南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 51-60.doi: 10.12302/j.issn.1000-2006.202112005
所属专题: 第三届中国林草计算机应用大会论文精选(Ⅱ)
• 专题报道:第三届中国林草计算机应用大会论文精选(Ⅱ)(执行主编 李凤日) • 上一篇 下一篇
盖军鹏1,2(), 陈东升3,*(), 贾炜玮1, 王政1,2
收稿日期:
2021-12-03
修回日期:
2022-03-21
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 陈东升(作者简介:
盖军鹏(基金资助:
GAI Junpeng1,2(), CHEN Dongsheng3,*(), JIA Weiwei1, WANG Zheng1,2
Received:
2021-12-03
Revised:
2022-03-21
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】研究遗传效应和气候变化对日本落叶松(Larix kaempferi)树高生长的影响,为开展精准立地质量评价和制定合理的经营方案提供支持。【方法】基于湖北省建始县长岭岗林场5~18年生日本落叶松树高生长数据,以Logistic作为基本理论生长模型,将体现遗传效应的种源变量和气候变量引入,以重复作为随机效应的随机参数,构建基于遗传和气候效应的日本落叶松树高生长模型,并分析遗传效应和气候变化对树高生长的影响。【结果】温度和降水是影响该地区树高生长的主要气候因子,引入种源哑变量和气候变量后,模型的拟合精度高于基础模型;以重复作为随机效应构建的非线性混合模型的拟合效果(Radj2=0.820 3)优于考虑遗传和气候因素的生长模型(Radj2=0.806 2)及Logistic基础模型(Radj2=0.798 9);不同种源树高生长均符合“慢—快—慢”的生长规律,但达到速生点的时间t0不同,各时间节点上不同种源树高生长存在极显著差异。【结论】遗传和气候效应对日本落叶松树高生长存在一定的影响,构建基于遗传和气候效应的混合模型,能有效提高模型的拟合精度。
中图分类号:
盖军鹏,陈东升,贾炜玮,等. 基于种源和气候效应的日本落叶松树高生长模型研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 51-60.
GAI Junpeng, CHEN Dongsheng, JIA Weiwei, WANG Zheng. Developing height growth model of Larix kaempferi based on genetic and climate effects[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 51-60.DOI: 10.12302/j.issn.1000-2006.202112005.
表1
湖北省建始县长岭岗林场供试材料种源信息"
种源编号 No. | 种子来源 provenance | 纬度 latitude (N) | 经度 longitude (E) | 采种地概况 general situation | ||
---|---|---|---|---|---|---|
海拔/m altitude | 年平均气温/℃ average annual temperature | 年降水量/mm annual precipitation | ||||
1 | 草津国有林 | 36°35' | 138°30' | 1 374 | 6.9 | 1 747 |
2 | 浅间国有林 | 36°20' | 138°30' | 927 | 9.3 | 1 360 |
3 | 富士山梨县有林 | 35°30' | 138°45' | 844 | 10.5 | 1 595 |
4 | 日光国有林 | 35°45' | 138°10' | 1 726 | 5.9 | 1 795 |
5 | 伊那国有林 | 36°45' | 139°25' | 1 444 | 5.9 | 2 003 |
6 | 松本国有林 | 36°20' | 139°45' | 1 620 | 14.0 | 1 266 |
表2
不同种源日本落叶松株数及树高生长均值"
树龄/a tree age | 种源1 provenance 1 | 种源2 provenance 2 | 种源3 provenance 3 | 种源4 provenance 4 | 种源5 provenance 5 | 种源6 provenance 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | |
5 | 400 | 2.98 | 150 | 2.93 | 467 | 3.10 | 392 | 3.28 | 614 | 3.12 | 249 | 3.01 |
6 | 401 | 3.65 | 148 | 3.58 | 469 | 3.68 | 390 | 3.94 | 612 | 3.73 | 251 | 3.63 |
7 | 401 | 4.40 | 150 | 4.31 | 468 | 4.32 | 391 | 4.68 | 614 | 4.41 | 248 | 4.33 |
8 | 397 | 5.24 | 150 | 5.10 | 465 | 5.02 | 383 | 5.53 | 614 | 5.17 | 249 | 5.11 |
9 | 399 | 6.13 | 149 | 5.93 | 458 | 5.77 | 376 | 6.45 | 597 | 6.01 | 245 | 5.97 |
10 | 396 | 7.05 | 150 | 6.78 | 459 | 6.54 | 378 | 7.37 | 597 | 6.86 | 244 | 6.85 |
11 | 294 | 8.09 | 113 | 7.68 | 326 | 7.58 | 267 | 8.40 | 394 | 7.85 | 170 | 7.81 |
12 | 293 | 9.00 | 110 | 8.54 | 324 | 8.39 | 264 | 9.32 | 397 | 8.72 | 169 | 8.73 |
