欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略

欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 95-104.

PDF(2185 KB)
PDF(2185 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 95-104. DOI: 10.12302/j.issn.1000-2006.202112031
研究论文

欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略

作者信息 +

Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones

Author information +
文章历史 +

摘要

【目的】通过对欧洲云杉(Picea abies)无性系的生长性状进行遗传测定及选优,为甘肃省天水小陇山地区欧洲云杉的良种选育与推广应用提供参考。【方法】以幼龄捷克种源的欧洲云杉267个无性系为试材,调查4~9 a的生长量,分析无性系间的差异,估算无性系重复力,分析不同年份间的相关性,并开展优良无性系的初选。【结果】9 a树高平均值在(269.79 ±41.3) cm。4~9 a树高无性系重复力0.45~0.69,高重复力表明无性系具有选择潜力。分年龄遗传变异评价结果显示生长性状(树高、胸径、冠幅、新梢长和侧枝数等)在区组间、无性系间和无性系与区组互作效应都存在显著差异,且受无性系与区组互作效应影响较大(方差分量20.37%~27.23%)。综合各年数据方差分析显示年龄、区组、无性系、年龄和无性系互作效应、区组和无性系互作效应均显著影响树高生长,主要受年龄效应影响,方差分量70.05%;其次是受区组与无性系的互作效应影响,方差分量7.59%。年龄和无性系的互作效应相对较小,方差分量1.23%。年龄间树高表型相关(相关系数0.61~0.95)、遗传相关(0.62~0.97)和环境相关(0.63~0.95)均存在呈极显著正相关关系。以9 a树高相对遗传值由高到低依次进行选择,共选择出10个优良无性系,平均树高342.57~432.40 cm,入选率为3.7%,现实遗传增益9.72%~16.89%,预期遗传增益65.66%~107.88%。入选无性系与对照无性系树高比较结果显示4~9 a树高均值排序都是入选无性系大于对照无性系。采用Finlay-Wilkinson模型对4~9 a无性系树高均值进行了稳定性分析,无性系树高生长越快,稳定性模型估计值越大,无性系稳定性反而越差。年均树高增量与年极端高温呈显著正相关,与年降水量呈负相关。【结论】欧洲云杉无性系生长性状存在广泛遗传变异,重复力高,具有选择基础。以9 a树高性状遗传值选择出的10个欧洲云杉无性系可在甘肃天水小陇山地区推广应用。年份间极端高温和年均降水量的差异或许是入选无性系在年份间表现不稳定性的原因。

Abstract

【Objective】 This reseach aims to select Picea abies varieties for reforestation in Xiaolongshan area of Tianshui of Gansu Province based on analyses of early growth and genetic traits. 【Method】 Using 267 P. abies clones of young Czech provenance as test materials, we evaluated the growth and clone repeatability of 4 to 9 years old spruce trees, and the relationship with year, then the elite clones were chosen. 【Result】 The average tree height of 9 years old spruce was (269.79±41.3) cm. The repeatability of the clones during the period of 4 to 9 years old was 0.45 to 0.69, and the high repeatability indicated that the clones had selection potential. Age-specific genetic variation in growth traits (tree height, diameter at breast height, crown width, shoot length and number of collaterals, etc.) differed significantly among blocks and clones with pronounced interactions between the two (variance component 20.37%-27.23%). Tree height growth was affected by age, block, clone, interactions between age and clone, and between block and clone with variance component ranking order from high to low: age (70.05%), followed by the interactions between block and clone (7.59%), and between age and clone (1.23%). Significant positive correlations among growth years were found for tree height phenotypic traits (0.61-0.95), genetic traits (0.62-0.97) and environmental variables (0.63-0.95). Ten clones were selected for reforestation in the Xiaolongshan area based on the relative genetic value of the 9-year-old tree height with an average tree height of 369.7 cm. The selection rate was 3.7%, and the actual genetic enhancement for tree height was 9.72%-16.89% with an expected genetic enhancement of 65.66%-107.88% at tree mature stage. The average tree heights of the selected clones were higher than the control clones in 4 to 9 years with a substantial variation in height growth among different years. The Finlay-Wilkinson model was used to analyze the stability of the mean tree height of clones from 4 to 9 years old. The better the growth of the clone, the higher the estimated value of stability, indicating that the clone was more unstable. Annual average tree height increment correlated positively with the annual extreme high temperature, and negatively with the annual rainfall. 【Conclusion】 P. abies clones have extensive genetic variation in growth traits, high repeatability, and are opted for selection. The 10 P. abies clones selected based on their genetic values of tree height at 9 years can be used for afforestation in the Xiaolongshan area of Tianshui, Gansu. Differences in extreme high temperature and average annual rainfall between years may account for the instability of the selected clones across tree ages.

