
青海省天保工程土壤保持效益评价研究
梁梓澳, 王祥福, 王维枫, 闫珂, 李愿会, 董文婷, 王荣女
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 181-188.
青海省天保工程土壤保持效益评价研究
Evaluation of soil conservation benefit of the Natural Forest Protection Project in Qinghai Province
【目的】 评估青海省天然林保护工程(天保工程)实施20年来土壤保持量及空间分布特征,了解该地区生态环境保护状态,为推动地方生态建设和经济发展提供理论参考。【方法】 基于通用土壤流失方程(USLE)模型,结合土地利用数据、地形数据、多年气候数据和土壤数据对青海省土壤保持量进行计算并在GIS平台上进行空间分析,探明在天保工程实施下土地利用类型、行政区、地形等因子影响下的土壤保持情况,并评估天保工程土壤保持效益。【结果】 ①2000—2020年,青海省主要土地利用类型以草地和裸地为主。由于天保工程的实施,土地利用变化主要表现在乔灌林地面积的扩张和裸地面积的减少,东部大面积灌木林地和草地转为乔木林地,草地和灌木林地是乔木林地面积增长的主要来源;②天保工程实施的20年间,土壤保持量增加了4.950×106 t,但在空间上分布不均,呈现东部和南部较高、西北部较低的态势;③不同土地利用类型的土壤保持能力各异,乔木林地单位面积土壤保持量最高,灌木林地土壤保持总量在20年间增加最多;④在不同行政区中,海东市、西宁市和黄南州土壤保持量20年间增加最多;④在海拔和坡度方面,20年间海拔梯度[1 667,2 600) m和较陡坡[15°,25°)的土壤保持效果较好,单位面积土壤保持量最大。【结论】 天保工程的实施显著增强了青海省土壤保持功能;灌木林地和乔木林地是青海省土壤保持量增长的主要类型;海拔梯度[1 667,2 600) m和较陡坡[15°~25°)的生态系统土壤保持效果较好,应继续加强保护。
【Objective】This study evaluated the soil conservation and spatial distribution characteristics of the Natural Forest Protection Project in Qinghai Province over the past 20 years, to understand the ecological and environmental protection status of this area, and provide a theoretical reference for the promotion of local ecological construction and economic development.【Method】Based on the universal soil loss equation (USLE) model, combined with land use data, terrain data, multi-year climate data, and soil data, the soil conservation of Qinghai Province was calculated and spatially analyzed through a GIS platform (ArcGIS 10.4) to verify the land use types, administrative districts, and topography factors during 2000-2020. Additionally, the benefits of soil conservation under the implementation of the Natural Forest Protection Project were evaluated. 【Result】(1) The grassland and bare land were the main land use types in Qinghai Province from 2000 to 2020. The implementation of the Natural Forest Protection Project, resulted in the expansion of land use as forests and a decrease in the bare land. The shrubland and grassland in the east were transformed into forests, which became the main sources of forest growth. (2) Under the implementation of the Natural Forest Protection Project, soil conservation increased by 4.950×106 t. The amount of soil conservation was higher in the east and south, but lower in the northwest. (3) Different land use types had different soil conservation capacities and soil conservation per unit area was highest in the forests. The total amount of soil conservation in the shrublands increased the most over the 20 years. (4) The amount of soil conservation in Haidong, Xining and Huangnan increased the most during 2000-2020. (5) In terms of altitude and slope, the soil conservation per unit area was highest at an altitude gradient of 1 667-2 600 m and steeper slopes (15°-25°). 【Conclusion】The implementation of the Natural Forest Protection Project has prominently enhanced the soil conservation function in the Qinghai Province and the expansion of shrubs and forests further contribute to soil conservation. Thus, land areas at an altitude of 1 667-2 600 m and steep slopes (15°-25°) should be protected in the future.
土壤保持 / 通用土壤流失方程(USLE) / 天然林保护工程 / 土地利用 / 空间特征
soil conservation / universal soil loss equation (USLE) / the Natural Forest Protection Project / land use / spatial feature
[1] |
杨勤科, 李锐, 刘咏梅. 区域土壤侵蚀普查方法的初步讨论[J]. 中国水土保持科学, 2008, 6(3):1-6.
|
[2] |
|
[3] |
刘月, 赵文武, 贾立志. 土壤保持服务:概念、评估与展望[J]. 生态学报, 2019, 39(2):432-440.
|
[4] |
|
[5] |
肖洋, 欧阳志云, 徐卫华, 等. 基于GIS重庆土壤侵蚀及土壤保持分析[J]. 生态学报, 2015, 35(21):7130-7138.