13 | 295 | 9.87 | 108 | 9.34 | 325 | 9.17 | 266 | 10.21 | 394 | 9.56 | 169 | 9.60 |
14 | 296 | 10.67 | 107 | 10.08 | 327 | 9.91 | 265 | 11.04 | 394 | 10.35 | 168 | 10.42 |
15 | 296 | 11.39 | 107 | 10.74 | 325 | 10.60 | 264 | 11.81 | 396 | 11.09 | 169 | 11.18 |
16 | 287 | 12.06 | 106 | 11.38 | 325 | 11.24 | 262 | 12.50 | 393 | 11.75 | 168 | 11.86 |
17 | 286 | 12.61 | 106 | 11.91 | 325 | 11.81 | 264 | 13.10 | 393 | 12.36 | 167 | 12.48 |
18 | 288 | 13.08 | 105 | 12.37 | 324 | 12.33 | 264 | 13.64 | 393 | 12.89 | 167 | 13.02 |
表3
树高连年生长量与气候因子相关性分析结果"
因子 factor | 树高连年 生长量 annual growht amount of tree height | 平均最冷 月气温 the coldest month temperature | 秋季降水 autumn precipitation | 年平均 气温差 average annual temperature difference | 1月最高温 the highest temperature in January | 1月最低温 the lowest temperature in January | 1月均温 average temperature in January | 上年秋季 降水量 last autmn precipitation |
---|---|---|---|---|---|---|---|---|
树高连年生长量 annual growth amount of tree height | 1 | |||||||
平均最冷月气温 the coldest month temperature | -0.561* | 1 | ||||||
秋季降水 autumn precipitation | -0.583* | 0.008 | 1 | |||||
年平均气温差 average annual temperature difference | 0.578* | -0.888** | -0.126 | 1 | ||||
1月最高温 the highest temperature in January | -0.628* | 0.897** | 0.171 | -0.782** | 1 | |||
1月最低温 the lowest temperature in January | -0.554* | 0.903** | 0.253 | -0.884** | 0.790** | 1 | ||
1月均温 average temperature in January | -0.635* | 0.944** | 0.223 | -0.862** | 0.968** | 0.918** | 1 | |
上年秋季降水量 last autumn precipitation | -0.672* | 0.247 | -0.349 | 0.474 | 0.22 | 0.31 | 0.273 | 1 |
表5
基于不同随机效应参数组合的混合模型拟合结果比较"
模型 model | 随机效应参数 random effect parameter | 参数个数 number of parameter | AIC | BIC | Log Likelihood | LRT | P | |
---|---|---|---|---|---|---|---|---|
(7) | — | 13 | 0.806 2 | 64 569 | 64 670 | -32 271 | ||
(7-1) | a1 | 14 | 0.819 5 | 63 446 | 63 555 | -31 709 | ||
(7-2) | a3 | 14 | 0.820 0 | 63 397 | 63 506 | -31 685 | ||
(7-3) | a4 | 14 | 0.818 3 | 63 566 | 63 675 | -31 769 | ||
(7-4) | a5 | 14 | 0.819 4 | 63 451 | 63 559 | -31 711 | ||
(7-5) | a1,a2 | 16 | 0.820 2 | 63 384 | 63 508 | -31 676 | 70.792 | <0.000 1 |
(7-6) | a1,a3 | 16 | 0.820 2 | 63 387 | 63 512 | -31 678 | ||
(7-7) | a2,a3 | 16 | 0.820 1 | 63 390 | 63 514 | -31 679 | ||
(7-8) | a2,a4 | 16 | 0.819 8 | 63 413 | 63 537 | -31 690 | ||
(7-9) | a2,a5 | 16 | 0.820 0 | 63 390 | 63 515 | -31 679 | ||
(7-10) | a1,a2,a3 | 19 | 0.820 3 | 63 379 | 63 526 | -31 670 | 17.840 | 0.000 5 |
(7-11) | a1,a2,a4 | 19 | 0.820 0 | 63 408 | 63 556 | -31 685 | ||
(7-12) | a1,a2,a5 | 19 | 0.820 3 | 63 384 | 63 531 | -31 673 | ||
(7-13) | a1,a3,a5 | 19 | 0.820 2 | 63 390 | 63 538 | -31 676 |
表6
模型方差组成、参数及拟合统计量"