关键词

欧洲云杉 / 无性系 / 生长节律 / 遗传变异 / 稳定性 / 选择策略

Key words

Picea abies / clone / growth rhythm / genetic variation / stability / selection strategy

引用本文

导出引用
欧阳, 欧阳芳群, 孙猛, . 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 95-104 https://doi.org/10.12302/j.issn.1000-2006.202112031
OU Yang, OUYANG Fangqun, SUN Meng, et al. Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 95-104 https://doi.org/10.12302/j.issn.1000-2006.202112031
中图分类号: S722.5   

参考文献

[1]
胡勐鸿, 欧阳芳群, 贾子瑞, 等. 我国云杉扦插繁殖技术研究进展[J]. 温带林业研究, 2018, 1(1): 20-29.
HU M H, OUYANG F Q, JIA Z R, et al. Research progress of cutting reproduction technology of Picea in China[J]. J Temp For Res, 2018, 1(1):20-29.DOI:CNKI:SUN:WDLY.0.2018-01-007.
[2]
高本旺, 欧阳芳群, 高晗, 等. 鄂西地区欧洲云杉幼龄无性系生长差异及早期评价与选择[J]. 林业科学研究, 2021, 34(5): 88-94.
GAO B W, OUYANG F Q, GAO H, et al. Growth difference and early evaluation and selection of young Picea abies clones in western Hubei[J]. For Res, 2021, 34(5):88-94.DOI: 10.13275/j.cnki.lykxyj.2021.005.010.
[3]
安三平, 王丽芳, 蒋明, 等. 蓝云杉、欧洲云杉、白云杉在甘肃中部干旱半干旱区的适生性评价[J]. 林业科技通讯, 2018(6): 11-13.
AN S P, WANG L F, JIANG M, et al. Evaluation of adaptability in arid and semi-arid areas of Picea pungens,Picea abies and Picea glauca in central Gansu[J]. For Sci Technol, 2018(6):11-13.DOI: 10.13456/j.cnki.lykt.2018.06.004.
[4]
李录林, 吕寻, 胡勐鸿, 等. 甘肃小陇山林区5种引进树种生态适应性评价[J]. 中南林业科技大学学报, 2017, 37(8): 29-33.
LI L L, LV X, HU M H, et al. Ecological adaptability evaluation of five introduced species in Xiaolongshan forest area in Gansu Province[J]. J Cent South Univ For Technol, 2017, 37(8):29-33,65.DOI: 10.14067/j.cnki.1673-923x.2017.08.006.
[5]
马建伟, 胡勐鸿, 张宋智, 等. 引种欧洲云杉自由授粉家系种实性状的多样性[J]. 东北林业大学学报, 2014, 42(3): 5-10.
MA J W, HU M H, ZHANG S Z, et al. Phenotypic diversity of cone and seed traits in open-pollinated families of introduced Picea abies(L.) Karst[J]. J Northeast For Univ, 2014, 42(3):5-10.DOI: 10.13759/j.cnki.dlxb.2014.03.002.
[6]
潘春林. 欧洲云杉嫁接无性系遗传变异与选择[D]. 中国林业科学研究院, 2012.
PAN C L. Selection of clones and genetic variable of grafting clones of Picea abies[D]. Beijing: Chinese Academy of Forestry, 2012.
[7]
胡勐鸿, 欧阳芳群, 贾子瑞, 等. 欧洲云杉扦插生根影响因子研究与生根力优良单株选择[J]. 林业科学, 2014, 50(2): 42-49.
HU M H, OUYANG F Q, JIA Z R, et al. Factors affecting rooting of Picea abies shoot cuttings and individual selection with high rooting ability[J]. Sci Silvae Sin, 2014, 50(2):42-49.DOI: 10.11707/j.1001-7488.20140207.
[8]
马常耕. 无性系林业与无性系育种(续)[J]. 湖南林业科技, 1986, 13(4):5-10.
MA C G. Clonal forestry and clonal breeding (continued)[J]. Hunan For Sci Technol, 1986, 13(4):5-10.
[9]
王明庥. 论无性系林业:概念和应用[J]. 林业科技开发, 1992(1): 2-4.
WANG M X. On clonal forestry: concept and application[J]. China For Sci Technol, 1992, 6(1):2-4.DOI: 10.13360/j.issn.1000-8101.1992.01.001.
[10]
孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2): 65-71.
SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. J Beijing For Univ, 2011, 33(2):65-71.DOI: 10.13332/j.1000-1522.2011.02.020.
[11]
续九如. 林木数量遗传学[M]. 1版. 北京: 高等教育出版社, 2006: 117.
XU J R. Quantitative genetics in forestry[M]. 1st ed.ed. Beijing: Higher Education Press, 2006:117.
[12]
胡希远, 尤海磊, 宋喜芳, 等. 作物品种稳定性分析不同模型的比较[J]. 麦类作物学报, 2009, 29(1): 110-117.
