[1] |
张明光, 李明新, 杨益琴, 等. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3):1168-1176.
|
|
ZHANG M G, LI M X, YANG Y Q, et al. Synthesis of nopinone-based quinazolin-2-amine fluorescent probe for detection of Cu and its application research[J]. Chin J Org Chem, 2021, 41(3): 1168-1176. DOI: 10.6023/cjoc202008049.
|
[2] |
姜倩, 王忠龙, 李明新, 等. 具有聚集诱导发光效应的诺蒎烷基β-二酮氟化硼络合物的合成及溶剂化显色效应的研究[J]. 有机化学, 2020, 40(12):4290-4297.
|
|
JIANG Q, WANG Z L, LI M X, et al. Nopinone-based difluoroboron β-diketonate complex: aggregation-induced emission and solvatochromism[J]. Chin J Org Chem, 2020, 40(12): 4290-4297. DOI: 10.6023/cjoc202005049.
|
[3] |
张晶晶, 严鸣, 卢雯, 等. 基于香豆素-肟的次氯酸根探针的设计、合成及荧光成像应用[J]. 无机化学学报, 2021, 37(6):1071-1079.
|
|
ZHANG J J, YAN M, LU W, et al. Design, synthesis and fluorescence imaging application of hypochlorite probe based on coumarin-oxime[J]. Chin J Inorg Chem, 2021, 37(6): 1071-1079. DOI:10.11862/CJIC.2021.133.
|
[4] |
PARVEEN S D S, KUMAR B S, KUMAR S R R, et al. Isolation of biochanin A, an isoflavone, and its selective sensing of copper(Ⅱ) ion[J]. Sens Actuat B Chem, 2015, 221: 75-80. DOI: 10.1016/j.snb.2015.06.060.
|
[5] |
LIU P, ZHAO L L, WU X, et al. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 122: 238-245. DOI: 10.1016/j.saa.2013.11.055.
|
[6] |
YANG S L, YIN B, XU L, et al. A natural quercetin-based fluorescent sensor for highly sensitive and selective detection of copper ions[J]. Anal Methods, 2015, 7(11): 4546-4551. DOI: 10.1039/C5AY00375j.
|
[7] |
SUN L, WANG X Q, SHI J Z, et al. Kaempferol as an AIE-active natural product probe for selective Al3+ detection in Arabidopsis thaliana[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2021, 249: 119303. DOI: 10.1016/j.saa.2020.119303.
|
[8] |
ZHONG Y Y, LI W H, RAN L D, et al. Inclusion complexes of tea polyphenols with HP-β-cyclodextrin: preparation, characterization, molecular docking, and antioxidant activity[J]. J Food Sci, 2020, 85(4): 1105-1113. DOI: 10.1111/1750-3841.15083.
|
[9] |
YAO Q, LIN M T, LAN Q H, et al. In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity[J]. Drug Deliv, 2020, 27(1): 54-65. DOI: 10.1080/10717544.2019.1704941.
|
[10] |
GUAN M Y, SHI R, ZHENG Y Y, et al. Characterization, in vitro and in vivo evaluation of naringenin-hydroxypropyl-beta-cyclodextrin inclusion for pulmonary delivery[J]. Molecules, 2020, 25(3): 554. DOI: 10.3390/molecules25030554.
|
[11] |
XU T, ZHAO S J, WU X L, et al. Beta-cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols[J]. ACS Sustain Chem Eng, 2020, 8(16): 6413-6421. DOI: 10.1021/acssuschemeng.0c00766.
|
[12] |
VAN BEEK T A, MONTORO P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals[J]. J Chromatogr A, 2009, 1216(11): 2002-2032. DOI: 10.1016/j.chroma.2009.01.013.
|
[13] |
QIU Y X, HE D, YANG J X, et al. Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application[J]. Eur Food Res Technol, 2020, 246(12): 2383-2397. DOI: 10.1007/s00217-020-03582-0.
