[1] |
王金凤, 谭新建, 吴喜昌, 等. 我国油茶产业发展现状与对策建议[J]. 世界林业研究, 2020, 33(6): 80-85.
|
|
WANG J F, TAN X J, WU X C, et al. Development status and suggestions of Camellia industry in China[J]. World For Res, 2020, 33(6): 80-85. DOI: 10.13348/j.cnki.sjlyyj.2020.0103.y.
|
[2] |
李志钢, 马力, 陈永忠, 等. 我国油茶籽的综合利用现状概述[J]. 绿色科技, 2018(6): 191-194.
|
|
LI Z G, MA L, CHEN Y Z, et al. Study on the comprehensive utilization of oil-tea Camellia seed[J]. J Green Sci Technol, 2018(6): 191-194. DOI: 10.16663/j.cnki.lskj.2018.06.068.
|
[3] |
南玉龙, 张慧春, 郑加强, 等. 深度学习在林业中的应用[J]. 世界林业研究, 2021, 34(5): 87-90.
|
|
NAN Y L, ZHANG H C, ZHENG J Q, et al. Application of deep learning to forestry[J]. World For Res, 2021, 34(5): 87-90. DOI: 10.13348/j.cnki.sjlyyj.2021.0020.y.
|
[4] |
阳灵燕, 张红燕, 陈玉峰, 等. 机器学习在农作物品种识别中的应用研究进展[J]. 中国农学通报, 2020, 36(30): 158-164.
|
|
YANG L Y, ZHANG H Y, CHEN Y F, et al. The application of machine learning in crop variety recognition: a review[J]. Chin Agric Sci Bull, 2020, 36(30): 158-164. DOI: 10.11924/j.issn.1000-6850.casb20191100813.
|
[5] |
周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
|
|
ZHOU H R, WU B M. Advances in research on deep learning for crop disease image recognition[J]. J Agric Sci Technol, 2021, 23(5): 61-68. DOI: 10.13304/j.nykjdb.2019.1041.
|
[6] |
严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
|
|
YAN E P, JI Y, YIN X M, et al. Rapid estimation of Camellia oleifera yield based on automatic detection of canopy fruits using UAV images[J]. Trans Chin Soc Agric Eng, 2021, 37(16): 39-46. DOI: 10.11975/j.issn.1002-6819.2021.16.006.
|
[7] |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804.
|
|
YU K, JIA L, CHEN Y Q, et al. Deep learning: yesterday, today, and tomorrow[J]. J Comput Res Dev, 2013, 50(9): 1799-1804.
|
[8] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386.
|
[9] |
ZEILER M D, FERGUS R. Visualizing andunderstanding convolutional networks[C]// European Conference on Computer Vision. Cham: Springer, 2014: 818-833. DOI: 10.1007/978-3-319-10590-1_53.
|
[10] |
SIMONYAN K, ZISSERMAN A. Verydeep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR). 2015: 1-14. arXiv preprint arXiv:14091556, 2014.
|
[11] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778. DOI: 10.1109/CVPR.2016.90.
|
[12] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 1-9. DOI: 10.1109/CVPR.2015.7298594.
|
[13] |
韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(S1): 113-117.
|
|
HAN B, ZENG S W. Plant leaf image recognition based on multi-feature integration and convolutional neural network[J]. Comput Sci, 2021, 48(S1): 113-117. DOI: 10.11896/jsjkx.201100119.
|
[14] |
原忠虎, 王维, 苏宝玲. 基于改进VGGNet模型的外来入侵植物叶片识别方法[J]. 计算机与现代化, 2021(9): 7-11.
|
|
YUAN Z H, WANG W, SU B L. Leaf recognition method of invasive alien plants based on improved VGGNet model[J]. Computer and Modernization, 2021(9): 7-11.
|
[15] |
王建霞, 张成, 闫双双. 基于卷积神经网络的宠物猫品种分类研究[J]. 河北工业科技, 2020, 37(6): 407-412.
|
|
WANG J X, ZHANG C, YAN S S. Research on pet cat breed classification based on convolutional neural network[J]. Hebei J Ind Sci Technol, 2020, 37(6): 407-412. DOI: 10.7535/hbgykj.2020yx06004.
|
[16] |
石洪康, 田涯涯, 杨创, 等. 基于卷积神经网络的家蚕幼虫品种智能识别研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 34-45.
|
|
SHI H K, TIAN Y Y, YANG C, et al. Research on intelligent recognition of silkworm larvae races based on convolutional neural networks[J]. J Southwest Univ (Nat Sci Ed), 2020, 42(12): 34-45. DOI: 10.13718/j.cnki.xdzk.2020.12.004.
|
[17] |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. 2017: arXiv: 1704.04861. https://arxiv.org/abs/1704.04861.
|
[18] |
杨静亚, 李景霞, 王振宇, 等. 基于卷积神经网络的花朵品种的识别[J]. 黑龙江大学工程学报, 2019, 10(4): 90-96.
|
|
YANG J Y, LI J X, WANG Z Y, et al. Identification of flower varieties based on convolution neural network[J]. J Eng of Heilongjiang Univ, 2019, 10(4): 90-96. DOI: 10.13524/j.2095-008x.2019.04.060.
|
[19] |
游嘉伟, 王斌, 曾瑞. 用于大豆品种识别的叶片深度特征学习方法[J]. 计算机系统应用, 2021, 30(10): 118-127.
|
|
YOU J W, WANG B, ZENG R. Learning method of leaf deep features for soybean cultivar recognition[J]. Computer Systems and Applications, 2021, 30(10): 118-127.
|
[20] |
薄琪苇. 基于卷积神经网络的植物叶片识别研究[D]. 杭州: 浙江农林大学, 2018.
|
|
BO Q W. Study on plant leaf recognition based on convolutional neural network[D]. Hangzhou: Zhejiang A&F University, 2018.
|
[21] |
孙洋. 基于Android平台的植物叶片识别系统[D]. 保定: 河北大学, 2017.
|
|
SUN Y. Plant leaf recognition system based on android platform[D]. Baoding: Hebei University, 2017.
|
[22] |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]// USENIX Association. Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation. Savannah, GA, USA, 2016: 265-283. DOI: 10.5555/3026877.3026899.
|
[23] |
XIN J, ZHANG Y X, TANG Y, et al. Brain differences between men and women: evidence from deep learning[J]. Front Neurosci, 2019, 13: 185. DOI: 10.3389/fnins.2019.00185.
|
[24] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. JMLR.org. Lille, France, 2015: 448-456.
|
[25] |
MANNING C D, RAGHAVAN P, SCHUTZE H. Introduction to information retrieval[M]. Cambridge: Cambridge University Press, 2008. DOI: 10.1017/CBO9780511809071.
|
[26] |
SOKOLOVA M, LAPALME G. A systematic analysis of performance measures for classification tasks[J]. Inf Process Manag, 2009, 45(4): 427-437. DOI: 10.1016/j.ipm.2009.03.002.
|
[27] |
朱晓龙. 基于深度卷积神经网络的树木生境叶片识别方法研究[D]. 哈尔滨: 东北林业大学, 2020.
|
|
ZHU X L. Study of tree leaf recognition in habitat based on deep convolutional neural networks[D]. Harbin: Northeast Forestry University, 2020.
|