南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 51-60.doi: 10.12302/j.issn.1000-2006.202112005

所属专题: 第三届中国林草计算机应用大会论文精选(Ⅱ)

• 专题报道:第三届中国林草计算机应用大会论文精选(Ⅱ)(执行主编 李凤日) • 上一篇    下一篇

基于种源和气候效应的日本落叶松树高生长模型研究

盖军鹏1,2(), 陈东升3,*(), 贾炜玮1, 王政1,2   

  1. 1.东北林业大学林学院,黑龙江 哈尔滨 150040
    2.内蒙古自治区第二林业和草原监测规划院,内蒙古兴安盟 137400
    3.中国林业科学研究院林业研究所,国家林业和草原局林木培育重点实验室,北京 100091
  • 收稿日期:2021-12-03 修回日期:2022-03-21 出版日期:2023-07-30 发布日期:2023-07-20
  • 通讯作者: * 陈东升(chends@caf.ac.c),副研究员。
  • 作者简介:盖军鹏(511986974@qq.com),助理工程师。
  • 基金资助:
    国家自然科学基金项目(31971652)

Developing height growth model of Larix kaempferi based on genetic and climate effects

GAI Junpeng1,2(), CHEN Dongsheng3,*(), JIA Weiwei1, WANG Zheng1,2   

  1. 1. College of Forestry, Northeast Forestry University, Harbin 150040, China
    2. The Second Forestry and Grassland Monitoring and Planning Institute of Inner Mongolia Autonomous Region, Xing'an 137400, China
    3. Research Institute of Forestry, National Forestry and Grassland Administration Key Lab for Forest Tree Breeding, Chinese Academy of Forestry,Beijing 100091, China
  • Received:2021-12-03 Revised:2022-03-21 Online:2023-07-30 Published:2023-07-20

摘要:

【目的】研究遗传效应和气候变化对日本落叶松(Larix kaempferi)树高生长的影响,为开展精准立地质量评价和制定合理的经营方案提供支持。【方法】基于湖北省建始县长岭岗林场5~18年生日本落叶松树高生长数据,以Logistic作为基本理论生长模型,将体现遗传效应的种源变量和气候变量引入,以重复作为随机效应的随机参数,构建基于遗传和气候效应的日本落叶松树高生长模型,并分析遗传效应和气候变化对树高生长的影响。【结果】温度和降水是影响该地区树高生长的主要气候因子,引入种源哑变量和气候变量后,模型的拟合精度高于基础模型;以重复作为随机效应构建的非线性混合模型的拟合效果(Radj2=0.820 3)优于考虑遗传和气候因素的生长模型(Radj2=0.806 2)及Logistic基础模型(Radj2=0.798 9);不同种源树高生长均符合“慢—快—慢”的生长规律,但达到速生点的时间t0不同,各时间节点上不同种源树高生长存在极显著差异。【结论】遗传和气候效应对日本落叶松树高生长存在一定的影响,构建基于遗传和气候效应的混合模型,能有效提高模型的拟合精度。

关键词: 种源, 气候变化, 树高生长, 非线性混合效应模型, 哑变量

Abstract:

【Objective】 This study provides supports for accurate site quality evaluation and reasonable management plans for Larix kaempferi by studying the effects of genetic and climate changes on plant height. 【Method】 Using height growth data from L. kaempferi trees aged from 5 to 18 years in the Changlinggang Forest Farm in Jianshi County, Hubei Province and the Logistic equation as the basic theoretical growth model, we introduced provenances and climate variables reflecting genetic effects and used repetition as random parameters to construct a tree height growth model. Using this model, we were then able to analyze the effects of genetic and climate changes on tree height growth. 【Result】 Temperature and precipitation were the main climatic factors affecting L. kaempferi tree height growth in this area. Furthermore, the fitting accuracy of the model with temperature and precipitation inputs was higher than that of the basic model. Additionally, nonlinear mixed model based on repetition as a random effect (Radj2=0.820 3) fit better than did the growth model considering genetic and climatic factors (Radj2=0.806 2) and the basic logistic model (Radj2= 0.798 9). The height growth of different provenances was in accordance with the law of ‘slow-fast-slow’ growth; however, the time to reach the fast-growing point varied, and there were significant discrepancies in height growth among different provenances at different time nodes. 【Conclusion】 Genetic and climatic factors affected the height of L. kaempferi. Furthermore, the construction of a mixed model based on genetic and climatic effects can effectively improve the fitting accuracy of a model.

Key words: provenance, climate change, tree height growth, nonlinear mixed effect model, dumb variable

中图分类号: