有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响

孙美佳, 周志勇, 王勇强, 沈颖, 夏威

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 67-75.

PDF(2110 KB)
PDF(2110 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1) : 67-75. DOI: 10.12302/j.issn.1000-2006.202112045
专题报道Ⅱ:双碳目标下的土壤碳组分

有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响

作者信息 +

The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China

Author information +
文章历史 +

摘要

【目的】 探讨添加不同类型有机物对油松林土壤有机碳组分及土壤呼吸的影响,为预测山西太岳山油松林生态系统中土壤的碳收支平衡提供参考。【方法】 采用随机区组设计,以山西太岳山油松林地表的平均自然凋落物量为标准,向油松林地0~20 cm土壤中分别添加生物炭(BC)、玉米秸秆(JG)、辽东栎叶(LD)和油松叶(YS)等4种类型有机物,使用LI-8100 CO2通量全自动测量系统对有机物添加条件下的土壤呼吸速率进行连续测定,并对各处理的土壤有机碳(SOC)、微生物生物量碳(MBC)、易氧化碳(ROC)、可溶性有机碳(DOC)含量进行监测,结合土壤呼吸与土壤有机碳及其组分之间的关系,探讨添加有机物对山西太岳山油松林土壤呼吸及碳组分的影响。【结果】 ①向土壤中添加BC显著降低了土壤呼吸速率,添加JG后土壤呼吸速率较CK显著提高了11.67%。,其余处理与CK差异不显著。在2014年7—11月和2015年5—10月,不同添加物处理间土壤呼吸速率从大至小表现为JG>LD >YS>CK。②有机物添加下土壤SOC含量随时间的增加有上升的趋势,在2014年8月,添加JG后显著提高了土壤SOC、MBC、ROC、DOC含量,添加BC显著提高了土壤MBC含量,添加LD和YS显著提高了土壤SOC和MBC含量。在2014年10月,添加JG显著提高了土壤SOC、MBC、ROC、DOC含量,添加LD显著提高了土壤MBC和ROC含量,添加YS显著提高了土壤SOC、MBC含量。在2015年3月,添加JG显著提高了土壤SOC、MBC和ROC含量,添加LD显著提高了土壤ROC含量。2015年5月,添加JG显著增加了土壤MBC含量。③与对照相比,添加BC后土温10 ℃时的土壤呼吸速率(R10)显著降低了18.01%,添加YS后R10显著增加了30.88%,添加其他有机物对温度敏感性系数(Q10)和R10没有显著影响。④土壤呼吸速率与土壤温度、SOC、MBC、ROC和DOC含量显著正相关。【结论】 添加有机物显著影响土壤碳动态和土壤温湿度,这些都会对土壤CO2排放产生显著影响,添加JG对土壤有机碳及其碳组分的提高效果最显著,但土壤呼吸速率最高,不利于碳的储存;添加LD可增加土壤活性有机碳含量,短期内可明显改善土壤有机碳库质量;添加BC可在短期内提高土壤微生物生物量碳含量,并显著降低土壤呼吸速率,减少土壤CO2排放的效果最好。

Abstract

【Objective】 This research aims to investigate the effects of different organic matters on soil organic carbon and soil respiration in Pinus tabuliformis forest. The results can provide reference for predicting soil carbon budget of P. tabuliformis forest ecosystem in Taiyue Mountain, Shanxi Province, China.【Method】A random block design was used to add biochar (BC), maize straw (JG), Quercus mongolica leaf (LD) and P. tabuliformis leaf (YS) to 0-20 cm soil of P. tabuliformis forest in Taiyue Mountain, with no addition as control check (CK). Li-8100 automatic measurement system for CO2 flux was used to continuously measure soil respiration rate under organic matter addition, and the contents of soil organic carbon (SOC), microbial biomass carbon (MBC), readily oxidized carbon (ROC) and dissolved organic carbon (DOC) in each treatment were monitored. Based on the relationship between soil respiration and soil organic carbon and its components, the effects of organic matter addition on soil respiration and soil carbon components of P. tabuliformis forest in Taiyue Mountain were investigated. 【Result】 (1)The addition of biochar significantly reduced the soil respiration rate, and the soil respiration rate was significantly increased by 11.67% after adding JG compared with CK, while there was no significant difference between other treatments and CK. (2)In August 2014, the addition of JG significantly increased the soil SOC, MBC, ROC and DOC contents, the addition of BC significantly increased the soil MBC content, and the addition of LD and YS significantly increased the soil SOC and MBC contents. In October 2014, the addition of JG significantly increased soil SOC, MBC, ROC and DOC contents, the addition of LD significantly increased soil MBC and ROC contents, and the addition of YS significantly increased soil SOC and MBC contents. In March 2015, the addition of JG significantly increased soil SOC, MBC and ROC contents, while the addition of LD significantly increased soil ROC contents. In May 2015, JG supplementation significantly increased soil MBC content.(3) Compared with CK, soil respiration at 10 (R10) was significantly decreased by 18.01% after BC addition, and increased by 30.88% after YS leaf addition. Other organic compounds had no significant effect on soil respiration temperature sensitivity (Q10) and R10. (4) Soil respiration rate was significantly positively correlated with soil temperature, SOC, MBC, ROC and DOC. 【Conclusion】 The addition of organic matter significantly affected soil carbon dynamics and soil temperature and humidity, which all had significant effects on soil CO2 emissions. The addition of JG had the most significant effect on soil organic carbon and its carbon components, but the soil respiration rate was the highest, which was not conducive to carbon storage. The addition of LD could increase soil active organic carbon content and significantly improve soil organic carbon pool quality in a short term, while the addition of BC could increase soil microbial biomass carbon content in a short term, and significantly reduce soil respiration rate, which has the best effect on reducing soil CO2 emission.

关键词

有机物 / 土壤呼吸 / 土壤有机碳 / 活性有机碳

Key words

organic matter / soil respiration / soil organic carbon / soil active organic carbon

引用本文

导出引用
孙美佳, 周志勇, 王勇强, . 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(1): 67-75 https://doi.org/10.12302/j.issn.1000-2006.202112045
SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, et al. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 67-75 https://doi.org/10.12302/j.issn.1000-2006.202112045
中图分类号: S718.5   

参考文献

[1]
JANZEN H H. Carbon cycling in earth systems: a soil science perspective[J]. Agric Ecosyst Environ, 2004, 104(3): 399-417. DOI: 10.1016/j.agee.2004.01.040.
[2]
SCHARLEMANN J P, TANNER E V, HIEDERER R, et al. Global soil carbon: understanding and managing the larg-est terrestrial carbon pool[J]. Carbon Manag, 2014, 5(1): 81-91. DOI: 10.4155/cmt.13.77.
[3]
SMITH P. Carbon sequestration in croplands: the potential in Europe and the global context[J]. Eur J Agron, 2004, 20(3): 229-236. DOI: 10.1016/j.eja.2003.08.002.
[4]
BOLINDER M A, ANGERS D A, GREGORICH E G, et al. The response of soil quality indicators to conservation management[J]. Can J Soil Sci, 1999, 79(1): 37-45. DOI: 10.4141/s97-099.
[5]
BASTIDA F, ZSOLNAY A, HERNÁNDEZ T, et al. Past, present and future of soil quality indices: a biological perspective[J]. Geoderma, 2008, 147(3/4): 159-171. DOI: 10.1016/j.geoderma.2008.08.007.
[6]
陈嘉慧, 钱叶, 侯怡铃, 等. 不同年龄段银杏树根系土壤微生物群落功能多样性分析[J]. 生物加工过程, 2021, 19(1):85-90.
CHEN J H, QIAN Y, HOU Y L, et al. Functional diversity of soil microbial community in the root soil of Ginkgo biloba tree at different ages[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(1):85-90.
[7]
LIU X H, FENG P H, ZHANG X C. Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments[J]. Int J Agric Biol, 2012, 14(6). DOI: 10.1021/jf3034804.
[8]
SRINIVASAN V, MAHESWARAPPA H P, LAL R. Long term effects of topsoil depth and amendments on particulate and non particulate carbon fractions in a Miamian soil of Central Ohio[J]. Soil Tillage Res, 2012, 121:10-17. DOI: 10.1016/j.still.2012.01.014.
[9]
LENG L J, XU X W, WEI L, et al. Biochar stability assessment by incubation and modeling: methods, drawbacks and recommendations[J]. Sci Total Environ, 2019, 664:11-23. DOI: 10.1016/j.scitotenv.2019.01.298.
[10]
WANG D Y, FONTE S J, PARIKH S J, et al. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J]. Geoderma, 2017, 303: 101-117. DOI: 10.1016/j.geoderma.2017.05.027.
[11]
WANG J Y, XIONG Z Q, KUZYAKOV Y. Biochar stability in soil: meta-analysis of decomposition and priming effects[J]. GCB Bioenergy, 2016, 8(3): 512-523. DOI: 10.1111/gcbb.12266.
[12]
AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms: review and research needs[J]. Eur J Soil Sci, 2013, 64(4): 379-390. DOI: 10.1111/ejss.12064.
[13]
许菽敉, 张欢, 赵洪涛, 等. 太岳山3种林型碳储量及其空间分配格局[J]. 福建农林大学学报(自然科学版), 2018, 47
XU S M, ZHANG H, ZHAO H T, et al. Carbon storage and spatial distribution of natural forest in Taiyue Mountain[J]. J Fujian Agric For Univ(Nat Sci Ed), 2018, 47(1): 54-59. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.01.009
[14]
迟璐, 王百田, 曹晓阳, 等. 山西太岳山主要森林生态系统碳储量与碳密度[J]. 东北林业大学学报, 2013, 41(8): 32-35.
CHI L, WANG B T, CAO X Y, et al. Carbon storage and density of Pinus tabulaeformis and Quercus liaotungensis forests in Taiyue Mountain of Shanxi Province, China[J]. J Northeast For Univ, 2013, 41(8): 32-35. DOI: 10.13759/j.cnki.dlxb.2013.08.029.
[15]
李克让, 王绍强, 曹明奎. 中国不同森林类型碳储量[J]. 中国科学: D辑, 2003, 33(1): 72-80.
LI K R, WANG S Q, CAO M K. Carbon storage of different forest types in China[J]. Science in China: Series D, 2003, 33(1): 72-80.
[16]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Soil agricultural chemistry analysis methods[M]. Beijing: China Agriculture Scientech Press, 2000.
[17]
DAVIDSON E A, JANSSENS I A, LUO Y Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10[J]. Glob Change Biol, 2006, 12(2): 154-164. DOI: 10.1111/j.1365-2486.2005.01065.x.
[18]
DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165-173. DOI: 10.1038/nature04514.
[19]
BANGER K, TOOR G S, BISWAS A, et al. Soil organic carbon fractions after 16-years of applications of fertilizersand organic manure in a typic rhodalfs in semi-arid tropics[J]. Nutr Cycl Agroecosystems, 2010, 86(3): 391-399. DOI: 10.1007/s10705-009-9301-8.
[20]
杨苏, 李传哲, 王静, 等. 有机物料投入对作物产量及潮土固碳的影响[J]. 江苏农业学报, 2020, 36(3):569-576.
YANG S, LI C Z, WANG J, et al. Effects of organic material input on crop yield and carbon sequestration in tidal soil[J]. Jiangsu J Agr Sci, 2020, 36(3):569-576.DOI:10.3969/j.issn.1000-4440.2020.03.006.
[21]
何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2):425-434.
HE W, WANG H, HAN F, et al. Effect of long-term application of organic manure expanding organic carbon fractions in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(2):425-434.DOI:10.11766/trxb201902180011.
[22]
LOU Y L, LIANG W J, XU M G, et al. Straw coverage alleviates seasonal variability of the topsoil microbial bio-mass and activity[J]. CATENA, 2011, 86(2): 117-120. DOI: 10.1016/j.catena.2011.03.006.
[23]
LOU Y S, REN L X, LI Z P, et al. Effect of rice residues on carbon dioxide and nitrous oxide emissions from a paddy soil of subtropical China[J]. Water Air Soil Pollut, 2007, 178(1/2/3/4): 157-168. DOI: 10.1007/s11270-006-9187-x.
[24]
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review[J]. Soil Biol Biochem, 2011, 43(9): 1812-1836. DOI: 10.1016/j.soilbio.2011.04.022.
[25]
黄尚书, 成艳红, 钟义军, 等. 水土保持措施对红壤缓坡地土壤活性有机碳及酶活性的影响[J]. 土壤学报, 2016, 53(2):468-476.
HUANG S S, CHENG Y H, ZHONG Y J, et al. Effects of soil and water conservation measures on soil labile organic carbon and soil enzyme activity in gentle slope land of red soil[J]. Acta Pedol Sin, 2016, 53(2): 468-476.
[26]
张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1): 277-282.
ZHANG R, ZHANG G L, JI Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environ Sci, 2013, 34(1): 277-282. DOI: 10.13227/j.hjkx.2013.01.056.
[27]
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial efficiency-matrix stabilization (MEMS) f-ramework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Glob Chang Biol, 2013, 19(4): 988-995. DOI: 10.1111/gcb.12113.
[28]
LIU E, WANG J, ZHANG Y, et al. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China[J]. Sci Reports, 2015, 5(1): 1-9. DOI:10.1038/srep13826.
[29]
HANSON P J, EDWARDS N T, GARTEN C T, et al. Separating root and soil microbial contributions to soil respir-ation: a review of methods and observations[J]. Biogeochemistry, 2000, 48(1): 115-146. DOI:10.1023/A:1006244819642.