HU X Y, YOU H L, SONG X F, et al. Comparison of different models for crop stability analysis[J]. J Triticeae Crops, 2009, 29(1):110-117.DOI: 10.7606/j.issn.1009-1041.2009.01.021.
[13]
安三平, 王丽芳, 王美琴, 等. 欧洲云杉无性系苗期选育[J]. 东北林业大学学报, 2011, 39(12): 16-19, 23.
AN S P, WANG L F, WANG M Q, et al. Selection and breeding of cutting clones of Picea abies during seedling stage[J]. J Northeast For Univ, 2011, 39(12):16-19,23.DOI: 10.13759/j.cnki.dlxb.2011.12.031.
[14]
ALBERTO F J, AITKEN S N, ALÍA R, et al. Potential for evolutionary responses to climate change-evidence from tree populations[J]. Global Change Biology, 2013, 19(6): 1645-1661. DOI: 10.1111/gcb.12181.
[15]
ROSVALL O. Using Norway spruce clones in Swedish forestry: Swedish forest conditions, tree breeding program and experiences with clones in field trials[J]. Scandinavian J For Res, 2019, 34(5): 342-351. DOI: 10.1080/02827581.2018.1562566.
[16]
AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1): 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
[17]
CHEN Z, HAI H N T, HELMERSSON A, et al. Advantage of clonal deployment in Norway spruce (Picea abies (L.) H. Karst)[J]. Annals of Forest Science., 2020, 77(1): 14. DOI: 10.1007/s13595-020-0920-1.
[18]
安三平, 欧阳芳群, 马建伟, 等. 欧洲云杉无性系遗传变异及早期选择[J]. 西北林学院学报, 2018, 33(6): 61-65.
AN S P, OUYANG F Q, MA J W, et al. Genetic variation and early evaluation of Picea abies clones[J]. J Northwest For Univ, 2018, 33(6):61-65.DOI: 10.3969/j.issn.1001-7461.2018.06.10.
[19]
NGUYEN H T H, CHEN Z, FRIES A, et al. Effect of additive, dominant and epistatic variances on breeding and deployment strategy in Norway spruce[J]. Forestry (London), 2022, 95(3): 416-427. DOI: 10.1093/forestry/cpab052.
[20]
ISIK K, KLEINSCHMIT J, STEINER W. Age-age correlations and early selection for height in a clonal genetic test of Norway spruce[J]. Forest Science, 2010, 56(2): 212. DOI:10.1016/j.forpol.2009.10.007
[21]
SKRØPPA T, STEFFENREM A. Performance and phenotypic stability of Norway spruce provenances, families, and clones growing under diverse climatic conditions in four Nordic Countries[J]. Forests, 2021, 12(2): 230. DOI: 10.3390/f12020230.
[22]
WU H X, SVERIGES L. Benefits and risks of using clones in forestry-a review[J]. Scandinavian J For Res, 2019, 34(5): 352-359. DOI: 10.1080/02827581.2018.1487579.
[23]
BENTZER B G, FOSTER G S, HELLBERG A R. Impact of clone mixture composition on stability of 7th-year mean height in a series of Norway spruce clone tests[J]. Cana J Fore Res, 1990, 20(6): 757-763. DOI: 10.1139/x90-100.
[24]
马常耕. 世界云杉无性系林业发展现状[J]. 世界林业研究, 1993(6): 24-31.
MA C G. State of development of clonal forestry of Picea asperata in the world[J]. World For Res, 1993, 6(6):24-31.DOI: 10.13348/j.cnki.sjlyyj.1993.06.005.
[25]
T.L.怀特, (美)W.T.亚当斯, (美)D.B.尼尔. 森林遗传学[M]. 崔建国, 李火根, 主译. 北京: 科学出版社, 2013:122-123.
WHITE T L, ADAMS W T, NEIL D B. Forest genetics[M]. CUIJ G, LIH G. Beijing: Science Press, 2013:122-123.
[26]
李火根, 黄敏仁, 潘惠新, 等. 美洲黑杨新无性系生长遗传稳定性分析[J]. 东北林业大学学报, 1997, 25(6):1-5.
LI H G, HUANG M R, PAN H X, et al. The genetic stability analysis of growth for new cottonwood clones[J]. J Northeast For Univ, 1997, 25(6):1-5. DOI:10.1007/BF02951625.
[27]
徐焕文, 刘宇, 李志新, 等. 5年生白桦杂种子代多点稳定性分析及优良家系选择[J]. 北京林业大学学报, 2015, 37(12): 24-31.