项目 item | 参数 parameter | 模型(1) model(1) | 模型(7) model(7) | 模型(7-10) model(7-10) | 项目 item | 参数 parameter | 模型(1) model(1) | 模型(7) model(7) | 模型(7-10) model(7-10) |
---|---|---|---|---|---|---|---|---|---|
固定参数 fixed parameter | a1 | 15.235 | 13.710 | 13.751 | 固定参数 fixed parameter | a31 | -0.044 | -0.029 | |
a2 | 12.894 | 15.140 | 15.051 | a33 | -0.022 | -0.033 | |||
a3 | 0.238 | 0.273 | 0.271 | 随机参数 random parameter | a1 | 0.431 | |||
a4 | -3.77×10-4 | -4.32×10-4 | a2 | 0.675 | |||||
a5 | -2.25×10-5 | -2.50×10-5 | a3 | 0.007 | |||||
a11 | 2.147 | 1.574 | a1、a2 | -0.393 | |||||
a13 | 2.148 | 2.748 | a1、a3 | -0.557 | |||||
a21 | -2.206 | -1.318 | a2、a3 | 0.669 | |||||
a22 | -1.302 | -1.141 | 拟合统计量 fitting statistics | 0.798 9 | 0.806 2 | 0.820 3 | |||
a23 | -0.970 | -1.477 | RMSE | 1.525 | 1.496 | 1.440 |
表7
各种源拟合Logistic模型效果及时间节点"
种源 provenance | a1 | a2 | a3 | t0/a | t1/a | t2/a | 18 a树高/m 18-years- tree height | 速生期树高增长量/m tree height growth in fast-growing |
---|---|---|---|---|---|---|---|---|
1 | 14.94 | 14.37 | 0.26 | 10.4 | 5.3 | 15.6 | 13.08 | 9.08 |
2 | 14.22 | 12.98 | 0.25 | 10.4 | 5.0 | 15.7 | 12.37 | 8.45 |
3 | 14.66 | 12.12 | 0.23 | 10.8 | 5.1 | 16.5 | 12.33 | 8.14 |
4 | 15.83 | 13.04 | 0.24 | 10.6 | 5.1 | 16.0 | 13.64 | 9.22 |
5 | 15.23 | 12.79 | 0.24 | 10.8 | 5.2 | 16.4 | 12.89 | 8.63 |
6 | 15.33 | 13.72 | 0.24 | 10.9 | 5.4 | 16.3 | 13.02 | 8.85 |
均值 mean | 10.6 | 5.2 | 16.1 | 12.89 | 8.73 |
[1] | 马常耕. 从世界落叶松遗传改良现状论我国落叶松良种化的对策[J]. 世界林业研究, 1992, 5(1):57-65. |
MA C G. The present state of genetic improvement of larchs in the world and the future developmental strategies in China[J]. World For Res, 1992, 5(1):57-65.DOI: 10.13348/j.cnki.sjlyyj.1992.01.010. | |
[2] | AHTIKOSKI A, AHTIKOSKI R, HAAPANEN M, et al. Economic performance of genetically improved reforestation material in joint production of timber and carbon sequestration:a case study from Finland[J]. Forests, 2020, 11(8):847.DOI: 10.3390/f11080847. |
[3] | JOO S, MAGUIRE D, JAYAWICKRAMA K, et al. Estimation of yield gains at rotation-age from genetic tree improvement in coast Douglas-fir[J]. For Ecol Manag, 2020, 466(5-6):117930.DOI: 10.1016/j.foreco.2020.117930. |
[4] | AHTIKOSKI A, HAAPANEN M, HYNYNEN J, et al. Genetically improved reforestation stock provides simultaneous benefits for growers and a sawmill,a case study in Finland[J]. Scand J For Res, 2018, 33(5):484-492. |
[5] | 卢晨升. 不同种源邓恩桉遗传变异分析及选择[D]. 南宁: 广西大学, 2018. |
LU C S. Genetic variation analysis and selection of Eucalyptus dunnii from different provenances[D]. Nanning: Guangxi University, 2018. | |
[6] | 伍汉斌, 段爱国, 张建国. 杉木地理种源不同林龄生长变异及选择[J]. 林业科学, 2019, 55(10):181-192. |
WU H B, DUAN A G, ZHANG J G. Growth variation and selection effect of Cunninghamia lanceolata provenances at different stand ages[J]. Sci Silvae Sin, 2019, 55(10):181-192.DOI: 10.11707/j.1001-7488.20191018. | |