[30]
DON A, RÖDENBECK C, GLEIXNER G. Unexpected control of soil carbon turnover by soil carbon concentration[J]. Environ Chem Lett, 2013, 11(4): 407-413. DOI:10.1007/s10311-013-0433-3.
[31]
易志刚, 蚁伟民, 周国逸, 等. 鼎湖山三种主要植被类型土壤碳释放研究[J]. 生态学报, 2003, 23(8): 1673-1678.
YI Z G, YI W M, ZHOU G Y, et al. Soil carbon effluxes of three major vegetation types in Dinghushan Biosphere Reserve[J]. Acta Ecol Sin, 2003, 23(8): 1673-1678.
[32]
SOLOMON D, LEHMANN J, ZECH W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates[J]. Agric Ecosyst Environ, 2000, 78(3): 203-213.DOI: 10.1016/S0167-8809(99)00126-7.
[33]
WANG W, LAI D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil Tillage Res, 2015, 152: 8-16. DOI: 10.1016/j.still.2015.03.011.
[34]
SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration[J]. Soil Biol Biochem, 2010, 42(12): 2345-2347. DOI:10.1016/j.soilbio.2010.09.013.
[35]
GRUNWALD D, KAISER M, JUNKER S, et al. Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil[J]. Agric Ecosyst Environ, 2017, 241: 79-87. DOI: 10. 1016/j.agee.2017.02.029
[36]
FANG C, MONCRIEFF J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33(2): 155-165. DOI: 10.1016/S0038-0717(00)00125-5.
[37]
魏书精, 罗碧珍, 孙龙, 等. 森林生态系统土壤呼吸时空异质性及影响因子研究进展[J]. 生态环境学报, 2013, 22(4): 689-704.
WEI S J, LUO B Z, SUN L, et al. Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: a review[J]. Ecol Environ Sci, 2013, 22(4): 689-704. DOI: 10.16258/j.cnki.1674-5906.2013.04.008.
[38]
JIANG J S, GUO S L, ZHANG Y J, et al. Changes in temperature sensitivity of soil respiration in the phases of a three-year crop rotation system[J]. Soil Tillage Res, 2015, 150: 139-146. DOI: 10.1016/j.still.2015.02.002.
39 MEYER N, WELP G, AMELUNG W. The temperature sensitivity (Q10) of soil respiration:controlling factors and spatial prediction at regional scale based on environmental soil classes[J]. Glob Biogeochem Cycles, 2018, 32(2): 306-323. DOI: 10.1002/2017GB005644.
[40]
郑甲佳, 黄松宇, 贾昕, 等. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698.
摘要
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林土壤呼吸Q10季节和年际变化规律的研究,但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足,已有结果缺乏一致结论。本研究通过整合已发表论文,构建了中国森林生态系统年尺度Q10数据集,共包含399条记录、5种森林类型(落叶阔叶林DBF、落叶针叶林DNF、常绿阔叶林EBF、常绿针叶林ENF、混交林MF)。分析了不同森林类型土壤呼吸Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示,1)Q10介于1.09到6.24之间,平均值(±标准误)为2.37 ± 0.04,且在不同森林类型之间无显著差异;2)当考虑所有森林类型时,Q10随纬度、海拔、土壤有机碳(SOC)和土壤全氮(TN)的增加而增大,随经度、年平均气温(MAT)、年平均降水量(MAP)的增加而减小。气候(MAT、MAP)和土壤(SOC、TN)因素间存在相互作用,共同解释了33%的Q10空间变异,其中MAT和SOC是Q10空间变异的主要驱动因素;3)不同类型森林土壤呼吸Q10对气候和土壤因素的响应存在差异。在DNF中Q10随MAP的增加而减小,而其他类型森林中Q10与MAP无显著相关性;在EBF、DBF、ENF中Q10随TN的增加而增大,但Q10对TN的敏感性在EBF中最高,在ENF中最低。这些结果表明,尽管Q10有一定的集中分布趋势,但仍有较大范围的空间变异,在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和对环境因素的响应随森林类型而变化,在气候变化情景下,不同森林类型间Q10可能发生分异。因此,未来的碳循环–气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。
ZHENG J J, HUANG S Y, JIA X, et al. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China[J]. Chin J Plant Ecol, 2020, 44(6): 687-698. DOI: 10.17521/cjpe.2019.0300.

基金

中央高校基本科研业务费专项资金项目(PTYX202144)

编辑: 王国栋
PDF(2110 KB)

Accesses

Citation

Detail

段落导航
相关文章

/