XU H W, LIU Y, LI Z X, et al. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test[J]. J Beijing For Univ, 2015, 37(12):24-31.DOI: 10.13332/j.1000-1522.20140466.
[28]
张磊, 张含国, 邓继峰, 等. 杂种落叶松苗高生长稳定性分析[J]. 浙江林学院学报, 2010, 27(5): 706-712.
ZHANG L, ZHANG H G, DENG J F, et al. Stability of hybrid larches (Larix) with seedling height growth[J]. J Zhejiang For Coll, 2010, 27(5):706-712.DOI: 10.3969/j.issn.2095-0756.2010.05.011.
[29]
王秋玉, 杨书文, 刘桂丰, 等. 红皮云杉遗传稳定性的研究及最佳种源选择[J]. 东北林业大学学报, 1993(1): 5-12.
WANG Q Y, YANG S W, LIU G F, et al. A study on the genetic stability of Picea koraiensis and the optimal provenance selection[J]. J Northeast For Univ, 1993, 21(1):5-12. DOI:CNKI:SUN:DBLY.0.1993-01-001.
[30]
夏燕, 张建伟, 田开春, 等. 云杉5个种18个种源的早期评价[J]. 东北林业大学学报, 2014, 42(12): 1-6.
XIA Y, ZHANG J W, TIAN K C, et al. Early valuation of eighteen provenances from five species of spruce[J]. J Northeast For Univ, 2014, 42(12):1-6.DOI: 10.13759/j.cnki.dlxb.20141210.013.
[31]
李有东, 王军辉, 黄成名, 等. 欧洲云杉优良无性系选择[J]. 湖南林业科技, 2015, 42(06): 57-60.
LI Y D, WANG J H, HUANG C M, et al. Selection of excellent clones of Picea abies (L.) Karst[J]. Hunan For Sci Technol, 2015, 42(6):57-60.DOI: 10.3969/j.issn.1003-5710.2015.06.009.
[32]
石辉平, 王军辉, 黄成名, 等. 欧洲云杉二代优良家系早期选择[J]. 绿色科技, 2016(11): 12-14.
SHI H P, WANG J H, HUANG C M, et al. Early selection of the second generation excellent families in Picea abies[J]. J Green Sci Technol, 2016(11):12-14.DOI: 10.16663/j.cnki.lskj.20160707.005.
[33]
CHEN Z, KARLSSON B, MÖRLING T, et al. Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce[J]. Tree Genetics & Genomes, 2016, 12(6): 1. DOI: 10.1007/s11295-016-1065-0.
[34]
郭海沣. 间伐对林口林业局主要人工林生长、结构及更新的影响[D]. 哈尔滨: 东北林业大学, 2019.
GUO H F. Effect of thinning on growth,structure and regeneration of main plantations in Linkou forestry bureau[D]. Harbin: Northeast Forestry University, 2019.
[35]
赵状. 抚育间伐对小兴安岭针叶树种碳汇功能影响效果评价[D]. 哈尔滨: 东北林业大学, 2021.
ZHAO Z. Evaluation of the impact of thinning on carbon sink function of coniferous tree species in xiaoxing’an mountains[D]. Harbin: Northeast Forestry University, 2021.
[36]
于雷, 贾炜玮, 丛培东. 抚育间伐对红松人工林林木形质的影响[J]. 西南林业大学学报(自然科学), 2021, 41(6): 149-159.
YU L, JIA W W, CONG P D. The effect of thinning on form quality of Pinus koraiensis plantations[J]. J Southwest For Univ (Nat Sci), 2021, 41(6):149-159.
[37]
龚映匀. 抚育间伐对川西柳杉人工林碳格局的影响[D]. 长沙: 中南林业科技大学, 2021.
GONG Y Y. Effect of thinning on carbon distribution of Cryptomeria fortunei plantation in western Sichuan[D]. Changsha: Central South University of Forestry & Technology, 2021.
[38]
郑颖. 辽东地区落叶松优良无性系造林密度研究[D]. 沈阳: 沈阳农业大学, 2019.
ZHENG Y. Study on afforestation density of excellent clones of Larix spp.eastern Liaoning[D]. Shenyang: Shenyang Agricultural University, 2019.
[39]
温晶. 兴安落叶松林抚育间伐效果分析[D]. 呼和浩特: 内蒙古农业大学, 2019.
WEN J. Analysis on tending thinning effect of Larix gmelinii forest[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[40]
刘晓燕. 小陇山林区抚育间伐对华山松人工林生长的影响研究[J]. 现代园艺, 2017(16): 6-7.
LIU X Y. Study on the influence of tending and thinning on the growth of Pinus armandii plantation in Xiaolongshan forest area[J]. Xiandai Hortic, 2017(16):6-7.DOI: 10.14051/j.cnki.xdyy.2017.16.002.

脚注

基金

国家重点研发计划(2017YFD0600606)
中央财政林业科技推广示范资金项目
北京市公园管理中心科技项目(ZX2021012)

编辑: 吴祝华
PDF(2185 KB)

Accesses

Citation

Detail

段落导航
相关文章

/