[7] | 李培, 阙青敏, 欧阳昆唏, 等. 不同种源红椿SRAP标记的遗传多样性分析[J]. 林业科学, 2016, 52(1):62-70. |
LI P, QUE Q M, OUYANG K X, et al. Genetic diversity of Toona ciliata from different provenances based on sequence-related amplified polymorphism (SRAP) markers[J]. Sci Silvae Sin, 2016, 52(1):62-70.DOI: 10.11707/j.1001-7488.20160108. | |
[8] | 王亚南. 基于哑变量和非线性混合模型方法研究华山松种源对树高生长模型参数的影响[D]. 郑州: 河南农业大学, 2013. |
WANG Y N. Based on dummy variable and nonlinear mixed model method,the influence of Pinus armandii provenance on tree height growth model parameters was studied[D]. Zhengzhou: Henan Agricultural University, 2013. | |
[9] | PAN Y Y, LI S C, WANG C L, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. J For Res, 2018, 29(4):1031-1039.DOI: 10.1007/s11676-017-0492-6. |
[10] | LIANG D Y, DING C J, ZHAO G H, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. J For Res, 2018, 29(3):611-622.DOI: 10.1007/s11676-017-0471-y. |
[11] | XIA H, ZHAO G H, ZHANG L S, et al. Genetic and variation analyses of growth traits of half-sib Larix olgensis families in northeastern China[J]. Euphytica, 2016, 212(3):387-397.DOI: 10.1007/s10681-016-1765-4. |
[12] | 孙晓梅. 日本落叶松纸浆材优良家系选择及家系生长模型的研究[D]. 北京: 中国林业科学研究院, 2003. |
SUN X M. Study on the selection of superior families of Larix kaempferi pulp wood and family growth model[D]. Beijing: Chinese Academy of Fores-try, 2003. | |
[13] | 肖锐, 陈东升, 李凤日, 等. 基于两水平混合模型的杂种落叶松胸径和树高生长模拟[J]. 东北林业大学学报, 2015, 43(5):33-37. |
XIAO R, CHEN D S, LI F R, et al. Simulating DBH and height growth of trees for hybrid larch plantation with two-level mixed effect model[J]. J Northeast For Univ, 2015, 43(5):33-37.DOI: 10.13759/j.cnki.dlxb.20150522.025. | |
[14] | LI C M, XIA H, BAI H, et al. Genetic variation of height growth rhythm between clones of Larix kaempferi × L. gmelini based on Logistic models[J]. J For Res, 2018, 29(5):1387-1394.DOI: 10.1007/s11676-017-0558-5. |
[15] | 陈东升, 孙晓梅, 李凤日. 基于混合模型的落叶松树高生长模型[J]. 东北林业大学学报, 2013, 41(10):60-64. |
CHEN D S, SUN X M, LI F R. Predicting models of tree height growth for larch based on mixed model[J]. J Northeast For Univ, 2013, 41(10):60-64.DOI: 10.13759/j.cnki.dlxb.2013.10.021. | |
[16] | PARMESAN C, YOHE G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918):37-42.DOI: 10.1038/nature01286. |
[17] | 臧颢. 区域尺度气候敏感的落叶松人工林林分生长模型[D]. 北京: 中国林业科学研究院, 2016. |
ZANG H. Growth model of Larix gmelinii plantation with climate sensitivity at regional scale[D]. Beijing: Chinese Academy of Forestry, 2016. | |
[18] | 吴梦婉. 辽宁章古台沙地樟子松人工林树木生长及其对气候的响应[D]. 北京: 北京林业大学, 2019. |