|
[14] |
YANG S L, SUN L, SONG Z W, et al. Extraction and application of natural rutin from Sophora japonica to prepare the novel fluorescent sensor for detection of copper ions[J]. Front Bioeng Biotechnol, 2021, 9: 642138. DOI: 10.3389/fbioe.2021.642138.
|
[15] |
FACCHIANOA A, RAGONE R. Modification of Job's method for determining the stoichiometry of protein-protein complexes[J]. Anal Biochem, 2003, 313(1): 170-172. DOI: 10.1016/S0003-2697(02)00562-6.
|
[16] |
HAFUKA A, YOSHIKAWA H, YAMADA K, et al. Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff[J]. Water Res, 2014, 54: 12-20. DOI:10.1016/j.watres.2014.01.040.
|
[17] |
LEI R, XU X, YU F, et al. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation[J]. Talanta, 2008, 75(4): 1068-1074. DOI: 10.1016/j.talanta.2008.01.010.
|
[18] |
MARKOVIC J M D, MARKOVIC Z S, BRDARIC T P, et al. Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity[J]. Food Chem, 2011, 129(4): 1567-1577. DOI: 10.1016/j.foodchem.2011.06.008.
|
[19] |
BUKHARI S B, MEMON S, MAHROOF-TAHIR M, et al. Synthesis, characterization and antioxidant activity copper-quercetin complex[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2009, 71(5): 1901-1906. DOI: 10.1016/j.saa.2008.07.030.
|
[20] |
SAVIC I M, NIKOLIC V D, SAVIC-GAJIC I, et al. Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin[J]. J Incl Phenom Macrocycl Chem, 2015, 82(3): 383-394. DOI: 10.1007/s10847-015-0500-4.
|
[21] |
LIU B G, ZENG J, CHEN C, et al. Interaction of cinnamic acid derivatives with beta-cyclodextrin in water: experimental and molecular modeling studies[J]. Food Chem, 2015, 194: 1156-1163. DOI: 10.1016/j.foodchem.2015.09.001.
|
[22] |
迟绍明, 杨松霖, 晋文, 等. 花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性[J]. 分析化学, 2020, 48(2):215-223.
|
|
CHI S M, YANG S L, JIN W, et al. Inclusion and antioxidant properties of taxifolin,quercetin and morin hydrate with diaminopropane bridged bis(β-cyclodextrin)s[J]. Chin J Anal Chem, 2020, 48(2): 215-223. DOI: 10.19756/j.issn.0253-3820.191554.
|
[23] |
刘雪芬, 李培武, 张文, 等. 环糊精对花生黄曲霉毒素B1荧光增强作用与应用研究[J]. 中国油料作物学报, 2010, 32(4):546-550.
|
|
LIU X F, LI P W, ZHANG W, et al. Development and application of cyclodextrin fluorescence enhancement for aflatoxin B1 test in peanuts[J]. Chin J Oil Crop Sci, 2010, 32(4): 546-550.
|
[24] |
UZASCI S, ERIM F B. Enhancement of native fluorescence intensity of berberine by (2-hydroxypropy1)-beta-cyclodextrin in capillary electrophoresis coupled by laser-induced fluorescence detection: application to quality control of medicinal plants[J]. J Chromatogr A, 2014, 1338:184-187. DOI: 10.1016/j.chroma.2014.02.068.
|
[25] |
张敏, 张宇昊, 马良. β-环糊精及其衍生物、金属离子协同增敏黄曲霉毒素B1的荧光光谱分析及应用研究[J]. 分析化学, 2011, 39(12):1907-1911.
|
|
ZHANG M, ZHANG Y H, MA L. Studies and application of fluorescence of aflatoxin B1 enhanced by synergetic effect of β-cyclodextin and its derivatives and metalions[J]. Chin J Anal Chem. 2011, 39(12): 1907-1911. DOI: 10.3724/SP.J.1096.2011.01907.
|
[26] |
周叶红, 武宏娟, 樊丽, 等. 荧光光谱法研究姜黄素与β-环糊精及其衍生物包合作用[J]. 分析科学学报, 2013, 29(5):673-676.