|
[6] |
陆建忠, 陈晓玲, 李辉, 等. 基于GIS/RS和USLE鄱阳湖流域土壤侵蚀变化[J]. 农业工程学报, 2011, 27(2):337-344,397.
|
[7] |
杨波, 王全九, 董莉丽. 榆林市还林还草后土壤保持功能和经济价值评价[J]. 干旱区研究, 2017, 34(6):1313-1322.
|
[8] |
温豪. 青海省生态保护红线划定研究与管控[D]. 西安: 西安科技大学, 2019.
|
[9] |
青海省地方志编篡委员会. 青海年鉴[M]. 西宁: 青海年鉴社, 2020.
|
[10] |
李小涛, 黄诗峰, 李琳, 等. 嘉陵江流域土壤侵蚀变化遥感分析[J]. 泥沙研究, 2006(6):65-69.
|
[11] |
张水锋, 张金池, 庄家尧, 等. 长三角小流域AnnAGNPS模型参数敏感性及适用性评价[J]. 南京林业大学学报(自然科学版), 2021, 45(3):183-192.
|
[12] |
贾艳艳, 唐晓岚, 唐芳林, 等. 1995—2015年长江中下游流域景观格局时空演变[J]. 南京林业大学学报(自然科学版), 2020, 44(3):185-194.
|
[13] |
|
[14] |
史志华, 宋长青. 土壤水蚀过程研究回顾[J]. 水土保持学报, 2016, 30(5):1-10.
|
[15] |
常娟, 张增信, 田佳西, 等. 西北地区草地水分利用效率时空特征及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(3):119-125.
|
[16] |
\n Beginning in 1981, a mathematical model called the erosion-productivity impact calculator model (epic) was developed to determine the relation between soil erosion and soil productivity throughout the U.S.A. By 1985 the model was ready for use in the RCA (1977 Soil and Water Resources Conservation Act) analysis. Between 15000 and 20000 epic simulations of 100 years each were performed as part of the 1985 RCA analysis. After the RCA analysis, model refinement and development continued and epic has been applied to a number of agricultural management problems. For example, epic is capable of dealing with decisions involving drainage, irrigation, water yield, erosion (wind and water), weather, fertilizer and lime application, pest control, planting dates, tillage, and crop residue management. Example applications include: (i) 1988 drought assessment; (ii) soil loss tolerance tool; (iii) Australian sugarcane model (\n AUSCANE\n ) ; (iv) pine tree growth simulator; (v) global climate change analysis, and (vi) farm level planning.\n
|
[17] |
田宇, 朱建华, 李奇, 等. 三峡库区土壤保持时空分布特征及其驱动力[J]. 生态学杂志, 2020, 39(4):1164-1174.
结合ArcGIS与通用土壤流失方程(RUSLE),研究了1990—2015年三峡库区土壤保持量的时空动态变化规律,并分析了气候、水文、地形、社会等因子对土壤保持功能的影响。结果表明:1990—2015年三峡库区年均土壤保持量为5.79×10<sup>9</sup> t (1004.23 t·hm<sup>-2</sup>),森林、灌木、草地、农田、未利用地的土壤保持功能依次降低。25年间三峡库区单位面积土壤保持量变化范围为818.73~1280.50 t·hm<sup>-2</sup>,2000年土壤保持服务功能最高。三峡库区土壤保持功能呈现东北高,西南低,长江沿岸及重庆主城区附近较低的空间分布趋势;土壤保持量随海拔增加呈现先增加后减小的趋势,海拔1000~1500 m的区域土壤保持能力最强;土壤保持量随坡度呈逐渐增加的趋势。海拔、坡度、降水、植被覆盖变化对土壤保持功能变化的贡献最大。人类活动干扰是土壤保持功能变化的主要驱动力。加强生态保护与修复,统筹治理,降低人为干扰,有助于提升三峡库区生态安全。
Combining ArcGIS with the Universal Soil Loss Equation (RUSLE), we examined the temporal and spatial dynamics of soil conservation in the Three Gorges Reservoir Area (TGRA) from 1990 to 2015, and analyzed the effects of climatic, hydrologic, topographic, and social factors on soil retention. The mean annual soil conservation was 5.79×10<sup>9</sup> t (1004.23 t·hm<sup>-2</sup>) in the TGRA during 1990-2015. Soil conservation services in forests, shrubs, grasslands, cropland, and unused land were successively declined. In the past 25 years, the value of soil conservation per unit area in the TGRA fluctuated within the range of 818.73-1280.50 t·hm<sup>-2</sup>, with the highest value in 2000. The soil conservation service was higher in the northeast but lower in the southwest, the bank area of the Yangtze River, and the main urban area of Chongqing. Soil holding capacity first increased and then decreased with increasing altitude, with the strongest capacity in the areas of 1000-1500 m above sea level. Soil holding capacity gradually increased with the slope. Elevation, slope, annual precipitation, and vegetation cover contributed greatly to changes in soil retention. Anthropogenic disturbance was the main driving force for changes of soil retention. Therefore, it is necessary to strengthen ecological protection and restoration, implement coordinate management, reduce anthropogenic disturbance, in order to improve the ecologicalsecurity in the TGRA.