WU M W. Tree growth and its response to climate in Pinus sylvestris var.mongolica plantation in Zhanggutai sandy land,Liaoning Province[D]. Beijing: Beijing Forestry University, 2019. | |
[19] | MÉLAINE A K, EMILY M. Climate impacts on tree growth in the sierra Nevada[J]. Multidisciplinary Digital Publishing Institute, 2017, 8(11):1190-1199. DOI:10.3390/f8110414. |
[20] | SHARMA M, SUBEDI N, TER-MIKAELIAN M, et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees[J]. For Sci, 2015, 61(1):25-34.DOI: 10.5849/forsci.13-190. |
[21] | 王宇超, 陈逸飞, 林晨蕾, 等. 森林抚育间伐对杉木人工林温湿度的影响研究[J]. 森林工程, 2022, 38(1): 9-14, 26. |
WANG Y C, CHEN Y F, LIN C L, et al. Effects of forest tending and thinning on temperature and humidity of Chinese fir plantation[J]. Forest Engineering, 2022, 38(1): 9-14, 26. | |
[22] | 刘帅, 李建军, 卿东升, 等. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1):95-104. |
LIU S, LI J J, QING D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Sci Silvae Sin, 2021, 57(1):95-104.DOI: 10.11707/j.1001-7488.20210110. | |
[23] | 赵曦阳, 张志毅. 毛白杨种内杂交无性系苗期生长模型构建[J]. 北京林业大学学报, 2013, 35(5):15-21. |
ZHAO X Y, ZHANG Z Y. Model construction of seedling growth for hybrid clones of Populus tomentosa[J]. J Beijing For Univ, 2013, 35(5):15-21.DOI: 10.13332/j.1000-1522.2013.05.018. | |
[24] | 祖笑锋, 倪成才, NIGH G, 等. 基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J]. 林业科学, 2015, 51(3):25-33. |
ZU X F, NI C C, NIGH G, et al. Based on mixed-effects model and empirical best linear unbiased predictor to predict growth profile of dominant height[J]. Sci Silvae Sin, 2015, 51(3):25-33.DOI: 10.11707/j.1001-7488.20150304. | |
[25] | 魏辉. 亚热带木荷生长过程及其年轮气候学研究[D]. 长沙: 中南林业科技大学, 2017. |
WEI H. Study on growth process and dendroclimatology of Schima superba in subtropical zone[D]. Changsha: Central South University of Forestry & Technology, 2017. | |
[26] | 郑淑霞, 上官周平. 树木年轮与气候变化关系研究[J]. 林业科学, 2006, 42(6):100-107. |
ZHENG S X, SHANGGUAN Z P. Study on relationship between tree-ring and climatic change[J]. Sci Silvae Sin, 2006, 42(6):100-107.DOI: 10.3321/j.issn:1001-7488.2006.06.017. | |
[27] | 罗元, 孙琪, 蔡年辉, 等. 云南松不同种源1年生播种苗木生长节律分析[J]. 西南林业大学学报, 2016, 36(3):23-29. |
LUO Y, SUN Q, CAI N H, et al. Growth rhythm analysis on annual planting seedlings of Pinus yunnanensis from different provenances[J]. J Southwest For Univ, 2016, 36(3):23-29. | |
[28] | 吴宏炜, 张伟志, 田意, 等. 基于哑变量的湿地松林分断面积生长模型[J]. 中南林业科技大学学报, 2021, 41(1):117-123,150. |
WU H W, ZHANG W Z, TIAN Y, et al. Basal area growth model for Pinus elliottii forest based on dummy variables[J]. J Central South Univ For Technol, 2021, 41(1):117-123,150.DOI: 10.14067/j.cnki.1673-923x.2021.01.012. | |
[29] | 贾炜玮, 罗天泽, 李凤日. 基于抚育间伐效应的红松人工林枝条密度模型[J]. 北京林业大学学报, 2021, 43(2):10-21. |