|
|
ZHOU Y H, WU H J, FAN L, et al. Study on the inclusion interaction of curcumin and β-cyclodextrin and its derivatives by fluorescence spectrometry[J]. J Anal Sci. 2013, 29(5): 673-676.
|
[27] |
郑鑫程, 王剑凯, 曾晓莹, 等. 不同扩散条件对道路环境重金属含量的影响研究及污染评价[J]. 森林工程, 2021, 37(6):118-125.
|
|
ZHENG X C, WANG J K, ZENG X Y, et al. Study on the influence of heavy metal content and pollution assessment in road environment under different diffusion conditions[J]. Forest Engineering, 2021, 37(6):118-125.
|
[28] |
GU L Q, WAN X J, LIU H Y, et al. A novel ratiometric fluorescence sensor for Zn2+ detection[J]. Anal Methods, 2014, 6(21): 8460-8463. DOI: 10.1039/C4AY01483A.
|
[29] |
ZHOU A L, SADIK O A. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study[J]. J Agric Food Chem, 2008, 56(24): 12081-12091. DOI: 10.1021/jf802413v.
|
[30] |
LE NEST G, CAILLE O, WOUDSTRA M, et al. Zn-polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: I optical and NMR studies[J]. Inorg Chim Acta, 2004, 357(3): 775-784. DOI: 10.1016/j.ica.2003.09.014.
|
[31] |
CORNARD J P, MERLIN J C. Spectroscopic and structural study of complexes of quercetin with Al(ⅡI)[J]. J Inorg Biochem, 2002, 92(1):19-27. DOI: 10.1016/S0162-0134(02)00469-5.
|
[32] |
YANG S L, JIANG W N, ZHAO F Y, et al. A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural isorhamnetin from ginkgo leaves[J]. Sens Actuat B Chem, 2016, 236: 386-391. DOI: 10.1016/j.snb.2016.06.003.
|
[33] |
GU Z Y, LEI W, SHI W Y, et al. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: spectroscopic and theoretical calculation approach[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 132: 361-368. DOI: 10.1016/j.saa.2014.05.025.
|
[34] |
ZHONG Y Q, CHEN Y, FENG X, et al. Hydrogen-bond facilitated intramolecular proton transfer in excited state and fluorescence quenching mechanism of flavonoid compounds in aqueous solution[J]. J Mol Liq, 2020, 302: 112562. DOI: 10.1016/j.molliq.2020.112562.
|
[35] |
WANG Z, ZOU W, LIU L Y, et al. Characterization and bacteriostatic effects of beta-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning[J]. Food Chem, 2021, 338: 127980. DOI: 10.1016/j.foodchem.2020.127980.
|
[36] |
PRAMANIK A, AMER S, GRYNSZPAN F, et al. Highly sensitive detection of cobalt through fluorescence changes in beta-cyclodextrin-bimane complexes[J]. Chem Commun, 2020, 56(81): 12126-12129. DOI: 10.1039/D0CC05812B.
|
[37] |
HAYNES A Z, LEVINE M. Detection of human growth hormone (hGH) via cyclodextrin-promoted fluorescence modulation[J]. Anal Lett, 2021, 54(11): 1871-1880. DOI: 10.1080/00032719.2020.1828445.
|
[38] |
SONG X L, WANG Y L, GAO L G. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex[J]. J Mol Model, 2020, 26(6): 133. DOI: 10.1007/s00894-020-04356-x.
|
[39] |
KALINOWSKA M, LEWANDOWSKA H, PRUSZYNSKI M, et al. Co(Ⅱ) complex of quercetin-spectral, anti-/pro-oxidant and cytotoxic activity in HaCaT cell lines[J]. Appl Sci-Basel, 2021, 11(19): 9244. DOI: 10.3390/app11199244.
|
[40] |
YANG S L, JIANG W N, TANG Y, et al. Sensitive fluorescent assay for determination of Cu2+ in aqueous solution using isorhamnetin-beta-cyclodextrin inclusion[J]. Chin J Anal Chem, 2019, 47(6): e19059-e19065. DOI:10.1016/S1872-2040(19)61167-9.
|