
深度学习在基于叶片的油茶品种识别中的研究
尹显明, 棘玉, 张日清, 莫登奎, 彭邵锋, 韦维
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 29-36.
深度学习在基于叶片的油茶品种识别中的研究
Research on recognition of Camellia oleifera leaf varieties based on deep learning
【目的】 采用深度学习方法开展基于叶片的油茶品种识别研究,开发油茶品系图像识别技术,为油茶品种鉴别提供科学依据。【方法】选择自然光照条件下生长的11个油茶品种叶片作为研究对象,采集完整、无明显病虫害的叶片,以白色硬纸板为背景,利用智能手机对叶片的正、背面进行图像采集,通过可用性筛选去除无效图像,构建图像数量为2 791张的油茶叶片品种数据集,采用深度学习网络(GoogLeNet、ResNet)对11个油茶品种的叶片图像进行识别研究。【结果】GoogLeNet和ResNet网络均能满足基于叶片的油茶品种识别要求,总体识别准确率、召回率的调和平均值(F1)分别达94.0%和80.7%;其中GoogLeNet网络识别效果更好,平均准确率、召回率、多分类模型指标宏观F1(Macro F1)和微观F1(Micro F1)分别为94.1%、94.0%、94.0%和96.9%,其对油茶品种编号1和编号8的识别召回率高达100%。【结论】深度学习网络(GoogLeNet、ResNet)能够实现基于叶片的油茶品种识别,可为基于其他作物的品种识别提供参考。
【Objective】Deep learning methods are used to carry out research on Camellia oleifera based variety recognition on leaves, this study developed C. oleifera strain image recognition technology to provide scientific basis for C. oleifera variety identification.【Method】Eleven leaves of C. oleifera varieties grown under natural lighting conditions and free from pests and diseases were collected for a study. Images of the front and back of the leaves with a white cardboard background were captured using a smartphone. Invalid images were removed by usability screening, and a dataset of camellia leaf varieties with 2 791 images was constructed. Deep learning networks (GoogLeNet and ResNet) were used to identify and study the leaf images of 11 C. oleifera varieties.【Result】Both GoogLeNet and ResNet networks can meet the requirements of C. oleifera variety recognition based on leaves, with overall F1 scores of 94.0% and 80.7%. Among them, the GoogLeNet network was more effective in recognition, with average accuracy, recall, Macro F1 and Micro F1 value of 94.1%, 94.0%, 94.0% and 96.9%, respectively, and its recognition recall for two varieties, NO. 1 and 8, reached 100%.【Conclution】Deep learning networks (GoogLeNet and ResNet) can achieve C. oleifera variety recognition based on leaves, which can provide a reference for rapid leaf-based C. oleifera variety recognition.
深度学习 / 油茶叶片 / 品种识别 / GoogLeNet / ResNet
deep learning / Camellia oleifera leaf / variety recognition / GoogLeNet / ResNet
[1] |
王金凤, 谭新建, 吴喜昌, 等. 我国油茶产业发展现状与对策建议[J]. 世界林业研究, 2020, 33(6): 80-85.
|
[2] |
李志钢, 马力, 陈永忠, 等. 我国油茶籽的综合利用现状概述[J]. 绿色科技, 2018(6): 191-194.
|
[3] |
南玉龙, 张慧春, 郑加强, 等. 深度学习在林业中的应用[J]. 世界林业研究, 2021, 34(5): 87-90.
|
[4] |
阳灵燕, 张红燕, 陈玉峰, 等. 机器学习在农作物品种识别中的应用研究进展[J]. 中国农学通报, 2020, 36(30): 158-164.
|
[5] |
周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
|
[6] |
严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
|
[7] |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(S1): 113-117.
|
[14] |
原忠虎, 王维, 苏宝玲. 基于改进VGGNet模型的外来入侵植物叶片识别方法[J]. 计算机与现代化, 2021(9): 7-11.
|
[15] |
王建霞, 张成, 闫双双. 基于卷积神经网络的宠物猫品种分类研究[J]. 河北工业科技, 2020, 37(6): 407-412.
|
[16] |
石洪康, 田涯涯, 杨创, 等. 基于卷积神经网络的家蚕幼虫品种智能识别研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 34-45.
|
[17] |
|
[18] |
杨静亚, 李景霞, 王振宇, 等. 基于卷积神经网络的花朵品种的识别[J]. 黑龙江大学工程学报, 2019, 10(4): 90-96.
|
[19] |
游嘉伟, 王斌, 曾瑞. 用于大豆品种识别的叶片深度特征学习方法[J]. 计算机系统应用, 2021, 30(10): 118-127.
|
[20] |
薄琪苇. 基于卷积神经网络的植物叶片识别研究[D]. 杭州: 浙江农林大学, 2018.
|
[21] |
孙洋. 基于Android平台的植物叶片识别系统[D]. 保定: 河北大学, 2017.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
朱晓龙. 基于深度卷积神经网络的树木生境叶片识别方法研究[D]. 哈尔滨: 东北林业大学, 2020.
|
/
〈 |
|
〉 |