JIA W W, LUO T Z, LI F R. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. J Beijing For Univ, 2021, 43(2):10-21.DOI: 10.12171/j.1000-1522.20200057. | |
[30] | 王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11):85-94. |
WANG D Z, ZHANG D Y, LI Y N, et al. Height-diameter relationship for conifer mixed forest based on Bayesian nonlinear mixed-effects model[J]. Sci Silvae Sin, 2019, 55(11):85-94.DOI: 10.11707/j.1001-7488.20191110. | |
[31] | TIMILSINA N, STAUDHAMMER C L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling[J]. For Sci, 2013, 59(1):27-37.DOI: 10.5849/forsci.10-028. |
[32] | 王伟峰, 廖为明, 王强, 等. 樟子松人工林树高生长对气候因子的响应研究[J]. 江西林业科技, 2009, 37(3):1-5. |
WANG W F, LIAO W M, WANG Q, et al. Studies on the respond of height growth to the climate factors in Pinus sylvestris plantation[J]. Jiangxi For Sci Technol, 2009, 37(3):1-5.DOI: 10.16259/j.cnki.36-1342/s.2009.03.008. | |
[33] | 周晏平. 辽宁章古台樟子松树高生长影响因素分析[D]. 阜新: 辽宁工程技术大学, 2019. |
ZHOU Y P. Analysis of influencing factors on height growth of Pinus sylvestris var.mongolica in Zhanggutai,Liaoning Province[D]. Fuxin:Liaoning Technical University, 2019. |
[1] | 何旭, 缪子梅, 田佳西, 杨柳, 张增信, 朱斌. 基于CMIP 6多模式的长江流域气温、降水与径流预估[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 1-8. |
[2] | 石淞, 李文, 翟育涔, 林晓鹏, 丁一书. 中国东北虎豹国家公园植被NDVI时空变化及原因探究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 31-41. |
[3] | 何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 120-128. |
[4] | 孙荣喜, 潘昕昊, 仲小茹, 李桂盛. 不同种源米槠种子形态特征与营养成分变异分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 27-34. |
[5] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[6] | 聂璐毅, 董利虎, 李凤日, 苗铮, 谢龙飞. 基于两水平非线性混合效应模型的长白落叶松削度方程构建[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 194-202. |
[7] | 胡兴峰, 吴帆, 孙晓波, 陈厚平, 殷安政, 季孔庶. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212. |
[8] | 吴帆, 朱沛煌, 季孔庶. 马尾松分布格局对未来气候变化的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 196-204. |
[9] | 缪菁, 王勇, 王璐, 许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 193-198. |
[10] | 张凤英, 张增信, 田佳西, 黄日超, 孔蕊, 朱斌, 朱敏, 王益明, 陈喜. 长江流域森林NPP模拟及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 175-181. |
[11] | 张恒, 张秋良, 岳阳, 宋希明, 代海燕, 伊伯乐. 呼伦贝尔市气候变化对森林草原火灾的影响及未来趋势分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 222-230. |
[12] | 王冬至, 胡雪娇, 李大勇, 高雨珊, 李天宇. 基于非线性混合效应模型的针阔混交林地位指数研究[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 159-166. |
[13] | 黄红兰, 钟沃谷, 衣德萍, 蔡军火, 张露. 未来气候变化对我国毛红椿适生区分布格局的影响预测[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 163-170. |
[14] | 常娟, 张增信, 田佳西, 陈喜, 陈奕兆. 西北地区草地水分利用效率时空特征及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 119-125. |
[15] | 洪舟, 杨曾奖, 张宁南, 郭俊誉, 刘小金, 崔之益, 徐大平. 降香黄檀生长和材性性状种源差异及早期选择[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 11-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||