05.025.
[34]
ZHONG Y Q, CHEN Y, FENG X, et al. Hydrogen-bond facilitated intramolecular proton transfer in excited state and fluorescence quenching mechanism of flavonoid compounds in aqueous solution[J]. J Mol Liq, 2020, 302: 112562. DOI: 10.1016/j.molliq.2020.112562.
[35]
WANG Z, ZOU W, LIU L Y, et al. Characterization and bacteriostatic effects of beta-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning[J]. Food Chem, 2021, 338: 127980. DOI: 10.1016/j.foodchem.2020.127980.
[36]
PRAMANIK A, AMER S, GRYNSZPAN F, et al. Highly sensitive detection of cobalt through fluorescence changes in beta-cyclodextrin-bimane complexes[J]. Chem Commun, 2020, 56(81): 12126-12129. DOI: 10.1039/D0CC05812B.
[37]
HAYNES A Z, LEVINE M. Detection of human growth hormone (hGH) via cyclodextrin-promoted fluorescence modulation[J]. Anal Lett, 2021, 54(11): 1871-1880. DOI: 10.1080/00032719.2020.1828445.
[38]
SONG X L, WANG Y L, GAO L G. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex[J]. J Mol Model, 2020, 26(6): 133. DOI: 10.1007/s00894-020-04356-x.
[39]
KALINOWSKA M, LEWANDOWSKA H, PRUSZYNSKI M, et al. Co(Ⅱ) complex of quercetin-spectral, anti-/pro-oxidant and cytotoxic activity in HaCaT cell lines[J]. Appl Sci-Basel, 2021, 11(19): 9244. DOI: 10.3390/app11199244.
[40]
YANG S L, JIANG W N, TANG Y, et al. Sensitive fluorescent assay for determination of Cu2+ in aqueous solution using isorhamnetin-beta-cyclodextrin inclusion[J]. Chin J Anal Chem, 2019, 47(6): e19059-e19065. DOI:10.1016/S1872-2040(19)61167-9.

基金

江苏省高等学校自然科学研究面上项目(19KJB220005)
国家重点研发计划(2017YFD060070602)
南京林业大学大学生实践创新训练计划项目(2018NFUSPITP578)

编辑: 李燕文
PDF(2220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/