|
[18] |
|
[19] |
|
[20] |
饶恩明, 肖燚, 欧阳志云, 等. 海南岛生态系统土壤保持功能空间特征及影响因素[J]. 生态学报, 2013, 33(3):746-755.
|
[21] |
杨蕾. 基于InVEST模型的三江源主要生态系统服务权衡与协同研究[D]. 上海: 上海师范大学, 2020.
|
[22] |
肖玉, 谢高地, 安凯. 青藏高原生态系统土壤保持功能及其价值[J]. 生态学报, 2003, 23(11):2367-2378.
|
[23] |
何莎莎, 朱文博, 崔耀平, 等. 基于InVEST模型的太行山淇河流域土壤侵蚀特征研究[J]. 长江流域资源与环境, 2019, 28(2):426-439.
|
[24] |
王婷, 郑帅霖, 李深泉, 等. 晋北地区土壤保持量时空变化特征研究[J]. 干旱区资源与环境, 2018, 32(7):188-195.
|
[25] |
刘翊涵, 苏正安, 潘洪义, 等. 张家口市土地利用和土壤保持功能的变化特征[J]. 草业科学, 2020, 37(7):1281-1292.
|
[26] |
水利部水土保持司. 水土保持综合治理规划通则:GB/T 15772—2008[S]. 北京: 中国标准出版社, 2008.
Department of Soil and Water Conservation Ministry of Water Resources. General rule of planning for comprehensive control of soil erosion:GB/T 15772—2008[S]. Beijing: Standards Press of China, 2008.
|
[27] |
刘敏超, 李迪强, 温琰茂, 等. 三江源地区土壤保持功能空间分析及其价值评估[J]. 中国环境科学, 2005, 25(5):627-631.
|
[28] |
曹巍, 刘璐璐, 吴丹, 等. 三江源国家公园生态功能时空分异特征及其重要性辨识[J]. 生态学报, 2019, 39(4):1361-1374.
|
[29] |
|
[30] |
|
[31] |
陶蕴之, 吕一河, 李凤全, 等. 西南天然林保护工程区生态成效评估[J]. 生态与农村环境学报, 2016, 32(5):716-723.
|
[32] |
胡会峰, 刘国华. 中国天然林保护工程的固碳能力估算[J]. 生态学报, 2006, 26(1):291-296.
|
[33] |
刘璨, 孟庆华, 李育明, 等. 我国天然林保护工程对区域经济与生态效益的影响:以四川省峨边县和盐边县为例[J]. 生态学报, 2005, 25(3):428-434.
|
[34] |
孙文义, 邵全琴, 刘纪远. 黄土高原不同生态系统水土保持服务功能评价[J]. 自然资源学报, 2014, 29(3):365-376.
以土壤保持量为评估指标,应用修正通用土壤流失方程,评估了黄土高原水土保持生态系统服务功能,分析了近20 a 来的黄土高原土壤保持量的空间分布及其动态变化,对于揭示全球气候变化背景下黄土高原林草植被建设的生态成效具有重要的科学价值和现实意义。结果表明:1990—2010 年黄土高原平均单位面积土壤保持量为305 t·hm<sup>-2</sup>·a<sup>-1</sup>,年均土壤保持总量为190×10<sup>8</sup> t。1990—2000 年农田、草地和林地生态系统平均单位面积土壤保持量分别为249、285 和640 t·hm<sup>-2</sup>·a<sup>-1</sup>,2000—2010 年平均单位面积土壤保持量分别增加了14.6%、2.9%和7.4%。黄土高原草地和林地的土壤保持率分别为83%~88%和94%~97%。农田生态系统土壤保持量的空间分布特征表现为黄土丘陵沟壑区和黄土高塬沟壑区较大,农灌区和河谷平原区偏低;草地和林地生态系统土壤保持量的空间分布特征表现为沿东南向西北减少的变化趋势。与1990—2000 年不同,2000—2010 年农田、草地和林地生态系统土壤保持量的空间变化特征表现为较为明显的增长趋势,尤其是黄土丘陵沟壑区陕西榆林、延安地区和山西吕梁山区一带。
|
/
〈 |
|
〉 |